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1. Introduction

Analysis of the scattering from open-ended metallic waveguide
cavities has received much attention recently in connection with the
prediction and reduction of the radar cross section (RCS) of a target
[1-7]. This problem serves as a simple model of duct structures such as
Jet engine intakes of aircrafts and several cracks occurring on surfaces of
general complicated bodies. Therefore, investigation of the scattering
mechanism in case of the existence of open cavities is an important
subject in the field of the RCS prediction and reduction. Some of the
cavity diffraction problems have been analyzed thus far using various
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analytical and numerical methods [8-17]. Most of these approaches
incorporate the scattering from the interior of the cavity including the
rim diffraction at the open end, but they do not rigorously take into
account the scattering effect arising from the entire exterior surface of
the cavity. Hence, final solutions due to these methods appear to be
valid only for the restricted range of incidence and observation angles.
In addition, these solutions may not be uniformly valid for arbitrary
dimensions of the cavity.

The Wiener-Hopf technique {18-21] is one of the powerful ap-
proaches for analyzing wave scattering and diffraction problems in-
volving canonical geometries; it is mathematically rigorous in the sense
that the edge condition, required for the uniqueness of the solution, is
explicitly incorporated into the analysis. As an example of simple two-
dimensional cavity structures, we have previously considered a finite
parallel-plate waveguide with a planar termination at the open end,
and analyzed the diffraction of an FE -polarized plane wave rigorously
using the Wiener-Hopf technique [22, 23]. It has been shown via illus-
trative numerical examples that our final solution is valid for arbitrary
incidence and observation angles as well as for arbitrary dimensions of
the cavity unless the cavity depth is too small compared with the wave-
length. Some comparisons with the other existing methods have also
been given and the validity of those methods has been discussed. As a
generalization to the problem treated in [22,23], we have further an-
alyzed the plane wave diffraction by a parallel-plate waveguide cavity
with a thick planar termination for both £ and H polarizations using
the Wiener-Hopf technique [24], where the effect of finite thickness of
the endplate has been explicitly taken into account. Based on numerical
computations of the far field backscattering characteristics for various
physical parameters, it has been confirmed that, when the aperture is
in the illuminated region against the incident field, cavities formed by
these straight waveguide structures generally exhibit large RCS values
since the interior irradiation then gives rise to a significant contribu-
tion to the backscattering. For applications in the aircraft scattering
studies, it is often required to reduce the interior irradiation from such
cavities. Two methods employed for this purpose are, (i) loading the
interior of the cavity with a lossy material, and (ii) shaping the cav-
ity. In the present paper, we shall consider a parallel-plate waveguide
cavity with dielectric/ferrite loading as an example of two-dimensional
cavities associated with the first method, and analyze the E -polarized
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plane wave diffraction rigorously using the Wiener-Hopf technique.
Since the interior of the cavity is filled with material, the method
of solution becomes more complicated in comparison to that in our
previous papers [22-24].

In Section 2, the Fourier transform for the unknown scattered
field is introduced and transformed wave equations are derived by tak-
ing the Fourier transform of the Helmholtz equation, which contain
unknown inhomogeneous terms occurring due to medium discontinu-
ities along the transform axis. In Section 3, these transformed wave
equations are solved by expanding the inhomogeneous terms into the
Fourier sine series and the scattered field representation in the trans-
form domain is derived. In Section 4, the problem is formulated in
terms of the simultaneous Wiener-Hopf equations satisfied by the un-
known spectral functions, where the unknown Fourier expansion coef-
ficients are also involved. In Section 5, the Wiener-Hopf equations are
solved exactly in the form of integral equations in the complex domain
by application of the factorization and decomposition procedure. In
order to simplify these integral equations, an important relationship
between the unknown Fourier coefficients and the unknown spectral
functions is subsequently investigated in Section 6. In Section 7, we
shall evaluate the infinite integrals occurring in the integral equations
to obtain the formal solution of the Wiener-Hopf equations using the
results in Section 6. It should be noted that the formal solution in-
volves an infinite number of unknowns and some branch-cut integrals
with unknown integrands. In Section 8, we shall further develop ap-
proximation procedures for determining the unknowns and evaluat-
ing the branch-cut integrals based on rigorous asymptotics with the
aid of the edge condition, and derive the approximate solution to the
Wiener-Hopf equations, which involves numerical inversion of appro-
priate matrix equations. It is to be noted that our final approximate
solution is uniformly valid in incidence and observation angles as well
as in cavity dimensions unless the cavity depth is too small compared
with the wavelength. Subsequently, in Section 9, the derivation of the
scattered field inside and outside the cavity will be discussed by taking
the Fourier inverse of the solution in the transform domain. The field
inside the cavity is expressed in terms of the transmitted TE modes,
whereas for the field outside the cavity, a far field asymptotic expres-
sion is derived using the saddle point method. In Section 10, we shall
present representative numerical examples of the monostatic RCS and
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Figure 1. Geometry of the parallel-plate waveguide cavity.

the bistatic RCS for various physical parameters, and discuss the scat-
tering characteristics of the cavity in detail. In particular, it is shown
that, for large cavities, significant RCS reduction can be achieved by
lossy material loading inside the cavity. Some comparisons with a high-
frequency technique are also provided and the validity of that approach
is discussed. Section 11 contains some concluding remarks.

The time factor is assumed to be e~** and suppressed through-
out this paper.

2. Transformed Wave Equations

Let us consider the diffraction of an FE -polarized plane elec-
tromagnetic wave by a parallel-plate waveguide cavity with dielec-
tric/ferrite loading as shown in Fig. 1, where the E polarization im-
plies that the incident electric field is parallel to the y-axis. The cavity
plates are assumed to be infinitely thin, perfectly conducting, and uni-
form in the y -direction, and the medium inside the cavity is character-
ized by the relative permittivity ¢, and the relative permeability pu,..
The problem reduces to the one treated in our previous papers [22, 23]
by letting e, — 1 and p, — 1. In view of the geometry and the
characteristics of the incident field, this is a two-dimensional problem.



Diffraction by a parallel-plate waveguide cavity: part I 381
Let the total electric field ¢*(z, z)[= El(z, 2)] be
¢'(z,2) = ¢'(z, 2) + d(z, 2), (1)
where ¢'(z,z) is the incident field of E polarization defined by
¢i($, Z) — e—ik(zsin 0,+zcosd,) (2)

for 0 < 8p < m/2 with k[= w(uge,)'/?] being the free-space wavenum-
ber. The total field ¢'(r,z) satisfies the two-dimensional Helmholtz
equation:

[6%/02% + 8%/02° + u(z, 2)e(z, 2)k?] #'(z, 2) = 0, (3)
where
1 outside the cavity,
M®,2) =9 4 inside the cavity, (4a)

1 outside the cavity,
e(*,2) =1 ¢ inside the cavity.

