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1. Introduction

The present wave of interest in complex materials has reached
a stage within the field of microwaves where commercial applications
can be expected soon. Of course, new electromagnetic effects in mate-
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rials have been always of interest for engineers, but particularly in the
latest years, novel materials have attracted special attention. Within
this class of novel, “exotic” materials one may count, for example, chi-
ral, nonreciprocal, nonlinear, gyrotropic, and high- T, superconducting
materials, which all seem to contain potential for promising applica-
tions in microwave and millimeter wave engineering, as well as in the
infrared and optical regime.

In the design of composite materials for electromagnetic appli-
cations, the aim often is to find the correct way of mixing component
phases to realize the desired electric and magnetic macroscopic param-
eters in the mixture. Having now — or soon — access to new “non-
classical” materials, this task is even more challenging. When playing
with these materials, one has to be aware of the fact that there is
magnetoelectric or anisotropic coupling within the molecular level of
the materials. This shows itself at the phenomenological description in
the constitutive relations. Therefore the mixing laws for heterogeneous
media become more intertwined and complex than in the classical de-
scription of dielectric mixtures. Along with this trend towards more
general electromagnetic description, also the design of new, e.g. chi-
ral composites, has to rely on more complicated and interdependent
formulas than the early-days design of artificial dielectrics.

Media effects are diverse, and bifurcate in several dimensions. This
article will focus on one subclass of novel media, viz. that of bi-isotropic
media. Bi-isotropic media are more general than isotropic media due
to the fact that magnetoelectric coupling is allowed. A possibility to
subdivide bi-isotropic materials is the following classification with five
groups:

¢ ordinary dielectric media, consisting microscopically of electrically
polarizable entities, which are induced by the electric field

* magnetic media, displaying, analogously to dielectric media, mag-
netic polarization due to an external magnetic field

e reciprocal chiral media, that due to their inherent left- or right-
handedness exhibit magnetically caused electric dipole moment
density and vice versa

e nonreciprocal media, where the magnetoelectric effect is in-phase
unlike in chiral media

e media characterized by any combination of the four aforemen-
tioned effects
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The research on chiral media has been especially intense within mi-
crowaves in recent years [1], and chirality is an example of novel ma-
terial effects at best. Nonreciprocity is a comparable effect to chirality
from the theoretical point of view but in terms manufacturing real-life
samples, nonreciprocal materials are not as advanced. However, elec-
tromagnetic analyses promise wonderful potential in applications for
naturally nonreciprocal media.

The following sections attempt to present electromagnetic models
for heterogeneous bi-isotropic media that can be used in chiral com-
posite design, for example. But in addition to presenting expressions
for effective material parameters of bi-isotropic mixtures, this article
tries to convey a message that there is profound physical contents hid-
den (and sometimes even clearly visible) within the mixing laws of
bi-isotropic media. One can intuitively interpret the polarizability and
macroscopic parameter expressions and gain insight how the proper-
ties of the microgeometry of the medium are reflected in macroscopic
properties that rule the electromagnetic response of the material. This
fact, the expanded physical interpretation, is one reward that one gets
after paying the price of facing complicated expressions in bi-isotropic
media modeling.

2. Constitutive Parameters

The most general linear, homogeneous, nondiffusive medium re-
sponds to electromagnetic excitation according to the following bian-
isotropic constitutive relations:

D=t¢-E+¢-H (1)
B=j-H+(-E (2)

Here, E is the electric and H the magnetic field strength, D is
the electric and B the magnetic flux density. The material effects are
contained in the dyadics &, i, &,¢ that, due to anisotropy, contain 36
scalar material parameters in maximum.

In this article, however, the emphasis is on isotropic media. Hence
the material response is independent of the direction of the vector
force of the electric or magnetic field. The parameter dyadics above
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are multiples of the unit dyadic. Therefore constitutive relations of
bi-isotropic media can be written as

D=¢E+¢H (3)
B =uH+(E (4)
and, redefining the magnetoelectric coupling coefficients &, (:
D = €E + (x — jK)+/lotoH (5)
B = pH + (x + jK)y/loeo E (6)

The advantage of using relations (5)—6 rather than (3)-(4) is that
the material parameters in (5)-(6) have clear physical meaning: the
permittivity € is a measure for the electrical polarization induced by
the electric field, and permeability p gives correspondingly the magni-
tude of the magnetic co-polarizability. The magnetoelectric parameters
measure the crosspolarizability propensity of the medium, and are con-
fined very naturally in x and x.

The parameter x contains the degree of chirality, and it is a dimen-
sionless parameter, due to the separation of the factor |/figég (€ and
Lo are the permittivity and permeability of the vacuum). Chirality is a
measure for the handedness of the material. For a left-right symmetric
medium?!, k =0.

The remaining material parameter is x which is a dimensionless
quantity for the degree of inherent nonreciprocity in the medium. It is
known that externally, nonrecirocity can be created by a static mag-
netic field in ferrites or plasmas, but in these cases, the medium is
anisotropic. The simultaneous requirements of both nonreciprocity and
isotropy lead to magnetoelectric coupling, and a nonzero value for x.
An example of naturally nonreciprocal material (although anisotropic)
is chromium oxide? [2,3].

Honoring scientists that have given contributions to the study of
these magnetoelectric media, the reciprocal chiral medium (x = 0,k #
0) can be called Pasteur medium, and the nonreciprocal nonchiral
medium ( x # 0,k = 0) sometimes carries the name Tellegen medium.
For references about their work as well as other historical contributions
to the magnetoelectric material research, cf. [4,5].

1 A medium which does not differ from its mirror image.
2 Cr 203
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In the simplest case of lossless materials, it can be shown that all
the four parameters €, u,x,x are real. For lossy media, the material
parameters are complex scalars.

The coefficient j in the constitutive relations reflects the fact that
the relations implicitly assume a time-harmonic dependence for the
fields. The convention for the sign of the imaginary part is according
to the hidden time dependence exp(jwt) . In addition to relations (5)-
(6), there are also other notations and constitutive relations for the
material parameters of chiral and bi-isotropic media, see e.g. [6]. This
paper will only deal with relations (5)-(6). If there exists a need to
translate the conclusions on bi-isotropic media of the present study to
other representations, the formulas of [6] can be easily applied for this
purpose.

The magnetoelectric material parameters can be measured for exam-
ple by analyzing the state of polarized radiation that has been reflected
from a bi-isotropic interface or transmitted through a bi-isotropic slab.
The common belief is that because chirality affects the polarization
plane of a propagating wave, transmission methods would be most
suitable for measurements of x. Correspondingly, reflection methods
would give most easily the nonreciprocity parameter. Although there
exists a simple relation between chirality and the total rotation of the
plane of linear polarization, it is true that chirality affects the reflected
wave, too 3. This effect has been shown to be especially strong and
would provide an alternative method for spectroscopy of chiral ma-
terials [8]. However, the focus in this article is not on measurement
techniques but rather on the properties on heterogeneous bi-isotropic
media. Let us therefore start by treating the polarizability properties
of a single bi-isotropic inclusion.

