Progress In Electromagnetics Research, PIER 8, 173-298, 1 994

THE DOUBLE DEFORMATION TECHNIQUE

M. J. Tsuk, S. Y. Poh, and J. A. Kong

1. Introduction to Double Deformation
a. Background
b. Double Deformation
2. Modified Double Deformation for Vertical Magnetic
Dipole over Lossless Halfspace
a. Single Deformation
b. Double Deformation
¢. Modified Double Deformation
3. Modified Double Deformation for Vertical Electric
Dipole over Lossless Halfspace
a. Single Deformation
b. Double Deformation
¢. Modified Double Deformation
4. Modified Double Deformation for Vertical Magnetic
Dipole over Coated Perfect Conductor
a. Single Deformation
b. Double Deformation
¢. Modified Double Deformation
d. Results
5. Modified Double Deformation for Vertical Electric
Dipole over Coated Perfect Conductor
a. Single Deformation
b. Double Deformation
¢. Modified Double Deformation
d. Results
6. Modified Double Deformation for Vertical Magnetic
Dipole over Two-Layer Medium
a. Single Deformation
b. Double Deformation
c. Modified Double Deformation
d. Results



174 Tsuk et al.

e. VMD over Lossy Two-Layer Medium
7. Modified Double Deformation for Vertical Electric
Dipole over Two-Layer Medium
a. Single Deformation
b. Double Deformation
¢. Modified Double Deformation
d. Results
Appendix A. Causality for VMD over Coated Perfect
Conductor
Appendix B. Double Steepest Descent Path Contributions
for VMD over Two-Layer Medium
Appendix C. Modified Double Deformation for VMD over
Lossy Halfspace
References

1. Introduction to Double Deformation

a. Background

The problem of dipole radiation over media was first studied by
Sommerfeld in 1909 for a vertical electric dipole in a two-halfspace
configuration. The solutions apply only to the case where the dipole
current varies harmonically in time. Corresponding problems have since
been formulated and solved for the other fundamental cases of vertical
magnetic, and horizontal electric and magnetic dipoles [1-2]. A com-
prehensive treatment and an extensive bibliography have been com-
piled by Bafios [2]. Interest in this halfspace problem has remained,
as evidenced by the abundant literature on the subject in recent years
[3-6].

The problem of time-harmonic dipole radiation over stratified me-
dia has been studied by Ward 7] and Wait [8] in the context of geophys-
ical probing. Wait solved the case of electric and magnetic dipoles radi-
ating over a stratified isotropic medium [9-10]. The solutions of dipole
radiation over a two-layer medium applied mainly to geophysical ex-
ploration have been investigated by several researchers [11-20]. Similar
problems have been formulated and solved for the case of anisotropic
media [21-25].

The problem of source radiation over media over a perfectly con-
ducting ground plane is of interest in the analysis of isolated or coupled
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miniature transmission-lines or microstrip lines and elements {17, 26—
28]. The advent of microwave integrated circuit technology has paved
the way for the development of a new class of micro- and millimeter-
wave networks using these microstrip elements.

The studies cited above are all concerned with the treatment
of time-harmonic or single-frequency analysis. Research in the time-
domain or transient solutions of the corresponding problems does not
have as long a history but rather began only in the 1950’s. How-
ever, electrical transient methods have been employed as early as the
1930’s [29]. A major drawback to the development of time-domain
electromagnetic research and applications lay in the practical diffi-
culty encountered in taking transients measurements over very short
times. With improving technology [30], interest in transient electro-
magnetics has been on the rise. In geophysical applications [31-32], a
significant advantage of time-domain methods over frequency-domain
methods is that with a transmitted wave having a broad spectrum of
frequencies, a wide range of penetrations may be obtained simulta-
neously. In computer networks utilizing integrated-circuit technology,
time-domain analysis of signals is essential in determining propagation
effects, such as coupling or distortion, on transmission pulses. -

In the case of non-time-harmonic excitations, the time-domain so-
lutions for dipole radiation over stratified media may be obtained, in
principle, through the evaluation of the Fourier inverse transform of
the Sommerfeld time-harmonic solutions. Except for a few special con-
figurations, the result is a double integral that is difficult to evaluate
both analytically and numerically.

In 1951, Wait [33] treated the step response of electric and mag-
netic dipoles, a finite length of grounded wire and an infinite line source
in an unbounded conducting medium. Expressions for the transient
fields are derived through Laplace inversion of the time-harmonic solu-
tions that have been simplified by neglecting the displacement current.
The transient solutions thus obtained are valid only for times ¢t > ¢/o
where ¢ is the permittivity and ¢ the conductivity. Bhattacharyya
[34-35] considered both negligible and significant displacement cur-
rents for the transient step response of an electric dipole in unbounded
conducting medium. The approximation of negligible displacement cur-
rent facilitates inversion of the frequency domain solutions but may not
often be applicable due to high-frequency contents of excitation and
potentially high permittivities of media.
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Wait [9] studied the step response of a vertical magnetic dipole
(VMD) over up to three layers of conductive stratification. Again, dis-
placement currents are neglected allowing him to present simple ex-
pressions for surface fields and for the mutual impedance between the
source and a current loop or a current element. The time-harmonic re-
sponse of a VMD on a general halfspace evaluated also on the surface
may be solved in closed form. This is attributed to Van der Pol [2].
As a consequence, the corresponding time-domain solution for lossless
dielectrics may also be obtained in closed-form.