Our problem is to determine the solution of (3) subject to appropriate
boundary conditions. Nonzero components of the total electromagnetic
fields are derived from the following relation:

(4b)

r

i o 1 oy

whoi(z, 2) 02 iwpp(z,2) Oz | (5)

(Ey, Hy, H7) = [QS‘,

For analytical convenience, we assume the medium to be slightly
lossy as in

k=k1+ik2, 0<k2 <<k1. (6)

The solution for real k is obtained by letting ks — +0 at the end
of analysis. It follows from the radiation condition that the scattered
field satisfies

$(z,2) = O(e™Falle%) (7)

as |z| — oo, where the symbol O implies Landau’s order notation.
We now define the Fourier transform of the unknown scattered field
¢(zx,z) with respect to z as

®(z, a) = (27)~ 12 / " bz, 2)e dz, (8)
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where o = Re a + ilm a(= o + i7). In view of (7), it is found that
®(z,a) is regular in the strip |7| < k2cosfp of the complex « -plane.
We can also verify that ®(z,a) is bounded as |z| — oo . Introducing
the Fourier integrals as

00
¢, (z,a) = :t(21r)'1/2/ #(z, 2)e*EFL) gy, (9a)
+L
L .
@,(z,0) = (2n) 2 [ gz, 2)eaz, (9)
-L

we can express ®(z,a) as

@(m,a) = \I’(xva) +(I>1(:z,a), (10)
where ‘ .
‘I’(.’B, a) = e—taL\I,_(x’ a) + e‘aL\I’(-{.) (113, a)a (11)
e—ik:r:sin 8,
¥ = A
_(z,a) _(z,a) + & —Fcosy’ (12a)
e—ikzsin 6,
‘I’(+)($,C¥) = q)+(97, a) - Bm, (12b)
eikLcosGO e—ichcosBO
A= —— B=—u-——, 1
(2m)1/2 (2m)1/24 (13)

In (9a,b), ®4+(z,a) and ®_(z,a) are regular in the upper half-plane
T > —kycosf, and the lower half-plane 7 < ky cos 6, , respectively,
whereas ®(z,a) is an entire function. The parentheses in the sub-
script of ¥ +)(a:, a) defined by (12b) imply that ¥ (z,0) is regular
in 7 > —kacosf, except for a simple pole at a = kcos 6, . We shall
henceforth use these conventions for indicating the region of regularity
in the a-plane.
In order to derive transformed wave equations, we note that

(8%/02% + 0%/022 + k*)¢(x,2) = 0 (14)

and
(8%/02% + 8%/022 + k2)¢H(z,2) = 0 (15)
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hold outside and inside the cavity, respectively, where kr = (uré,)!/?k .
For the region |z| > b, we can show by taking the Fourier transform
of (14) and using (7) that

(d?/dz? — ¥*)®(zx,a) =0 (16)

holds for any o in the strip |7| < kacosf, where v = (a® — k?)V/2.
Since « is a double-valued function of a, a proper branch is chosen
such that v reduces to —ik when a = 0. For this branch, it is seen
that Re v > 0 for any a in the strip |r| < k2. Equation (16) is the
transformed wave equation for |z| > b.

The derivation of transformed wave equations for the region |z| <
b is complicated, since there are medium discontinuities across the
surfaces at z = +L. We multiply both sides of (14) by (2m)~1/2¢*
and integrate with respect to z over the ranges —oo < 2 < —L and
L < z < 0o0. Then after taking into account (7) and the boundary
conditions at 2z = =L, we derive that

(d?/dz? — ¥*)®_(z, ) + f{ ()

— (2m)~ /2 [?ﬂ;’;ﬁ —iagi(z, —L)] =0 (17)

for 7 < k2cos by, and that

(d*/de® — %), (z,0) ~ [ur' fo(2) — iag(2)]

+ (2m)~ 12 [%%ﬁ —iad(z, L)] =0 (18)

for 7 > —kacosf,, where

fE@) = (2n)-1/2%t(f’-3‘f—i°) , (19a)
fo(@) = (122 L0 (195)

g(z) = (2m) "¢z, L). (19¢)
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Simple manipulation shows that

2 9 9 A e—ik:z:sin 0
(d°/de” — ){B}a—kcosﬂo
+ (2m)~1/2 [Q‘% — io¢'(z, ;L)] =0 (20)

holds for all o except a = kcos @, . Therefore, substituting (20) into
(17) and (18) and taking into account (12a,b), we find that

(d*/dz® = *)¥_(z,0) = — 7 (2) (21)
for 7 < kacosf,, and that

(d*/dz® - v) ¥ (2, @) = u; o (2) — iag(z) (22)

for 7> —kacosf, with a # kcosf, . Next we multiply both sides of
(15) by (2m)~1/2¢'** and integrate with respect to z over the range
—L < z < L. This gives, after making use of the boundary conditions
at z ==L,

(d*/dz® —T*)®,(z,0) = e7*L [t (2) - &, (z) —iag(z)] (23)

for all «, where T' = (a® — k2)1/2. A proper branch for T is chosen
such that I' reduces to —ik, when o = 0. Equations (21)(23) are
the desired transformed wave equations for |z| < b.

3. Field Representation in the Transform Domain

As mentioned earlier, ®(z, ) is bounded for |2| — 0o and hence,
it can be shown that the solution of (16) is expressed as

U(b,a)e=" ==Y  for z > b,
®(z,a) = U(—b,a)e"@+Y)  for z < —b, (24)

where we have used the following boundary conditions for tangential
electric fields acrossz = +b:

®_(+b+0,0) = ®_(+b— 0,a)[= &_(+b,a)), (25a)
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¢, (£b+0,a) = ®, (b - 0,0)[= ¢, (+b, o)), (25b)
®,(£b+0,0) = ®,(£b-0,a) =0. (25¢)

Equation (24) gives a field representation in the Fourier transform
domain for the region |z| > b.