-

3.  Polarizabilities of Bi-isotropic Inclusions

Taking a look at any sample of material media on the small-scale
level, the structure is always seen to display inhomogeneitites. A classi-
cal approach is to model the structure by polarizable entities, called in-

8 Especially in layered structures the chiral reflection effect can be
used advantageously; the numerous stealth-technology-related appli-
cations witness this [7].
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clusions, or more complicated clusters of inclusions in the case of dense
media. On the other hand, the essence of the macroscopic character-
ization (for example equations (5)-(6)) are the four scalars e, u, x, & .
All polarization phenomena are “hidden” beyond the values of these
quantities. In modeling, one needs a macroscopic description of the ma-
terial. Hence, the average polarization has to be calculated. This is the
dipole moment density, wherefore the polarizabilities of the inclusions
composing the mixture have to be known. The polarizability, on the
other hand, depends on the properties of the inclusions: their volume,
shape, and refractive index. Let us focus on the laws that govern these
dependencies.

3.1 Bi-isotropic Sphere

In order to calculate the polarizability of a homogeneous bi-isotropic
sphere (described by parameters ¢, y, k, X ), the quasistatic problem of
this sphere in vacuum with the presence of an electromagnetic field
has to be solved. Although the analysis in this report focuses on time-
dependent fields, static field solutions* can be used in calculating the
polarization densities for small particles. The quasistatic approach is
equally valid for magnetoelectric problems as in purely dielectric cases.
This question has been discussed thoroughly in [9], and is not re-
peated here % . The quasistatic assumption means that the particle will

4 A static field solution for the electric field inside a spherical inclusion
in a constant external field is also constant.

5 It may hurt intuition to use quasistatic approximation in solving
bi-isotropic, and particularly chiral problems because it is well known
that chiral effects disappear as the frequency w goes to zero [10].
As a matter of fact, the low-frequency expansion of k begins with
a linear function of frequency: x(w) = kjw, (w — 0). This follows
from the observation that if one transforms from frequency to time
domain by a Fourier integral, the result has to be real. Therefore all
j s have to appear in multiples of w in the expressions. The other way
of noting the absence of chiral effects in statics is to use another set
of constitutive equations (so called Drude-Born—Fedorov [4] relations),
where the chiral parameter is multiplied by the curl of the electric field.
In statics, V x E = 0. See also [11] where the polarizability expressions
of small chiral spheres are derived starting with the full set of Maxwell
equations.
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be approximated electromagnetically by electric and magnetic dipoles;
higher multipoles are ignored. The incident electric and magnetic fields
are E,H, which create electric and magnetic polarization P, P, in
the sphere. As a straightforward generalization from the classical di-
electric case [12,13], the internal fields can be calculated from the ex-
ternal fields and the polarization inside the sphere in the following

way:
E; E 1 pe/fo
(5)-(:)-s(mm) o

On the other hand, the internal polarization densities are related to
the internal fields as

() L)) o
P, (x + jK)y/loko 1= po. H;

From these two coupled equations, the internal fields can be solved:

(Ei) 1 ( 3eo( + 2p0) —3ﬂo(x~jn)ﬂ36—o) (E)

T AN “3eo(x+jR)iRE  Bpole + 260) H
(9)

A = (1 + 2u0) (€ + 2e0) — (X2 + k%) poco (10)

Outside the scatterer, the polarization densities have effect that is
equal to emanating from electric and magnetic dipole moments De, Pm -
These dipole moments are proportional to the incident field:

'

De Qee  Qem E
)=o) (s) o

In the polarizability symbols «;;, there are two indices: the first
(i) denotes the polarization type, and the second (j) is for the origin
of the polarization. The dipole moments are integrals over the sphere
volume V' of the polarization, which is constant:

() ()=r) e
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The co- and cross-polarizabilitites can be solved from the previous
equations by relating the polarizabilities and the incident fields [9,14]:

(e~ e0) (B +2p0) — (x* + K?)poco (13)
(1 + 2p0) (€ + 2€0) — (X2 + K2) poeo

3(x — jK)\/Boko

Olge = 360 V

Qem = ooV 14
em = ooV o (e + 260) — O+ ors. Y
3(x + jr)\/Hoto
=3 vV 15
e = otV o) e + 260) — O + Dpors )
— (2 2\
A = 30V (1 — po) (€ + 2€0) — (x* + &%) poco (16)

(1 + 2p0) (€ + 2€0) — (X2 + k%) poeo

These polarizabilities are needed in the analysis to follow, as the
mixing relations are derived. For the nonchiral reciprocal limit
Kk — 0, x — 0, these polarizabilities simplify to the well-known ex-
pressions

€—¢€
Qee = 4Tega® e 250 (17)
U — o
o = 4rpoa’ —L 18
mm Ho T 20 ( )
Ome = Qem =0 (19)

where a is the radius of the sphere. Note the decoupling of the electric
and magnetic quantities of these results compared with the bi-isotropic
case.

3.2 Bi-isotropic Ellipsoid

For ellipsoidal bi-isotropic scatterers, the field analysis can be car-
ried through, because as for spheres, the internal fields are constant in
the quasistatic case. The difference is that the polarizability matrix,
relating exciting fields and dipole moments, does not consist of four
scalars c«y; but rather of four dyadics &4 . This is because the ellip-
soid depolarizes differently along its three axes. The way this happens
is determined by the depolarization dyadic which contains the depo-
larization factors of the ellipsoid. These depend on the axis ratios: If
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the semiaxes of the ellipsoid are a, b, ¢, the depolarization factor in the
direction of the a axis is [15,16]

e f ds
2 J (s +a2)\/(s +a?)(s + b%)(s + c2)

Na (20)

For depolarization factors N, and N,, interchange b and a, and ¢
and a in Eq. (20), respectively. The depolarization factors satisfy N, +
Ny + N =1 for any ellipsoid, and for a sphere, these are equal: N, =
Ny = N = 1/3. The other two special cases are a disk (depolarization
factors 1, 0, 0) and a needle (0, 1/2, 1/2). Closed-form expressions
can be written for ellipsoids of revolution [17]. Osborn and Stoner
have given tabulated values for the depolarization factors of general
ellipsoids [18,19].

The depolarization dyadic is

i = Naﬂaﬂa -+ Nbﬁbﬁb + Ncﬂc'ac | (21)

with %, @, fic being the unit vectors along the axes.