The derivation of a field representation for the region |z| < b is
complicated since the transformed wave equations (21)-(23) contain
the unknown inhomogeneous terms f(z), fo(z), and g(z) as defined
by (19a,b,¢). First we shall look for a solution of (21). Since (21) is
an inhomogeneous differential equation, we can express the solution as

sinh y(z — b)
sinh 2vb

sinhy(z + b)

V(2 a) =¥_(ba) sinh 2vb

—¥_(-ba)
sinhy(z + b)

sinh 2vb (26)

- [F;(z, o) ~ Fy (b,a)

by making use of (25a), where F| (z,a) is the particular solution
defined by

Fi (z,a) = / f1 () sinhy(z — t)dt. (27)

Now, f; (z) is differentiable for |z| < b, and in view of the edge
condition, it is absolutely integrable for |z| < b. Therefore, we can
expand f; (z) into the convergent Fourier sine series as in

F@ =33 fmsnii@+b) (28)
n=1

for |z| < b. It should be noted here that the behavior of this Fourier
series for x — +b F 0 is governed by the edge condition. When (28)
is substituted into (27), the resultant equation can be evaluated inte-
grating term by term according to the theory of Fourier series. Thus
we derive that

Fy (z,0) = bz fin_ in (@ +0)

a2+ 2

4+ sinh Y(z + b) «— Z nr fin

vb 2b 0% +42° (29)
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where , = [(nm/2b)? — k?]/2. Substituting (29) into (26) now gives,

_ sinhy(z + b) sinhy(z — b)
\If_(.'z:, a) = \I’_(b, a)m - \I/_(—b, a)mb—
41 i J1n sm——(x +b) (30)
b~ a2 + ¥,

for 7 < kacosb, .
We also expand fif(z), f(z), and g(z) in (19a,b,c) using the
convergent Fourier sine series as

Hz) = i sm (:1: +b), (31a)
£ =5 2 fumsin (e +0) (310)
g9(z) = ?1)- i:: sin ox 5 (:v + b) (31¢)

for |z| < b. Then by applying a procedure similar to that employed to
obtain (30), we arrive at the solutions of (22) and (23) with the result
that

B sinh y(z + b) _p pySinhy(z —b)
Y20 =¥t ) =gpar ~ Y Th ) =55
I~ (@) . nr
b a2 + 7 2 2_b(x +0) 2

for 7 > —kocosf, with o # kcosf,, and

1 e—iaL.)H'-z —ele— (o
?,(z,0) = -3 3 din (@)

o T T2 sin —(:I: +b) (33)

n=1
for all o, where T, = [(nm/2b)? — k2]'/2, and

c,T(a) = u:1f2n - iagm Cr_; (a) = f2n - iagn' (34)
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Hence, substitution of (30), (32), and (33) into (10) gives a field rep-
resentation for |z| <b.
Summarizing the above results, we arrive at

®(z,a)
(U(b,a)e~ =0 for = >b,
W(—b, a)e?=+h) for = < —b,

smh'y§x+b2 sinh%gx—b!
V(b o) sinh 27 —¥(=b,0) sinh 2+

—_ —ial mzL +
< +715Zl Jin (@) gin B (z +b)

a* +’y
—ial r+ taL
—%Ze fa vy ¢ (@) smmr(a:+b) for |z| < b.
{ n=1
(35)

Equation (35) is the desired scattered field representation in the Fourier
transform domain and holds in the strip || < k2cosf .
4. Simultaneous Wiener-Hopf Equations

Differentiating the field representation for z > b and = < —b in
(35) with respect to z and setting z = b+ 0, we find that

®'(b+0,a) = —y¥(b, a), (36a)
®'(=b - 0,0) = y¥(-b, ), (36b)

where the prime denotes differentiation with respect to . We also
differentiate the field representation for |z| < b in (35) with respect
to = and set £ = £b F 0 in the resuit. This leads to

®'(b—0,a) = ¥(b, a)ycoth 2y — U(—b, @)y csch2yb

E( )nnﬂ- e—zaLf _eiaLc;i{(a)
*3 a? 4+ 72
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o —ialL _ pial —
— % Z(_)"T_ € fltl € Lcn (a) (37(1,)

2 12 )
= 2b a?+ T3
®'(—b +0,a) = ¥(b, @)ycsch2yb — W(—b, a)y coth 2vb
N .11; i Z_ﬂ- —mbf—2 taLc+(a)
n=1 o+ ’y"
1 & nr e"'"’“ff; mLc—(a)
TEXW  errg O™

It follows from boundary conditions for tangential magnetic fields
across £ = +b that

P (b +0,a) = ¢ (£b—0,0), (38a)
O, (£b+0,a) = 9/, (+b - 0,0). (38b)
Therefore, subtracting (37a) and (37b) from (36a) and (36b),

respectively and taking the sum and difference of the resultant equa-
tions, we obtain, after some arrangements, that

—ial ial
e ly_(a) + e Uiyy(@)

Jii(a) == M(a)
2 i nr e—szf zaLc+( )
D oh 2
bn Todd 2b a? + 2
g i E e—iaLJ\']-l;l sz —(a) (39)
b 4=, 2b a?+ 132 ’
—ial oL
oo € ehV_(a) +e@ V(+)(a)
Jl (a) - N(a)
) i nm —mLf— mLc+(a)
3 op 2
b n=2,even 2b a + 7"
9 o nm e_iaLfl-ty, taL —(a)
*3 Z 2b a? 4172 (40)

3
||
~
@
<
a
=
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with Re v >0, Re v/ > 0, and

_1 1My —1 _1 -1 1_87'
Yy = — cos 1) Ve = = cos T te) (54)
a for Rea < Reb,
”(“’b):{b for Rea > Reb. (55)

In (54), the inverse cosine functions are to be interpreted as the princi-
pal value. Applying fundamental theorems on the asymptotic behavior
of the Fourier integrals [20, 21], we can show with the aid of (9a),
(12a,b), (13), and (51) that ¥_(+b,a) and V4)(£b,a) have the
asymptotic behavior

V_(+b,a) = O(a™%/?) for 7 < k, cos,, (56a)

V(@) =0 '7")  for 7 > —k, cos, (56b)

as a — oo. Similarly, it follows from (9b), (44), and (52) that
el J, (b, q) = O(a™") for 7 <0, (57a)

el (£b,a) =0(@™?®)  for >0 (57b)

as a — 0o. Therefore, applying (564a,b) and (57a,b) to (41 a,b),
(42a,b), and (43 a,b), we see that

U_(a),V_(a) =0(a™%)  for 7 < kycosfy, (58a)
Up@), Viy(a) = O(a™17%) for 7 > —kycosfy, (58b)
e Lyt (@) =0@™)  for 7 <0, (59a)
el (@) =0 ?3)  for r>0 (59b)

as o — oo . Taking into account (58a,b) and (59 b) together with (48),
it is found that the left-hand and right-hand sides of (50) are o(1) as
a — 00 with 7> —kacosf, and 7 < kg cos 6y , respectively. These
considerations show by application of Liouville’s theorem that the en-
tire function P(a) derived before must be identically zero. Equating
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the right-hand side of (50) to zero, we obtain that
U@ 1 [ PUyB)
M_(a)  2mi Jo, M_(B)(B- @)

nr M (i) i — €20 i (i)
b2 21'711(& - l’Yn)

g

n=1,odd

n Z n7r M+ Zrn)[fln — e—QF"L Cn (an)]

2, (o —il'y) =0. (60)

n=1 odd

Next multiplying both sides of (39) by e"**/M_(a) and following
a procedure similar to that employed above, with the aid of (58a,b)
and (59a), yields

() 2B cos(kbsin ;) L e~2PLY_(B)
M, (a) = M, (kcosby)(a—kcosby) = 2mi Jc, M, (B)(B —a)

2 nm M (i) le” i, — e (=i)]
b2 2iv,(a + i7,)

ag

n=1,0dd

_ f: ’I’L_ +(1'Fn)[e—2r Lfln, — Cn ( lrn)] =0 (61)
2 ]

neTodd b a0, (o +1ly,)
where the second term on the left-hand side has appeared in order to
cancel a simple pole of Ui4y(a) at a=kcosb, .

A similar procedure can also be applied for decomposition of (40).
We multiply both sides of (40) by e¥**L'N,(a) and decompose the re-
sultant equations by making use of (48), (58a,b), and (59 a,b). Omit-
ting the details, we arrive at

V@) 1 [ @
N_(a) ~ 2mi Jo, N_(B(B - )
LS Ny — e ek i)
b2 21771,(0 - Z'Yn)

n=2,even

i nr N, (0,)[fh — e beg ()]
b?

2il, (o — iT,) =0, (62

ven
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V(+)(a) 3 2iBsin(kbsin 6,) 1 / e~ 2PLy_(pB) B

Ny(a) N,(kcosby)(a — kcosb,) + 2mi c, Ni(B)(B - )

nm N, (iv,)[e =L 1 — e (=ing,)]
b2 2y, (a + 1,)

n=2,even

L S NLGT TRl — (i)
b2 I, (o +1T,)

n=2,even

0. (63)

Equations (60)-(63) are simultaneous integral equations satisfied by
the unknown functions U_(a), Ui4(e), V-(a), and Vi+)(a), where
the unknown Fourier coefficients fl‘i, fon, and g, are also contained.

6. Some Properties of the Fourier Coefficients

In this section, we shall investigate an important relationship be-
tween the unknown Fourier coefficients and the unknown spectral func-
tions. As has already been shown, ¥_(z,a) is regular in 7 < ks cos 6y
and ¥,)(z,a) is regular in 7 > —kycos 0, except for a simple pole
at a = kcosf,, whereas ®;(z,a) is an entire function. From these
considerations, it follows that

lim (a+i7,)¥_(z,0) =0, (64a)
a—r—iy,
lim (a — 1) ‘I’(-{.) (93, a) =0, (64b)
a—iy,
lim (aFil,)®,(z,a) =0 (64c)
a—+il')

for n =1,2,3,- .. Substituting (30), (32), and (33) into (644 ), (64b),
and (64 ¢), respectively, we derive, after some manipulations, that

—(nm/2b)U_(—iv,) for odd n,
Jim= { (65)

(nw/2b)V_(—1iv,)  for even n,
(n7r/2b)U( »(#7m)  for odd n,

(i) = { —(nm/2b)V,,,(¥v,) for even n, (66)
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fit —eHnle (ir,) =0 for n=1,2,3,---, (67a)
e nlft e (—il,)=0 for n=1,2,3,--. (67b)

Equations (66) and (67 a, b) constitute a system of algebraic equations,
which relates the Fourier coefficients f}, fon, and g, with the func-
tions U(4y(a) and V(4y(a). Solving these equations for f;", fon, and
gn , we are led to

£ (n7r/2b)PnU( +)(i'y,,) for odd n, (680)
S a
In —(nm/20) P,V ,,(i1,) for even n,
B (n7r/2b)QnU( +)(i'7n) for odd n, (685)
m ~(nm/2b)Q, V(1) for even m,
(nw/2b)R, U, \(iv,) forodd mn,
g = ) (68¢)
" ~(nm/20) R,V ,(i7,) for even mn,
where
2. T 6—2F,,L
A — l‘l‘T n —F T (69(1)
Petn +0n 1 —pre=4in
7S VD ke
R S (6%)
_ Ly 1— e-4FnL
Rn - PrYn+Tn 1= pne_4P"L, (690)
Pn = (»u‘r’y'n - Fn)/(”r’)’n + Fn) (70)

Substituting (68b,c) into the first equation of (34) and setting a =
—1i7Yn , we also find that

(n7r/2b)nnU(+)(i'yn) for odd n,

+(_4 =
Cn( Z’Yn) _(Tlﬂ'/2b)ﬂnv(+)(i7n) for even m, (71)
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where ATl _
_ n
Fn =1 ppe=Tnl’ (72)
Equations (65), (66), (67a,b), and (71) can be conveniently used in
simplifying the integral equations (60)-(63).

7. Formal Solution

Let us define the integral in (60) as

o L[ €U0
= % Jo, M_B)B-)

It is seen from (12b), (41b), (46a), and (47 a ) that singularities of the
integrand of I in ImB > ¢ (see Fig. 2) are simple poles at 3 = kcos 0,
and iy, with n =1,3,5,--. and a branch point at B = k. We choose
a branch cut emanating from § =k as a straight line that is parallel
to the imaginary axis and goes to infinity in the upper half-plane. Then
I is evaluated by deforming the contour into the upper half-plane with
the following result:

dg. (73)

2Acos(kbsin 6,)
M_(kcos 8y)(a — kcos 6,)

+ i E)z e—z’y"LM-{-(i’Yn)U(.{,) (z’yn)
2b biyn(a — iv,)

I=JY(a) +

; (74)
n=1,0odd

where 2Ly ®)
IV = L [ £ “»n'P)
) = o e M6 —a)

In (75), C is the contour composed of two straight paths C4 along the
branch cut and a portion C. of a circle with radius e(« 1), centered
at the branch point 8 = k, as shown in Fig. 3. The integral J,Sl)(a)
is now reduced to

dg. (75)

k+ioco . 2_k2 1/2M U
Jél)(a)=%A ' ew’*(ﬂ ) ﬂ_;(ﬂ) B

g (76)
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ImpB

Figure 3. Integration path C(= C_ + C. + C}) for J,(‘l)(a) defined by
(15).

by letting the radius € of C. tend to zero and combining the resultant
contributions from Cz , where the contour is the one running parallel
to the imaginary axis on the right-hand side of the branch cut. Sub-
stituting (74) into (60) and taking into account (65), (66), and (67a),
we derive that

Ue) M@ A FN) N upeun
b~ bl/2 b(a—kc0500)+ b1/2 _,;b(a—i’hn-a) )

for o # k, kcos 6, , where J,Sl)(a) is given by (76), and

a :W P, = M, (ivon_3)

" biton-3 " b1/2 7 (78)

u- = U_(—iv95_3) A = 2b1/2 A cos(kbsin 6,)
" b ’ u M_(kcosf,)

(79)

We next evaluate the integral involved in (61) by following a procedure
similar to that employed to obtain (74) and (76), and simplify the result
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with the aid of (65), (67b), and (71). This leads to