Using the same reasoning as for bi-isotropic spheres, the polariz-
ability components of the bi-isotropic ellipsoid can be calculated. The
internal fields are constant, and Equations (7) read in the ellipsoidal

case as ,
(?i)z(?)~i-(_?‘3/€°) (22)
Hi H . Pm/;t()

Therefore the dipole moments can be written as functions of the in-
cident fields, and the polarizability matrix components are now dyadics
[21]: '

De Qee  Oem E
)=o) () oo

_ Written explicitly, the components of the 'polarizabillity dyadics
Qpg = Z?:l QrsiUilly are

Qee,i = GZY {(e — ) [Nips + (1 = Ni)po] — Ni(x® + K%)poeo}  (24)
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v Nl -+ ) @

Ammi =

€V eV
Qem,i = 2 AO (X = jK)y/Hoko,  Omei = 20T °A° (x + jK)/Hoto (26)

with
A; = [Nipp + (1 = Ny)po][Nie + (1 — Ni)eo] — N2(* + k%) poco  (27)

and V = 4mabe/3 being the volume of the ellipsoid. These expressions
reduce to Egs. (13) --- (16) as the ellipsoids degenerate into spheres:
N,‘ —1 / 3. ’

8.8 Bi-isotropic Background Material

The previous expressions about sphere and ellipsoid polarizabilities
assumed that the background was isotropic in which the inclusion was
embedded. If the background is also bi-isotropic, the steps in the analy-
sis and the complexity of matrix algebra remain exactly the same as in
the previous subsections. Now the electric and magnetic polarizations
have to include also the magnetoelectric coupling in the background
medium. This has been done in [20].

Be the material parameters of the background e, p1,x1,%1 and
those of the spherical inclusions €, y2, X2, k2 . Then the polarizabilities
(generalizations of (13)—(16)) read:

Qlee
e1(e2 — €1)(p2 + 2u1) — e1[(x2 — x1)? + (52 — K1)*]poeo
(2 + 2p1)(e2 + 2€1) — [(X2 + 2x1)? + (K2 + 2K1)?| poco
+3 —3(e2 — €1)(x} + K3)poco

Y Tz + 21)(ea + 261) — (2 + 2x1)? + (k2 + 251l paoco
(28)
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Qem

3uer[(x2 —x1) —j(ke — k1) + A
= 3V /o€
e 2m) (€2 + 2€1) — [(x2 + 2X1)2 + (m2 + 2K1)%puoeo

(29)

Ome =

3uer[(x2 — x1) + j(k2 — k1)] + A*
3V./
OO Ta + 2mm) (€2 + 261) — [(x2 + 2x1)2 + (52 + 251)2] froco

(30)

yhalpe = pm)(e2 + 261) — pf(xe — x1)? + (k2 — £1)%)poco
(B2 + 2p1)(e2 + 2€1) — [(x2 + 2x1)% + (K2 + 2K1)?|Ho€o

L3y —3(p2 — 1) 03 + k3 oeo
(2 +2u1)(e2 + 2€1) — [(x2 + 2x1)? + (K2 + 2K1) % poco

Omm =3

(31)
where the background-dependent correction term A is
A=(x1 = jr1) {(p2 — m)(e2 — €1) — [(x2 — x1) — Ji(K2 — K1)]
[(x2 + 2x1) + j(k2 + 2K1)] oo} (32)

A" =(x1 + jr1) {(p2 — p1)(e2 — €1) — [(x2 — x1) + j(K2 — K1)]
[(x2 +2x1) — j(k2 + 2K1)]po€o} (33)
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8.4 Discussion on the Polarizabilities

A look at the polarizability expressions reveals several facts. The
polarizabilities of bi-isotropic inclusions are dependent on the four ma-
terial parameters of the inclusion material, and trivially ¢ on the vol-
ume of the sphere. In addition, the ellipsoidal inclusions display the
shape effect as in the isotropic dielectric case: the smaller the depo-
larization factor, the larger the polarizabilities. In the following let us
concentrate on the manner how the magnetoelectric parameters affect
the sphere polarizabilities.

Often it happens that the chirality and nonreciprocity parameters
are small compared with the relative permittivity and permeability pa-
rameters. Equations (13)—(14) show that because the copolarizabilities
Oee, Omm are even functions of both x and x, which could have values
of the order of 0.1 or less, the effect of these is rather small. The main
behavior of the copolarizabilities is that an increase in € increases e
(similarly happens for omm affected by p). The effect of increasing
k or x is that both copolarizabilities decrease. In addition, the intro-
duction of a nonzero k or x leads to the crossdependence of a.. on
1 and also amm on €.

The crosspolarizabilities (15), (16) increase for increasing x and
k, and decrease for increasing ¢ and u. For illustrations on these
behaviors, see [22]. f

One extremely interesting effect can be seen in Fig. 1 where the
magnetic copolarizability .., is plotted as a function of the inclusion -
permeability. The monotonic increase of qyug,, with u is evident but
for sufficiently small values of p, the magnetic copolarizability can
be negative. In other words, for a bi-isotropic sphere, the magnetic
polarization response can be opposite to the incident magnetic field,
although the material permeability is larger than that of the vacuum 7.
Figure 1 shows also that only in the case of nonchiral and reciprocal
sphere, amm is always nonnegative.

To paraphrase once more, a paramagnetic sphere can display dia-
magnetic behavior if it is chiral and/or nonreciprocal. The effect is
more pronounced if the chirality or nonreciprocity is increased. The
figure also shows the effect of € on this phenomenon: making the per-

6 linear proportionality
7 This means that the depolarization field — which is opposite to the
internal field — has an amplitude larger than the incident field.
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Figure 1. Normalized magnetic copolarizability of a chiral sphere
@mm/(30V) in equation (15) as a function of the relative permeabil-
ity of the sphere p/po for two permittivity values € = 2¢g, € = 5¢9. Solid
line: K = 1; dashed line: k = 0.5; dotted line: x = 0. Note the diamagnetic
behavior at sufficiently small values of p.

mittivity larger increases the effect. In other words, as has been noted
elsewhere [23]: even though chiral (or even bi-isotropic) inclusions be
nonmagnetic to begin with, the composite medium will have magnetic
properties.

Also, due to the duality, or the fact that equations (13) and (16) re-
main the same if the electric 4nd magnetic quantities are interchanged,
a similar phenomenon exists for the electric copolarizability: a “di-
adielectric” material® can be manufactured from “paradielectric” bi-
isotropic spheres that have permittivity sufficiently close to that of
vacuum, in such a way which corresponds to a state below the zero-
Ccrossing point of Fig. 1.

I call a medium “diadielectric” if its electric susceptibility is negative.
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4. Effective Parameters of Bi-isotropic Mixtures

Once the polarizability matrices of bi-isotropic inclusions are known,
it is possible to characterize electromagnetically mixtures that are com-
posed of these inclusions embedded in a host medium. The macroscopic
parameters depend, in addition to the polarizabilities, also on the frac-
tional volumes of the components making the mixture. Furthermore,
in the case of ellipsoidal inclusions, their orientation distribution may
have a strong effect on the macroscopic effective parameters of the
mixture. As for the position distribution, the situation may be more
complicated if the inclusions form clusters or aggregates, leading to
complex interaction effects. The following discussion will not touch
problems associated with the pair-distribution functions.

The simplest classical mixing rule is Maxwell-Garnett formula [25)
which gives the effective permittivity eeg of a dielectric mixture where
spheres of permittivity € occupy a volume fraction f in a host medium
of permittivity € :

€ — €

= 4
or, in the form labeled as Rayleigh formula
€cff —€0 _ . €— €0 (35)

€eff + 260 " €+ 2€

These formulas have been generalized to chiral, nonreciprocal, and
general bi-isotropic mixtures [14,21,22]. Even bianisotropic mixtures
have been treated [24]. Naturally the quasistatic assumption restricts
the range of these formulas, too: the scatterer sizes have to be small
compared with the wavelength?. In this section, a short presentation
of bi-isotropic mixing rules is given first, followed by conclusions about
the predictions and results of these equations.

9 As a matter of fact, it may be not correct to call the inclusions
as “scatterers” in the quasistatic regime, where these only have effect
through the average polarization they cause with their electric and
magnetic dipole moments, higher multipoles being neglected.
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(<D>) (eo 0>(E) (<Pe>)
") = S (37)
< B> 0 uo H < Pp >

The average polarization is the dipole moment density:

<P, e > Pe Nhee Nlem EL
- =n = _ (38)
< Pm > f?m Mme NOmm HI_,

where n is the number density of the scatterers. Here, the exciting
fields E; and Hp are not the same as the average fields E, H but
rather the Lorentzian fields [26]. These are larger than the incident
fields because they include the contribution from the surrounding po-
larization. This effect is

Ey, B E 1{1/ec O <P >
(ﬁL)-(F{)Jrg( 0 1/,u0> (<_Pm>) (39)

From these matrix equations, the average polarizations can be solved,
whence, using the polarizability expressions (13)—(16), the final result
for bi-isotropic Maxwell-Garnett formulae reads

€eff = €0
+3feo (e — €o)[p + 2p0 — f(p — po)] — (X% + k) poeo(1 = f)
(1 + 20 — f(1 — po)lle + 260 — f(e — €0)] — (X2 + k%) poeo(1 — f)?
(40)
Ueff = L0
+3f (1 — po)le + 260 — (€ — €0)] — (X* + K*)poeo(1 — f)
Ol ¥ 200 — £k — po)lle + 260 — F(e — o)l — (2 + K2 oco(1 — £)2

(41)

Xeff

91 xHo€o
[b+2p0 — f(1n — po)le + 260 — f(e — €0)] — (x* + &) poeo(1 — f)?

(42)
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Keff

_ 9fKpoco

w200 — fu — po)lle + 260 — f(e — €0)] - (x* + K?) oo (1 — £)2
(43)

with f =nV being the fractional volume of the bi-isotropic inclusion
phase in the mixture.

It requires substantial bookkeeping to prove that these equations
are algebrally equal to the following ones:

(€eft — €0)(Hefr + 20) — (ngr + ”gﬁ)ﬂofo
(et + 2p0) (€eft + 2€0) — (X2 + K2¢) koo

_ ¢ (e —€0) (i + 2u0) — (x* + £ poeo

- 44
(€ + 2e0) (1 + 20) — (X2 + K2)poeo 44
(Heft — po) (€t + 2€0) — (X + K2s) oo
(peft + 240) (eet + 2€0) — (X2 + K2g) to€o
_ (b= po)(e + 260) — (x* + P poco .
_ ) ()
(1 + 2p0) (€ + 2€0) — (X2 + K2) poco
Xeff
(Hesr + 2p0) (€efr + 2€0) — (X2 + K2g) poco
. Tox
= 46
e 2 T 20) = O + e (46)
Keff
(Kt + 240) (€eft + 2€0) — (X% + K2¢) oo
K
= T o) e T 20) — O T ) 7)

These are the generalization of the Rayleigh mixing formula (35).
The decoupling into separate electric and magnetic Rayleigh formulae
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is easily seen for k — 0,x — 0. The appearance of the generalized
Maxwell-Garnett and Rayleigh formulas is slightly different if other
constitutive relations are followed; for explicit expressions, see [21].

4.2 Miztures with Ellipsoidal Inclusions

If the bi-isotropic inclusions in the mixture have ellipsoidal form,
the polarizability dyadics (24)—(26) have to be used. The orientation
distribution of the inclusions affects the macroscopic parameters: if all
ellipsoids are randomly oriented, there is no preferred global direction
in the macroscopic picture, and the effective parameters are multiples
of unit dyadic, equivalent to scalars. The mixture is bi-isotropic in this
case.

The other extreme is the case when all ellipsoids have the same
alignment of their axes within the mixture. The consequence is that
the medium is also anisotropic, or rather, bianisotropic. The average
polarization P., P, can be calculated along the lines of the case of
spheres. There is a difference with the Lorentzian fields Ep;Hy due
to the shape effect. The depolarization dyadic (21) needs to be taken

into account:
Ep E - <P, > /¢
) (B g P> e (48)
Hy, H < Ppn > /1o

The effective parameters are now dyadic with the principal coor-
dinate system spanned by the axes ,,%Us, %, of the single inclusion
ellipsoid:

Dot = Z Deft i Uilhi (49)
i=a,b,c

where 9 stands for e, u, x, s . The results for the components are
_. Je
€eft,i =€0 + —7— {(€ — €0)[po + (1 — po) Ni(1 - f)]
{2

—(* + KD poeoNi(1 — f)} (50)

e =0 + 122 © {(u~ po)leo + (e = )Ni(1 = 1)

-0+ Kz)ﬂoéoNi(l - N} (51)
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I Xio€o
eff,i = 52
oy = 1400 (53)

where

di =[po + (1 — po) Ni(1 — f)]leo + (€ — e0) Ni(1 — £)]
— (% + K)o NF(1 — f)? (54)

with f =nV being the fractional volume of the bi-isotropic inclusion
phase in the mixture.

As the ellipsoids degenerate into spheres (N; — 1/3), it can be
seen that all three axial components become equal, and the spherical
Maxwell-Garnett formulas (40)—(43) are recovered.

For ellipsoids with an orientation distribution within the mixture,
the dipole moments have to be averaged with this distribution func-
tion as the polarization is integrated. In this case the final formulas
cannot be represented in such compact form as the spheres or aligned
ellipsoids. However, a closed-form solution still exists [21].

The treatments and results above only allowed one type of inclu-
sions, such that the spheres (or ellipsoids) had to have the same bi-
isotropic material parameters. This restriction can be relaxed. If there
are different guest phases in the host medium, their average polar-
ization contributions can be added together, the other parts of the
analysis remaining as before.

4.8 Discussion on the Effective Material Parameters

It may be difficult to see the effect of a given mixture parameter in
the mixture rules (40)—(43), or (50)-(53). This is because of the cou-
pled nature of the macroscopic equations for the effective parameters:
for example, the effective permittivity depends not only on the permit-
tivities of the constituent phases but also on their permeabilities, and
the guest chirality and nonreciprocity.
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4.8.1 Duality

A clear fact is, however, that there exist wonderful dualities in the
macroscopic material formula expressions. For example, the way the
permeability of the inclusion p affects the effective permeability pes ,
chirality Keg , nonreciprocity Xes , and permittivity eeq , is the same as
the way the permittivity of the inclusion e affects the effective permit-
tivity, chirality, nonreciprocity, and permeability. Also, the functional
dependence of the macroscopic permittivity !° on the inclusion chiral-
ity is exactly the same as on the inclusion nonreciprocity. Put into a
more nonredundant form: eeg (e, 4, &, X; €0, o) = €efr(€, 1) X, K; €0, 40)-
Further; the macroscopic chirality depends on inclusion nonreciprocity
identically with macroscopic nonreciprocity dependence on inclusion
chirality.