Un@ My(a)[ B, I ()
b b1/2 b(a — k cos ) b1/2
Kon—30nPnln
Z b(a + 1Yo _ 3)} (80)

for a # —k,kcosf,, where

U, (19— 1/2 :
ut = (+)( Y2 a)) B, = 2b Bcos(kbsmao), (81)
b M (kcosb,)

JP(a) =

1 /k+ioo sl (82 - k2)1/2M+(ﬂ)U—(—B) dg. (82)

i k ﬁ+a

A similar procedure can also be applied to (62) and (63), and we
finally arrive at

Vi@ N@_ A A
b b2 | bla—kcosfy) = bl/?

o0

_Z b biq?v; ] (83)

n=2 (Cl! z')("..’11—2)

for a # k,kcosf,, and

V@ N (a) B, N I a)
b b'/2 | b(a — kcosb,) b1/2

- K’2n—2bnqnv: (84)
for a # —k,kcosf,, where
_ [(n— 1)”]2 _ N (iYn_2)
bn, - bi’72n_2 ’ q‘n - b1/2 ) (85)
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-V (~iv,_9) _ 2ib'/2 A sin(kbsin ;)
Un = b A= N_(kcosf,) (86a)
ot — Vi (#¥2n—2) B — 2ib'/2 B sin(kbsin 6, (86b)
i b ’ v N, (kcost,)
k-+ioo 82— k)Y2N, (B)V,
JM(g) = = / €2 o ) N BV (B )dﬁ, (87a)
it Ji 88—«
e s (82— k)N (B)V_(—B)
(2) - 2iBL +
Iy (@) m,/k e fta dgB. (87b)

Equations (77), (80), (83), and (84) give the formal solution to the
simultaneous Wiener-Hopf equations (39) and (40). We should note
that the formal solution involves the infinite series with the unknowns
u¥ and v¥ for n = 2,3,4--- as well as the branch-cut integrals

1Sl)(a), J.(f)(a), J,Sl)(a), and J.Ez)(a) with unknown integrands. It is
therefore required to develop approximation procedures for the explicit
solution.

8. Approximate Solution

In this section, we shall discuss efficient methods for approximate
evaluation of the infinite series and the branch-cut integrals occurring
in (77), (80), (83), and (84) to derive the approximate solution of the
Wiener-Hopf equations. Similar infinite series and branch-cut integrals
appear in the formal solution to the diffraction problem involving the
cavity with no material loading, and the method of evaluation has been
discussed in detail by the authors in the previous papers [22, 23]. Since
the approximate solution to the present problem can be deduced by
following a procedure similar-to that developed in our previous papers,
we shall give only the final results after brief explanation of the method.

First let us consider approximation of the infinite series contained
in (77), (80), (83), and (84). Using (58 a, b), we deduce from (79), (81),
and (86a,b) that

up ~2 2K by, _3) 72, ut ~ 22K (bypn_3) "', (88a)
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vy ~2Y2K D (b 5) 53, vt ~ 22K (byy,_p) "1 (88))

as n — oo, where K,Sl), K,(f), K,(,l), and K.(,2) are unknown constants.
Taking a large positive integer N, the unknowns u¥ and v for
n 2> N of the infinite series in (77), (80), (83), and (84) may be ap-
proximated by the asymptotic behavior given in (88a,b) with reason-
able accuracy. Then we can replace each infinite series in (77), (80),
(83), and (84) approximately by the sum of the finite series containing
N — 2 unknowns and the residual infinite series with one unknown
constant. This procedure yields accurate approximate expressions for
the original infinite series since the edge condition is taken into account
explicitly.

On the other hand, we have provided in Appendix a fundamental
theorem [23, 26] for asymptotic evaluation of certain branch-cut in-
tegrals arising frequently in the Wiener-Hopf analysis. Now it is seen
that the branch-cut integrals defined by (76), (82), and (87a,b) can
be reduced to the canonical form as given by ( A.1). Therefore, we can
apply Theorem in Appendix to derive asymptotic expansions of these
branch-cut integrals for large |k|L. Keeping only the leading terms
from the asymptotic series and carrying out some manipulations with
the aid of (88a,b), we finally arrive at the approximate expressions of
(77), (80), (83), and (84) as follows:

U_(q) M _(a) A,
b = b2 \ b(a—kcosb,)

| + , 2Bcos(kbsinf,) B
+a’1p1{[ul + kb(l—cosao) 5( a)

+ # cos(kbsin 6;)x(—a, —k cos 90)}
NoLo U= W

- ——nnn __ gDgh gy, 89a
; b(a _ 1’,},2"_3) u uN( ) ( )

U(+)(a) zM+(a) B B,
b b1/2 b(a — k cos 6,)
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+ 01P1{ [“1_ + 2Acos(kb sin0o)]£(a)

kb(1 + cos 6;,)

+ #— cos(kbsin fy)x(a, k cos f;) }

K2n-—3an nun (2) o(2)
K,”S, 89b
" Z ba+ T s) (a)> (886)

b bl/2 b(a — k cos 6,)

by { [v . 2iB sin(kbsin 00)] £(—a)

V_(a) _N_(a) (_ A,

kb(1 — cosb,)

2”1:3 sin(kbsin 6y)x(—a, —k cos 00)}
nqn (1) o(1)
- K,'S,n(a) ], 90a
Z b(a on—2) w( )> (90a)
V(@) Ni(o) B,
b b1/2 \ b(a — kcosby)

_ . 2iAsin(kbsinf,)
+b1q1{[vl * TRH(L + cos ) ]5(0‘)

21LA
b

sin(kbsin 6,) x(«a, k cos 00)}

Nzn—zbnqn (2) o(2)
+ K, S, n(a 90b
+ Y e kPse). o

where
a; =kb, b, = kb, (91)

M, (k) N, (k)
1= bl/2 ) Q= b1/2 )

(92)
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U_(-k) ut = U(+)(k)

Ui— = b ) 1 b ) (93a)
- k
v = V__(b k), ,U-l+ — Y(_'P;(_)’ (93b)
ei(2kL—7/4)
{(a) = WF1[3/2, —2i(a + k)L], (94)
_&la)—&(B)
x(a,B) = @A’ (95)
(1) n(0Von—3)~ 13/6
Sun(a Z ooy (960)
(2) _ = K2n—3“ﬂ(b72n—3)_3/2_u
S (@) = e ) (96b)
(1) n(b’an—z)—la/s
Z bla —ivy,_) ’ (97a)
(2) (a) f: K2n—2bn(b72n—2)—3/2—u (97b)

= b(a + iY9p,_s)

In (94), T'1(-,-) is the generalized gamma function [23, 27] defined by
00 pu—lg-t
t+v)m
for Re u >0, |v| > 0, |arg v| < 7, and positive integer m .
Equations (89a,b) and (90a,b) give the approximate solution

to the simultaneous Wiener-Hopf equations (39) and (40), and they
hold uniformly in 6, for large N and |k|L, where the unknowns