An essential observation is the fact that the effective (=macroscopic)
permittivity and permeability of a mixture are even functions of both
the chirality and nonreciprocity of the component material. Hence,
firstly, the sign of handedness, i.e. whether left or right handed, should
not have effect on these parameters, and they are true scalars, invariant
of spatial inversion. This is obvious: samples of media that are mirror
images of one another should have the same permittivity and the same
permeability; Nature should not prefer left to right. Although in the
atomic level, in the weak interaction process, this asymmetry has been
predicted by Lee and Yang in 1956 {27], and experimentally observed
in 1957 [28-30], one would expect this not to happen at the macro-
scopic level where different racemization processes produce right and
left hands in equal proportions.

But similar, and even identical, is also the dependence of €. and
e on the inclusion nonreciprocity parameter: changing the sign of x
does not affect the macroscopic copolarizability measures €cfg, Meff -
Intuitively, this phenomenon is not as clear as in the case of hand-
edness and chirality. One way to gain a physical picture of naturally
nonreciprocal materials is to model the microstructure by rigid units
that consist of bound electric and magnetic dipoles according to Fig-
ure 3. The polar mechanism is as follows: As the electric field exerts
a torque on the electric dipole, it also produces cophasal magnetic po-
larization. If all these hybrid units have the same “state”, i.e. in all
elements, the permanent electric and magnetic dipole moment vectors

10 The same applies for the macroscopic permeability.
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Figure 3. A phenomenological model for isotropic nonreciprocal mix-
ture. The elements consist of an electric and a magnetic dipole that are
coupled together by a nonelectromagnetic interaction. The relative di-
rection of these dipole moment vectors within an element (the “state”
of the element) is important. Note that in order to have a nonrecipro-
cal mixture, there has to be nonsymmetry in the concentration of the
element states. The two samples shown here represent media with the
same magnitude of the nonreciprocity parameter y, but of opposite sign.

are of the parallel direction (or antiparallel), but not mixed, the non-
reciprocity effect manifests itself. Changing the sign of x corresponds
to reversing the electric (or magnetic) dipole moment vector direction
in all units!'. In this view it is a vaguely similar operation as taking
the mirror image of a material.

From Figure 3, the evenness of €.r and peg on x can be under-
stood. The change in the sign of x does not change the overall copolar-
izability characteristics of the medium, and hence also the macroscopic
permittivity and permeability should remain intact.

It is easy to accept the conclusion that the effective chirality Keg
is an odd function of the chirality of the inclusion material (and a
pseudoscalar): changing the handedness of the component changes the
handedness of the mixture. keg is even function of the inclusion nonre-

11 This means taking the other sample of Figure 3.
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ciprocity, which consolidates the idea of handedness and nonreciprocity
being separate physico-geometrical properties of the material struc-
ture. And again, similar conclusion holds for the effective nonreciproc-
ity: xes is odd function of x and even of k.

4.8.2 Perturbation expansions

Perturbation expansions of the mixing formulas give information
about the first-order effects of magnetoelectric parameters. It is easy
to see that the full parameter expressions converge uniformly to the
classical dielectric (and magnetic) mixing relations as the chirality and
nonreciprocity vanish. Hence, for values of x and x much less than 1,
the dominant effect is the dielectric polarization in e.g and magnetic
polarization in peg. This fact, and also the decoupling of electric and
magnetic polarizations, is evident from the perturbation expansions of
(40)—(43):

€ — €
€ +2¢0 — f(e — €o)

€eff ~€0 + 3fe€o0

el 9/(1 ~ f)ed
O+ Koo e 7l o) Pl + 210 — (5 — )]
(55)
N 1= Ho
Heft =Ho + 3 b0 T o)
e | 9f(1 = Nud
(x* + k*)po€o (6 + 210 — F(i — p0))2[e + 260 — f(€ — €0)]
(56)
N 9/ poco
el = 1+ 20 — [ (1 — po)l[€ + 260 — f(€ — €o)] 0
9 uoco (58)

Xl = X[+ 200 — F(u — o)l + 260 — (€ — eo)]
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Figure 4. Relative effective permittivity €./¢o of a mixture with relative
inclusion permittivity of ¢/¢g = 2 as a function of the chirality parameter
of the inclusions for two volume fraction values; dilute mixture: inclusion
volume fraction f = 0.1; dense mixture: f = 0.5. Solid line: permeability
of the inclusion is u = 5ug; dashed line: p = 3pug; dotted line: pu = uq.
Equation (40).

In other words, the chirality of the inclusion phase has little effect
on the macroscopic permittivity and permeability, at least for high per-
mittivity and permeability contrasts between the inclusion and back-
ground phases. On the other hand, naturally the chirality of the inclu-
sion is the dominant parameter defining the effective chirality of the
mixture. Finally, the effective chirality of a mixture is decreased by
high permittivity and/or permeability of the inclusion phase.

Figure 4 illustrates the permittivity behavior. The effective permit-
tivity of a chiral mixture (x = 0)!? is shown as a function of the
inclusion chirality for two volume fractions: f = 0.1 (dilute mixture),
and f = 0.5 (dense mixture). The conclusions made above about
small-chirality effects are supported by the figure: for kK <« 1, there
is little effect of kK on €., and also the inclusion permeability has

12’ n the effective permittivity behavior, x and x have only collective,
Jjoint effect. Therefore this reciprocity assumption means no restriction
on generality.
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Figure 5. Effective chirality x.g of a mixture with relative inclusion
permittivity of €/¢p = 2 as a function of the chirality parameter of the
inclusions for two volume fraction values; dilute mixture: inclusion vol-
ume fraction f = 0.1; dense mixture: f = 0.5, Solid line: permeability
of the inclusion is u = 5uo; dashed line: o = 3up; dotted line: p = ug.
Equation (43).

extremely small effect on €.q in this regime!3. For larger values of
K, the inclusion chirality decreases €es , but the inclusion permeability
increases €es .

Figure 5 focuses on the same chiral mixture as Figure 4 but shows
the effective chirality behavior keg(x). The mostly linear behavior of
Keff ON K is clear. Note also that increasing the inclusion permeability
(or permittivity, for that matter) decreases the macroscopic chirality.

4.8.3 Ellipsoidal miztures

How, then, about inclusions of other shapes? The only other forms
of inclusions whose polarizabilities can be solved in closed form are
ellipsoids. By using chiral inclusions of ellipsoidal shapes, a further
range of mixture parameters can be tailored. The effects vary: by us-

13 This is a consequence of the decoupling of electric and magnetic
polarization phenomena.
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Figure 6. A mixture with isotropic background medium and reciprocal
chiral bi-isotropic (x = 0) inclusion phase whose volume fraction is given
as the abscissa. Shown is the effective chirality of the mixture relative
to background permittivity. Line type denotes inclusion shape: solid —
spheres; dashed — needles; dotted — discs. Inclusion permeability relative
to background is 1.1 and inclusion chirality is x = 0.1. The numbers refer
to inclusion permittivity; € = 2ep (1); € = 10¢p (2); € = 100¢ (3).

ing needle-shaped or disk-shaped inclusions, larger effective parameters
than with spheres can be achieved, although the shape effect depends
on the dielectric and magnetic contrast between the inclusion and host
phases. One observation is, however, always valid: spherical inclusions
produce minimum effects in the macroscopic properties, and each de-
viation from this extremum shape increases the value achieved by the
spherical geometry.

As an example how the shape effect can dominate the mixture pa-
rameters, Figure 6 shows the effective chirality of a mixture as a func-
tion of the volume fraction of the chiral inclusions. The dependence on
Keff On K is clear, again similar as in Figure 5, but the large shape ef-
fect (spheres, needles, disks) of the inclusions can only be compensated
by extremely large variation in the inclusion permittivity e.
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5. Temporal Dispersion Effects in Bi-isotropic Media

All the previous analysis was done keeping the material parameters
constant with respect to the frequency. The constitutive relations (5)-
(6) themselves underlined the fixed-frequency nature of the approach:
the time-harmonic dependence was assumed. However, the materials in
nature are unavoidably dispersive. Their polarization responses depend
on the frequency, i.e. on the rates of temporal change of the electric
and magnetic fields that act on the medium.

In the frequency domain, this shows up in the frequency dependence
of the material parameters ¢, u, x, s . In the time-domain representa-
tion, the bi-isotropic constitutive relations will show that the electric
polarization response is proportional to the time derivative of the mag-
netic field strength, and vice versa.

It is the advantage of time-domain representation, that the basic
physical limitations and requirements — causality, independence of
time shifts, etc. — of the material coefficients take can be formu-
lated naturally. In frequency domain, these limitations take involved
forms: for example causality confines the frequency dependencies of the
real and imaginary parts of the material parameter functions to follow
complicated-looking Kramers-Kronig integral relations [31}]. Therefore,
in the frequency-domain modeling of bi-isotropic media, we are not to-
tally free to choose the frequency dependencies of the functions. The
dispersion and explicit time-dependent formulations of chiral media
have attracted recently the interest of several investigators [32-35].

In this section those phenomena are examined that emerge if we
accept both the dispersion of bi-isotropic media and the heterogeneity
of materials. In other words, the focus is on the question: How does
the mixing process affect the magnetoelectric dispersion in composites?
Special treatment in the following is given for chiral properties.

5.1 Dispersion Model for the Chirality

To analyze the dispersion of the chirality of the composite, we need
to know the frequency behavior of the homogeneous chiral bulk mate-
rial.

The earliest molecular theories that tried to explain the optical prop-
erties of materials have reached already an age of a century. The reso-
nance models by Lorentz, Drude, and others have been quite successful
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in explaining and predicting several optical and electromagnetic phe-
nomena. The models concentrated on permittivity.

Basing on these types of theories for the electric polarizability of
molecules, Condon [36] proposed a model for the frequency dependence
of the optical activity — chirality, in today’s microwave parlance — in
materials. In the following analysis this Condon’s model is applied for
mixtures 4.

If there is one dominant resonance that lies far away from other
molecular transitions, the Condon model gives the following frequency
behavior for the chirality parameter x(w)

wR

s 59
w§ —w? + jwl (59)

k(w)
where R is the rotational strength of the molecular transition, wp is
the resonant frequency, and I' measures the damping associated with
the transition. Nondimensionalizing the expression, we get

w{w) = T (60)

—x?+jdz
where 2 = w/wp is the relative frequency and d = I'/wp is again a
measure for the damping. 7 is a characteristic time constant describing
the magnitude of the chirality. This model clearly shows the absence
of handed effects in statics: x disappears for DC (z =0).

Because of the absorption term, the chirality is now (in the frequency
domain) a complex number, indicating real and imaginary parts. Using
terms of classical optics, ' is responsible for optical rotatory power
and " produces circular dichroism. The real and imaginary parts can
be written explicitly:

k(W) = k(@) — jK"() (61)
with

K(w) z(1 — 2?)
Two  1—(2—d?)z? + 22

(62)

' Condon used different constitutive relations for optically active me-
dia in his publication from the 1930’s, but it can be translated to the

notation followed here. For a closer look of the interdependencies, see
[35].
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n”(w) _ dz?
Two 1—(2-—d?)z?+ x4

(63)

It is clear that the “resonant frequency” wyp is the center for disper-
sion. At this frequency the imaginary part attains its maximum value
(k" always is positive). At the same frequency, the real part vanishes,
and it behaves symmetrically above and below this frequency if it is
drawn with the logarithmic scale. The effect of the increasing damp-
ing term d is to broaden the resonance peak and to make it lower at
the same time. The imaginary part of the chirality parameter in this
Condon model (60) has the maximum value

TWo

K" (wo) = —= (64)

at the resonant frequency wp .

5.2 Dispersion Effects in the Composite Chirality

How does the mixing process affect the frequency behavior of chiral-
ity which in the bulk medium is contained in equations (62)—(63)? To
appreciate the most important effect in this dispersion transformation,
let us keep all other variables constant in the mixing process. There-
fore, consider a mixture with a small amount of chiral guest material
in a nonchiral background medium, and let all the frequency behav-
ior be contained in the chirality of the inclusion phase. Therefore the
other material parameters will be kept nondispersive in the following
analysis, i.e. the dielectric and magnetic dispersions are assumed to
take place at other frequency bands; also, for simplicity, ¢ and u are
supposed to be real, since the imaginary parts of these quantities are
connected to the dispersion of the real part through the Kramers-
Kronig relations 1° .

15 This approach suffers from the following weakness: The wave num-
bers of the two eigenwaves in a bulk chiral medium, ki = ko(n £ k)
with ko = w,/lo€0 and n = \/pe/poeo will become imaginary for
dispersive media due to the imaginary part of the chirality «. If the
dispersion in permittivity and permeability are neglected, € and p are
real constant quantities. Consequently, n will be real, and hence one
of the eigenwaves will have positive, and the other negative imaginary
part of the wave number. This means gain in one of the propagating
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Due to the dual character of the chirality and nonreciprocity in
material effects, it is sufficient to study the dispersion in chirality. From
this, one is able to glean information about the effect of nonreciprocity.