I (u,v) = dt (98)

uf and vE for n =1,2,3,---, N—1 as well as KV, K2 kY,
and K,(,2) are contained. In order to determine these unknowns, we
set a = —k,—ivom-3 and a = k,ivem-3 for m = 2,3,4,---, N

in (89a) and (89b), respectively. We also set a = —k, —iyam_2 and



404 Kobayashi et al.

a = k,ivom—2 for m = 2,3,4,---, N in (90a) and (90b), respec-
tively. These procedures lead to the two sets of 2N equations, where
uﬁ and vN are involved. Smce N is a large positive integer, we can

employ (88a,b) to replace ui ~ and vE ~ by their asymptotic behavior

containing K,(‘l), K(z) K,(,l), and K,(,Q) . Thus, the two sets of 2N x 2N
matrix equations are derived, which can be solved numerically with
high accuracy. In the above discussions, we have derived only the lead-
ing terms of asymptotic expansions for the branch-cut integrals, but
their complete asymptotic series including all the higher order terms
may also be explicitly derived by applying the method developed re-
cently by the authors [28]. The approximation procedures developed
in this section are based on rigorous asymptotics with the aid of the
edge condition and hence, the above approximate solution is valid over
a wide frequency range as long as the cavity depth 2L is not too small
compared with the wavelength.

9. Scattered Field

The scattered field in the real space is obtained by taking the
inverse Fourier transform of (35) according to the formula:

oo+1ic )
o(z,z) = (2#)'1/2/ &(z,a)e " *da, (99)

—00+1cC

where c¢ is a constant such that |¢| < ko cos @, . First we shall consider
the field inside the cavity. Substituting the field expression for |z| < b
in (35) to (99), we find that

o0o0+ic :
—(o\—1/2 sinhy(z + b)
ote, ) =n) ™ [ w0 TRAELD
sinh y(z — b)

~V_(=ba) sinh 2-yb

+l i fin___fin sin —(a: +b) | ezt L) gq
b a?+v2 o?2+T2

_ co+ic sinhy(z + b
+ (27!') 1/2/ .. {\I,(+)(b, a)—(._).
~00+1C

sinh 2vb
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sinhy(z — b)
~Y(=ba) sinh 2vb
1 = c,"{(a) Cn (a) —m:(z—L)
_Bg[a2+’)’%_az+rﬁ n%(z-%b) da.

(100)

Since the region inside the cavity exists for —L < z < L, the first and
second integrals in (100) can be evaluated by deforming the contour
into the lower and upper half-planes, respectively. Taking into account
the regularity of ¥_(z,) and ¥(,(z, ) together with (30) and (32),
it is seen that the integrands of the first and second integrals are regular
at a = —iy, and iy, for n =1,2,3,---, respectively. Therefore, in
the process of deformation of the contour, singularities associated with
the first integral are simple poles at o = —iI',, for n = 1,2,3,---,
whereas singularities associated with the second integral are simple
poles at a = kcosfp and iI', for n = 1,2,3,---. Thus, evaluating
the integrals by the use of (67a) and (68a) leads to the following
result:
¢(.’E,Z) - _ e—ik(zsin00+zcosﬂo)

o0
.. nmw .
+§1Tn sin (2 + b) sinh T (2 + L), (101)
where

(%)1/2an75 P, U(+)(z'yn) for odd n,

Tn= m\1/2_nx : (102)
-5 EQF—nPnI/(+)(z7n) for even n.

In (101), the first term exactly cancels the incident field defined by
(2), as expected, whereas the second term represents the transmitted
TE modes coupling into the cavity. It is found by taking into account
(81) and (86 b) that the transmission coefficients Th,_3 and Ty,_, for

n =2,3,4,--- are expressed in terms of u} and v;, respectively.
Next we shall consider the field outside the cavity and derive the
scattered far field based on the saddle point method. Substituting the
field expression for z > b and z < —b in (35) to (99), it is found that

0o+1iC .
o(z,2) = (2m) /2 / .. U(+b, a)eTrEF—tez gy (103)
OO-+-1C
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for ¢ 2 +b, where ¥(+b,a) is expressed as

_iarLU_(@) £ V_(a) + elol Uy(@) £V,)(a)

U(+b,a) =e 3 3

(104)

by making use of (11), (41a,b), and (42a,b). The field outside the
cavity is represented as a combination of (100) with |2 > L and
(103), but the contributions from the region |z| < b outside the cavity
are negligibly small at large distances from the origin. Therefore, the
derivation of the scattered far field for |z| < b will not be discussed in
the following. We note that (77) and (83) are regular in a except for a
branch point a = k and a simple pole a = k cos @y, whereas (80) and
(84) are regular in o except for a branch point @ = —k and a simple
pole a = kcosfp. Now, by taking into account (77), (80), (83), (84),
and (104) together with (13), (79), (81), and (86a,b), it is verified
that ¥(+b,a) given by (104) is regular at a = kcosfy. This shows
that singularities of the integrand of (103) are only branch points at
a = tk . Hence, introducing the polar coordinate

z = psiné, z2=pcosf for 0<|f <7 (105)

and applying the saddle point method, we derive a far field expression
of (103) with the result that

L gilkp—m/a)
¢(p,0) ~ W (b, —k cos §) k sin eFikbsind £

for z 2 +b as kp — oo. Although (106) has been derived only for
the region |z| > b (i.e.,, 0 < |f] < 7), it can be shown that (106) is
continuous across |f| = 0, m. Therefore, it is essentially not necessary
to evaluate (100) for large |k|p, since (106) is valid for arbitrary 6.
The analysis has thus far been carried out by assuming 0 < 6, < 7/2,
but the results are in fact true for arbitrary 6, .

10. Numerical Results and Discussion
In this section, we shall show representative numerical examples

of the monostatic RCS and the bistatic RCS for various physical pa-
rameters to discuss the scattering characteristics of the cavity in detail.
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Since the problem considered here is of the two-dimensional scattering,
the RCS per unit length (echo width) is defined by

o= lim (27rp 9° ) (107)

pmvoo | T |gt |2
For real k, (107) is simplified using (2) and (106) as

o = A| (b, —k cosf) k sin §|? (108)

with 6 2 0, where X is the free-space wavelength. Numerical results
presented here are based on the scattered far field expression given by
(106) together with (104). We have used the approximate expressions
as derived in (89a,b) and (90a,b) for computing U_(a),U(a),
V_(a), and V(4(@) involved in (104). As has been mentioned at the
end of Section 8, we require numerical inversion of the two sets of
2N x 2N matrix equations for obtaining all the physical quantities.
A general consideration on the Wiener-Hopf technique shows that the
convergence of the approximate solution obtained in Section 8 is very
fast when the cavity aperture 2b is small and the cavity depth 2L
is large, compared with the wavelength, particularly because we do
not require large N in these circumstances. By careful numerical ex-
perimentation on the convergence rate of the approximate solution,
we have found that the choice of N = 5,10, and 13 yields sufficient
accuracy for cavities with 2b = X,5), and 10, respectively.

Figures 46 and 7-9 are numerical results of the monostatic RCS
versus the incidence angle 6, and the bistatic RCS versus the observa-
tion angle @, respectively, where the values of o/ have been plotted
in decibels [dB] by computing 10log;yo/X. The cavity structure is
symmetric along the z-axis so that we have shown the monostatic
RCS only for the range 0° < 6, < 180°, whereas for the bistatic RCS,
the incidence angle 6, is fixed as 60° in all numerical examples. For
numerical computations, three different values of the ratio L/b have
been taken as 1.0, 2.0, and 3.0, and the ferrite with &, = 2.5 +i1.25
and g, = 1.6 +i0.8 [4] has been chosen as an example of lossy ma-
terials. In order to investigate the scattering mechanism for each L/b
over wide frequency range, numerical computations have been carried
out for three typical values of the cavity aperture opening, namely,
2b = A, 5\, and 10\. The previous results for no material loading
[22-24] have also been added by dashed lines to investigate clearly the
effect of lossy material loading inside the cavity.
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From Figs. 4-6, we observe noticeable peaks at 6, = 90° and
180° in all numerical examples, which are due to the specular reflec-
tion from the sideplate surface at = = b+ 0 and the endplate surface
at z = —L—0, respectively. For most of the RCS curves in the figures,
we also see peaks at 6, = 0° which correspond to the specular reflec-
tion from the endplate surface at z = —L + 0 for empty cavities and
that from the material boundary at z = L for loaded cavities. It is
found that the RCS data for fixed 2b show sharper peaks at 6, = 90°
with an increase of L/b since the length of the sideplate surface at
z = b is then increased. From the solid and dashed curves for each
fixed L/b and 2b, we notice that both characteristics over the range
90° < 6, < 180° are nearly identical to each other, not depending on
the material inside the cavity. Hence, it is confirmed that, when the
cavity aperture is invisible from the source point, main contributions
to the backscattered far field arise due to the exterior features of the
cavity and the difference on the interior cavity geometries does not
affect the backscattering in the far field. On the other hand, by com-
paring the two RCS curves for each L/b and 2b over 0° < 6, < 90°,
there is obviously a difference depending on the material inside the
cavity. Therefore, we see that when the cavity aperture is in the illu-
minated region against the incident field, the material loading inside
the cavity significantly affects the backscattered far field. More explic-
itly, for empty cavities, the monostatic RCS is smoothly varying and
exhibits fairly large values over some range in 0° < 6, < 90° due to
the effect of interior irradiation, whereas the irradiation is reduced for
the case of material loading. We also find by comparing the results
for 2b = A, 5\, and 10\ that this reduction is noticeable for larger
cavities. This shows that, for large cavities, good RCS reduction can
be achieved over a wide range of the incidence angle by lossy material
loading inside the cavity.

From Figs. 7-9, it is seen that in all numerical examples, the
bistatic RCS shows the largest and the second largest values at the
incident and reflected shadow boundaries given by 6, = —120° and
120° respectively, as expected. The peaks along these two directions
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Figure 4a. Monostatic RCS o/ [dB] for L/b = 1.0,2b = ). Solid lines
and dashed lines denote the results for a material-loaded cavity with
€, =2.5+141.25, u, = 1.6 + 0.8 and an empty cavity, respectively.

become sharper with an increase of the cavity aperture 2b for fixed
L/b. On comparing the results for empty cavities with those for loaded
cavities, the effect of material loading inside the cavity can be seen
clearly over the range 0] < 90°, and the RCS reduction occurs for
loaded cavities. This is because, the cavity aperture is then visible
from the observation point and the interior features of the cavity af-
fect explicitly the far field bistatic scattering. On the other hand, the
bistatic RCS results with and without material loading show close char-
acteristics over the range 110° < |4| < 180°, since main contributions
to the scattered far field are due to the exterior features of the cay-
ity geometry. For larger cavities with no material loading, there are
some particular peaks in the neighborhood of § = +60°, which are
caused by the interior irradiation. As has been recognized in our pre-
vious papers [22, 23|, the direction in which the irradiated fields are
strongly excited, in general, depends on the incidence angle for wide
cavity apertures. From the results presented in the figures, we see that
when the cavity aperture opening is large, the RCS reduction for the
loaded case is noticeable around 6 = 60°.
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Figure 4b. Monostatic RCS o /A [dB] for L/b = 1.0,2b = 5\. Other
particulars are the same as in Fig. 4a. '
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Figure 4c. Monostatic RCS ¢ /A [dB] for L/b = 1.0,2b = 10\. Other
particulars are the same as in Fig. 4a.
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Figure 5a. Monostatic RCS o/ [dB] for L/b = 2.0,2b = \. Other partic-
ulars are the same as in Fig. 4a.
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Figure 5b. Monostatic RCS o/A [dB] for L/b = 2.0,2b = 5)\. Other
particulars are the same as in Fig. 4a.
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Figure 5c. Monostatic RCS o/\ [dB] for L/b = 2.0,2b = 10\. Other
particulars are the same as in Fig. 4a.
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Figure 6a. Monostatic RCS o/ [dB] for L/b = 3.0,2b = ). Other partic-
ulars are the same as in Fig. 4a.
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Figure 6b. Monostatic RCS o/\ [dB] for L/b = 3.0,2b = 5). Other
particulars are the same as in Fig. 4a.
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Figure 6c. Monostatic RCS o/) [dB] for L/b = 3.0,2b = 10\. Other
particulars are the same as in Fig. 4a.
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Figure 7a. Bistatic RCS o/\ [dB] for L/b = 1.0,2b = ), 6, = 60°. Solid
lines and dashed lines denote the results for a material-loaded cavity
with €, = 2.5+ 11.25, u, = 1.6 + 0.8 and an empty cavity, respectively.
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Figure 7b. Bistatic RCS o/ [dB] for L/b=1.0,2b = 5,6, = 60°. Other
particulars are the same as in Fig. 7a.
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Figure 7c. Bistatic RCS o/ [dB] for L/b = 1.0,2b = 10}, , = 60°. Other

particulars are the same as in Fig. 7a.
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Figure 8a. Bistatic RCS o/\ [dB] for L/b = 2.0,2b = A, 6, = 60°. Other

particulars are the same as in Fig. 7a.
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Figure 8b. Bistatic RCS o/ [dB] for L/b=2.0,2b= 5,6, = 60°. Other
particulars are the same as in Fig. 7a.
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Figure 8c. Bistatic RCS o/ [dB] for L/b=2.0,2b = 10), 4, = 60°. Other
particulars are the same as in Fig. 7a.
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Figure 9a. Bistatic RCS o/ [dB] for L/b = 3.0,2b = A, 6, = 60°. Other
particulars are the same as in Fig. 7a.
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Figure 9b. Bistatic RCS o/ [dB] for L/b=3.0,2b = 5), 6, = 60°. Other
particulars are the same as in Fig. 7a.
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Figure 10a. Monostatic RCS o /) [dB] of an empty cavity with L/b=1.0,