To proceed, let us consider a two-phase mixture where the back-
ground is nonchiral of permittivity €¢p and permeability po, and spher-
ical chiral ( x = 0) inclusion particles of material parameters ¢, p, &
occupy a fraction f of the total volume. The assumption is f <« 1.
From (43), the macroscopic chirality of the mixture follows the for-
mula (where the small volume fraction of the inclusion phase has been
exploited) 6

9fk
(er +2)(pr +2) — K2

where €, = ¢/eg, ur = p/tio are the permittivity and permeability of
the inclusion relative to the background. Assumed the model (60) for
the chirality dispersion, the macroscopic chirality can be calculated.
The following frequency dependence is the result:

Keff = (65)

with
I z(l —2%)[1 — (2 - d> + A)2® + ]
fer = BT @y AR AR kR~ O
211 (9 _ 42 2 4
Klgﬁ - B dz [1 (2 d A)cc + ] (68)

1= (2+d+ A)z2 + 292 + 4d222(1 — 2)?

Here, the mixture parameters that have effect on the frequency be-
havior, are

gD 4 (Two)? B 9fTwo
wo ’ (kr +2)(er +2)° ~ (ur +2)(er +2)

(69)

modes, which contradicts with an assumption of a non-active material.
Therefore, in a real physical situation where optical rotatory dispersion
and circular dichroism are present, dispersion has to appear also in ¢
and pu, not only in &.

16 Note that (57) is valid for small chirality, & < 1, and general volume
fraction, therefore being different than what is needed here.
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5.8 Conclusions about the Chiral Dispersion

Why would one expect interesting effects on the dispersion caused
by the mixing process? A positive answer may not be evident. However,
in the dielectric mixing studies, it is well known that the relaxation-
type phenomena occur at drastically different frequency ranges for bulk
and composite media. Relaxation is a frequency-dependent polariza-
tion phenomenon that occurs in liquids that consist of polar molecules.
Water is one example, and the model used for the permittivity is called
Debye model [37,38]. Mixtures with spherical inclusions change their
relaxation behavior most strongly. It is worth noting that the shape of
the inclusion particles is extremely crucial in the magnitude of the shift
in relaxation frequency: in [39] the effect of the nonsphericity has been
studied, and there the conclusion was that for ellipsoids deviating from
the spherical shape, the relaxation frequency always was lower than for
sphere-mixtures. For the case of needle- and disc-shaped inclusions, the
relaxation frequency would come very close to the relaxation frequency
of bulk water.

But chiral dispersion is different from the dispersion in permittivity
and permeability. This is because chirality is embedded in nonchiral
background, and if the guest vanishes, there is no handedness any-
more. On the other hand, permittivity is floating in the background
medium, which possesses certain host permittivity, at least that of
vacuum. Therefore the dispersion in permittivity is modified in inter-
action with the host permittivity which does not vanish in any case.
The chiral dispersion transformation is hence radically different from
permittivity dispersion.

In the dispersion of the real part of composite chirality (Equation
(67)), which is responsible for the optical (or electromagnetic) activ-
ity, the main effect in the composite dispersion is that the frequency
range is broader than the bulk chirality dispersion. The dispersion
surrounds the center frequency wp . Also it has more structure in its
shape. For low damping factors d = 0.01---0.1, four extrema in the
kef(w) curve appear (instead of only two in the case of bulk chiral
material): there appears one maximum and one minimum below wp,
and also one maximum and one minimum above. The value for xlg
at the resonant frequency wp , however, always remains at 0, and this
point in the curves seems like a pivot around which the curves twist
as the parameters change.

How is the mixing process manifest in the dispersion of the imagi-
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Figure 7. The frequency dependence of the real part of the chirality pa-
rameter of a mixture where chiral inclusions obeying the Condon model
(62), (63) are embedded in a nonchiral background medium. The mix-
ture is dilute, i.e. the volume fraction of the chiral phase is small. The
two parameters affecting the dispersion are the damping factor d (being
0.5 in this figure) and the normalized chirality amplitude A. Effective
chirality is shown relative to the value B defined in Equation (69).

nary part of the composite chirality k7 ? First of all, the imaginary
part does not change sign: it is negative all the way throughout the
frequency range (the positive values in the figures are due to the con-
vention in Equation (66)) 7. Also, like in the case for the real part
of Keg, the structure of the composite chirality frequency function is
more detailed: there appear new maxima and minima.

Figures 7 and 8 show an example of the composite chirality behavior
as functions of frequency. Although all possible quantities have been
normalized, there remain two parameters (cf. definition (69)) affecting

17 This is similar convention in the discussion of dielectric properties
of materials in the frequency domain, as the time-harmonic notation
exp(jwt) is adopted: the complex permittivity is often written as € =
€ — je" because €” stays positive for passive (dissipative) materials.
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Figure 8. The same as Figure 6, for the imaginary part of chirality
parameter. .

the behavior of the curves: d is the relative damping of the resonance
transition, and A is the measure of the chirality in the inclusion phase.
The illustrated effective chirality is normalized with the value of B in
equation (69).

- Also more complicated mixture geometries can be analyzed with the
Condon model. Using the mixing formula (53), the Condon model for
chiral dispersion can be used to see the effect of ellipsoidal mixing on
the chirality dispersion, as was done above for spherical mixing. The
qualitative changes in the dispersive behavior become more detailed,
because now there is increased structure in the mixture: the shape of
the inclusions have lost part of their symmetry. The curve features
become functions of the shape parameters, of which there are now two
more than in the spherical case.
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6. Analogies of Bi-isotropic Media with Anisotropic
Dielectrics and Ferrites

There exist two main avenues in moving towards generalization from
the domain of isotropic media. Of these two nonisotropic ideas, the first
one is the class of bi-isotropic media; in accord with the topic of this
article. This retains isotropy but allows magnetoelectric interactions.
The second direction to more general media takes the opposite way:
it does not recognize natural chirality or isotropic nonreciprocity but
it admits that the polarization may depend on the direction of the
electric or magnetic field. These materials are anisotropic.

Dielectric anisotropy has the effect that the polarization caused by
electric field is generally not in the same direction as the field itself.
Correspondingly, in anisotropic magnetic materials, the average mag-
netic dipole moment density is only in principal axes directions parallel
to the magnetic field. In bi-isotropic media, on the other hand, there
are no special axes. Therefore, it may seem strange that so different
polarization mechanisms as in these two different classes of materials,
there exist similar laws in the polarizability descriptions. Thxs section
will pinpoint these resemblancies.

6.1 Polarizability of Anisotropic Sphere

The constitutive relations of anisotropic media are formally simpler
than bi-isotropic ones. For dielectrically anisotropic media, the permit-
tivity is dyadic:

D=¢-F (70)
and for magnetically anisotropic media, permeability is dyadic:

B=p-H (71)
Due to the noncoupling of electric and magnetic quantities, we may
neglect one of these and concentrate on the other, say electrical field
and polarization interaction. Using duality transformation, the solution
for the magnetically anisotropic problem can be written directly.
There are different types of anisotropic media: uniaxial, biaxial, gy-
rotropic, etc. An important step in the distinction of anisotropic media
comes through splitting the permittivity dyadic € into two parts, sym-
metric and antisymmetric:
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€E=¢€s+E€a (72)

The antisymmetric part €4 is nonzero for gyrotopic media, and it
is this very antisymmetry that leads to analogies with bi-isotropic me-
dia. An example of dielectrically gyrotropic medium is magnetoplasma,
e.g. in the ionosphere. Ferrite, on the other hand, has a gyrotropic per-
meability tensor, or dyadic. Both these media are nonreciprocal, but
unlike bi-isotropic media, the origin for the nonreciprocity is not in-
side the material itself but it is the external (static) magnetic field.
Therefore it is also intuitively clear that these media are anisotropic,
because the external field breaks the spherical symmetry.