2b = 5\ and its comparison with Burkholder [29]. Solid lines and dots
denote the results of this paper and Burkholder’s results, respectively.
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Figure 10b. Monostatic RCS o/ [dB] of an empty cavity with L/b = 1.0,
2b = 10\ and its comparison with Burkholder [29]. Other particulars are
the same as in Fig. 10a.
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Figure 11a. Monostatic RCS o/ [dB] of a material-loaded cavity with
L/b=1.0, 2b =5, & = 2.5+ 11.25, 4 = 1.6 + i0.8 and its comparison
with Burkholder [29]. Other particulars are the same as in Fig. 10a.
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Figure 11b. Monostatic RCS o/ [dB] of a material-loaded cavity with
L/b=1.0, 2b = 10\, &, = 2.5 +11.25, pr = 1.6 4+ 10.8 and its comparison
with Burkholder [29]. Other particulars are the same as in Fig. 10a.

We shall now make some comparisons with the other existing
method. Recently Burkholder [29] obtained the monostatic RCS results
for the same geometry using the hybrid asymptotic-modal approach
[12,15] together with the geometrical theory of diffraction (GTD).
Shown in Figs. 10 and 11 are comparisons with the numerical data
generated by Burkholder, where the results for both empty and loaded
cavities are presented. In the figures, solid lines and dots denote the
Wiener-Hopf results and Burkholder’s results, respectively. Burkholder
uses the hybrid asymptotic-modal approach for the scattering from the
interior of the cavity, and the first order GTD for the external scatter-
ing from the leading edges at z = L and the right-angled back corners
at z = —L. In addition, for loaded cavities, his results are based on
the use of the half-plane diffraction coefficient as an approximation,
since the diffraction coefficients for an edge adjacent to a material re-
gion are not available. From Fig. 10 for empty cavities, we see that
Burkholder’s results with 2b = 5\ and 10\ agree very well with our
Wiener-Hopf solution up to 6, = 60° and 70°, respectively. The dis-
crepancies near 6, = 80° are perhaps due to the fact that the effect
of higher order diffraction by outer edges is not incorporated into his
analysis. It is also interesting to note from Fig. 11 that, although the
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half-plane diffraction coefficient is used in [29] as an approximation for
loaded cavities, the agreement between the two methods is reasonably
good.

11. Conclusions

As a generalization to the geometry treated in the previous pa-
pers, we have considered a parallel-plate waveguide cavity with dielec-
tric/ferrite loading, and analyzed the E -polarized plane wave diffrac-
tion using the Wiener-Hopf technique. There are a number of analysis
methods for treating cavity diffraction problems, but most of them do
not rigorously take into account the scattering effect due to the exte-
rior features of the cavity. Furthermore, the solutions deduced via these
methods become less accurate when the size of the cavity tends to the
low-frequency or the high-frequency limit. On the contrary, the Wiener-
Hopf technique takes into account the edge condition rigorously and
incorporates all the possible effects of the scattering from the interior
and the exterior of the cavity. Hence, our final approximate solution
presented in this paper is uniformly valid in incidence and observa-
tion angles as well as in cavity dimensions unless the cavity depth is
too small compared with the wavelength. We have presented numerical
examples of the monostatic RCS and the bistatic RCS for various phys-
ical parameters to discuss the scattering characteristics of the cavity in
detail. As a result, it has been clarified that, for larger cavities, signif-
icant RCS reduction can be achieved by lossy material loading inside
the cavity. Some comparisons with a high-frequency technique have
also been given and the validity of that approach has been discussed
briefly. A similar analysis for the case of H polarization is carried out
in the companion paper [30].

Appendix

This appendix is concerned with asymptotic expansions of certain
branch-cut integrals arising in the formal solutions of the Wiener-Hopf
equations. The results presented here are due to Kobayashi [23, 26].
Let f(B) be a function of a complex variable  satisfying the following
conditions:

(i) f(B) is an analytic function of B, regular in |8 —k| < e|k|, where
k = ky +iky with ky >0, k2 >0, and ¢ #0.
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(ii) f(B) is O[(B—k)®] for any B such that |8 —k| > R with e|k| <
R < 00, where 6 is some real constant.
(i) f(B) is a continuous function of B on any bounded part of the
semi-infinite straight path from k to k + ioco in the [ -plane.

Let a be a complex variable such that |a+k| >0 and —7/2 <
arg(a + k) < 3w/2, and introduce the function F,,, (I,a) as

_ 1 [ m B=R)1(B)
qu(l,a) = ;{A Cﬂl Wdﬂ (Al)

for | > 0,Rev > —1, and positive integer m , where arg(8—k) = n/2.
The conditions | > 0 and Rev > —1 ensure absolute convergence of
the infinite integral in ( A.1), whereas the conditions |a + k| > 0 and
—7m/2 < arg(a + k) < 3w/2 are required for avoiding the case where
a pole of order m of the integrand at 8 = —a lies on the contour.
The condition arg(8 — k) = 7/2 has also appeared in the definition
of F,,(I,a), which has been introduced in order that (3 — k)¥ be a
single-valued function for non-integer v .
Let us define the region D in the «-plane as follows:

D={a:|la+k|>0, —7/2 < arg(a+ k) < 3r/2}. (A.2)

Then it can be verified that F,, (l,a) is uniformly convergent in o
over any bounded closed region contained in D and hence, we find that
F,.(l,a) is an analytic function of «, regular in D. The following
theorem now holds for the asymptotic expansion of F,,, (I, «) for large
k|l :

Theorem. Under the conditions (i)—(iii) stated above, F,,, (I, )
can be expanded asymptotically as

eikl e y—mtn )
Fon (1, 0) ~ = > Inpmmrlmlv + 0+ L—ila+ Bl (A3)
n=0

for any a € D when kl — oo, where

; _ La)
"ol dBn po ]
and T'm(-,-) is the generalized gamma function defined by (98).

The above theorem is useful in accounting for the multiple edge
diffraction explicitly in high-frequency range. Asymptotic expansions

(A.4)
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of similar integrals have also been considered by Jones [31] and
Williams [32], but their results are restricted to the special case where
v==%1/2 and m=1 in (A.1).
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