If the direction of the external magnetic field is denoted by the
“gyration” unit vector i, , the antisymmetric part of the permittiv-
ity dyadic is €,y x I with I as the unit dyadic. €, measures the
amplitude of the gyrotropic coupling. Let the symmetric part of the
permittivity dyadic have principal axis along the z,y,z directions!®
Therefore €5 = €zlixlz + €ylUyly + €Uz Uz .

Consider now the special case that the external field is along one of
the principal axis: %, = %, . We then have the permittivity dyadic of
the material

€ = €allglly + €llylly + €10, + €9y X (73)
What is the polarizability of a sphere made out of material that
obeys the permittivity dyadic (73)7
The isotropic sphere of volume V and permittivity e possesses
polarizability

€ — €
€+ 2¢g

It is known [40] that the polarizability of an anisotropic sphere is a
(formally) straightforward generalization of the scalar case (74). The
polarizability is naturally dyadic and obeys the expression

a =3¢V (74)

& = 3eoV (2 — eol) - (¢ + 2€01) ™" (75)

To calculate the terms needed in (75), the dyadic inverse has to be
enumerated. The inverse of a complete dyadic is [41]

18 This can be assumed without loss of generality for a real symmetric
matrix.
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L AT
A=A (76)
AGAA

where the superscrlpt T denotes transpose of a dyadic. Using rules of
dyadic algebra [41] (II =21, T:1=3, Uy x 1Ty xT = gty —1, - -),
the polarizability of the gyrotropic sphere can be calculated

= Z Qi Uiy (77

1L,I=T,Y,%

QA

with components

(e — €0)(€y + 2€0) + €2
(ex + 2€0)(ey + 2€0) + eg

(ey —€0)(ex + 2€0) +€;

=36V
0 (ex + 2€0)(ey + 2€0) + e
— €9 (78)
=3 V
2z € €, + 2¢g
— 3ep€

(€ + 2€0)(ey + 260) + 63

Ozz = Qzp = Qyy = Olzy = 0

6.2 Comparison of Polarizabilities

There are striking similarities as one compares the gyrotropic po-
larizability components of (78) to the polarizability matrix of a bi-
isotropic sphere (13)—(16).

In (78) the gyrotropy parameter ¢, affects the polarizability com-
ponents. If it vanishes, the matrix becomes diagonal and the compo-
nents become simple functions of the permittivities like in the perfect
isotropic case. However, in the gyrotopic case, there is one component
that is not affected by ¢, . This is the z-directed copolarizability o,
which is the same as isotropic. It means that, for example in the case
of a ferrite sphere, the gyrotropy has no effect on the copolarizability
in the external magnetic field direction.
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On the other hand, gyrotropy affects the transversal components
Oz and ayy as also the off-diagonal components «,, and oy, . Here
€g plays a similar role as the chirality parameter k or nonreciprocity
parameter x in the case of bi-isotropic sphere. However, there is a
change of sign: the denominator of the gyrotropic case is

(ez + 260)(€y + 2¢0) + 63
whereas the corresponding expression fot the chiral (Pasteur) case is

(€ + 2e0) (11 + Z10) — K o€

and in the nonreciprocal (Tellegen) case

(€ + 2€0) (1 + 240) — X* pro€o

and in the general bi-isotropic case

(€ + 2e0) (1 + 20) — (X% + K2) oo

‘These quantitites, and also the polarizability expressions, agree more
if the gyrotropy is imaginary: € = j¢ where g is real. This is in fact
the case in magnetoplasma [16,42] or in the case of the permeability of
ferrites [43]:

The imaginary nature of the gyrotropy in the permittivity/permeability

expression completes the analogy with respect to bi-isotropic media.
We can write the following correspondence table:

Pasteur Tellegen Dielectrically Magnetically

medium  medium gyrotropic gyrotropic

K X J€g JHg
€ € € ; Ha

K H €y Fy

aee aee azz az:a
Xy Amm Qyy Qyy
Dem QAem Qpy Ay
e —Xme Olyx Ay
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This correspondence table can serve as a tool to transfer conclusions
from bi-isotropic media to anisotropic media. The present paper has
brought forth several effects of chirality and nonreciprocity on material
behavior, which resemble those found in anisotropic media. To study
the effects in gyrotropic media, one needs to change the magnetoelectric
quantities ( , x) to the gyrotropic ones according to the table above.
Then one is left with quantities of anisotropic media that obey certain
laws and functional dependencies, like, for example, the even and odd
characteristics of material properties, along the lines discussed earlier
in this paper.

7. Conclusion

It seems that the modeling theories of heterogeneous bi-isotropic
materials have advanced considerably and have reached in recent years
a level which can be used in the design of novel microwave materials,
like chiral composites, for example. The classical approaches and strate-
gies in the mixture theories maintain their applicability although more
complicated inclusions have to be dealt with.

Mixture modeling starts with the problem of looking at one single
inclusion exposed to the electromagnetic field. The question is to find
out its response, i.e. the manner how the inclusion perturbates the
field. This change in the field can be interpreted as scattering from
a dipole. Once the dipole moment of this dipole is known, also the
polarizability of the inclusion has been solved.

In classical mixing theories, it was sufficient to treat only the electric
problem (in dielectric mixtures) or only the magnetic problem (in mix-
tures consisting of components with non-vacuous permeability). The
extra complication in novel, complex media modeling is that the elec-
tric and magnetic problems are not anymore decoupled but they both
need attention at the same time. The consequence is that there are
crosspolarizability components in the polarizability matrix. Therefore
along the modeling effort, inverses of matrices have to be accepted if
one wants to keep the formal simplicity of the equations that describe
the effective material parameters.

Anyway, the present article has hopefully proved that this approach
is fertile. Polarizability modeling can be performed with conceptual
simplicity and it can also be extended to ellipsoidally shaped inclu-
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sions. Having the expressions for the polarizability matrices, the effec-
tive bi-isotropic (even bianisotropic) parameters can be calculated for
mixtures that contain inclusions of this type.

The effective parameters for heterogeneous bi-isotropic mixtures are
not plain recipes for high-tech engineers wishing to design advanced
composites but these formulas also display profound physics. The ex-
pressions have been interpreted in this article in many respects. The
electromagnetic properties of electric and magnetic susceptibilities, chi-
rality, and nonreciprocity, have acquired a clearer and more intuitive
meaning than what can be gleaned by only looking at the constitu-
tive relations of the material. Finally, there exist beautiful analogies
between bi-isotropic and anisotropic materials, as was discussed in the
last section of this article, where the similarity of different materials,
like chiral samples and ferrites was underlined.
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