Poritsky [36] applied plane-wave decomposition of the time-
harmonic solution and inversion by variable transformation to ana-
lyze the impulse response of both horizontal electric (HED) and verti-
cal electric (VED) dipoles near the surface of a homogeneous, lossless
earth. Closed-form solutions for the Hertzian potential for a VED on
the halfspace with observation directions in the horizontal plane and
along the dipole axis in the air were derived. In addition, a physical
picture to explain the time-dependent solutions observed in the upper
and lower halfspaces was presented. Van der Pol [37] evaluated the
impulse response of a VED over a lossless halfspace employing opera-
tional calculus based on the two-sided Laplace transform. By directly
inverting the Laplace integrals applied to the frequency domain so-
lutions, he obtained closed-form field expressions for an unbounded
medium as well as potential functions for the special configuration of
dipole-observation point on the surface plane. In 1957, Pekeris and Al-
terman [38] also investigated the impulse response of a VED over a non-
dissipative halfspace. As in the cases of [36-37], closed-form expressions
for the Hertzian potential for special configurations were obtained. For
more general configurations, the original double integral was modified
to single finite-range integrals using a method developed by Cagniard
[39] in connection with problems in seismic wave propagation.

It is interesting to note that no closed-form solution exists for the
time-harmonic radiation of a VED over a lossless halfspace and yet the
solution may be obtained in elementary form for the transient response,
albeit for special source-observer positions only.

In [13, 40], Bhattacharyya investigated the transient fields due
to a step-excited vertical magnetic dipole on and above a dissipative
halfspace. Displacement currents were not neglected and approximate
expressions for the limiting states of high and low frequencies were
obtained. Wait [44] in 1960 gave a review of the basic theory used to
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describe the propagation of electromagnetic pulses in a homogeneous
conducting earth.

In 1960 de Hoop and Frankena [42] examined the pulse radiation
by a VED at a finite height above a plane halfspace. The original dou-
ble integration was reduced to a finite single integral by deformation
of one real-axis integration path into the complex plane and inverting
directly. The method used was claimed to be an improved modification
of the Cagniard method [39] for seismic wave propagation. Frankena
[43] has applied the Cagniard-de Hoop method [41] to the study of
pulse radiation by horizontal dipoles above a plane lossless halfspace.
Bremmer [45] solved the step response for a VED on a two-dielectric in-
terface directly from the partial differential equations for the potential
entirely in the time-domain, avoiding the time-harmonic Sommerfeld
solution.

In 1971, Hill [46] presented the exact closed-form solutions for the
impulse responses of a VMD, VED, HED, and HMD (horizontal mag-
netic dipole) over lossless isotropic and uniaxial anisotropic halfspaces,
each considered for special cases of source and observation point loca-
tions.

In a series of papers [47-50] Wait and his co-workers investigated
the transient fields for a variety of combinations of source-observer
configurations involving either a VMD or a finite-sized current loop
in the presence of a conducting halfspace in the hope of applying the
knowledge to mine-rescue operations. The results are obtained in the
quasi-static regime and by neglecting displacement currents.

Fuller and Wait [51] attempted to simulate the actual earth envi-
ronment by considering the permittivity and conductivity to be func-
tions of frequency. The transient radiation of a VED in unbounded and
halfspace medium are considered using direct numerical integration of
the exact double infinite integrals with subtraction of asymptotic so-
lutions to speed up computation.

In 1979, de Hoop [52] applied the Cagniard-de Hoop technique
to derive closed-form expressions, valid everywhere and for all times,
for the the transient fields of a line source over a lossless halfspace.
A discussion on the extension of the technique to multiple layers was
presented.

The impulse and step response of a VED on a conducting halfs-
pace was evaluated through deformation in the complex wavenumber
and frequency planes by Haddad and Chang [53]. The original double
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integral was shown to reduce to single integrals and physical interpre-
tation of the component field expressions was attempted. The process
of deforming in the complex frequency plane is similar to the singular-
ities expansion method (SEM) [54] developed for problems involving
isolated singularities in the complex frequency plane. More recently,
Kuester [55] studied the step response of a pulsed line source over a
conducting halfspace and arrived at an exact representation, valid for
all times, in terms of a double integral over finite range.

As discussed previously, Wait [9] treated the case of the step re-
sponse of a VMD over up to three conducting layers of stratification
with an analysis that is simplified by the neglect of displacement cur-
rents. The shielding of transient dipole fields of a VMD and an HMD
in air by a conductive sheet was also investigated by Wait [56]. Closed-
form quasistatic solutions valid for very late times were derived by
ignoring propagation effects in air.

Vanyan [57] considered transient fields of a pulsed HED in a lay-
ered conducting ground environment for geophysical exploration meth-
ods in the USSR. Early and late times solutions are provided through
asymptotic analysis. The late time response for the magnetic field on
the dipole axis of a VMD in a conducting bed of limiting thickness was
obtained by Kaufman and Terent’yev [58].

Wait [59] treated electromagnetic transient coupling between two
small ungrounded loops over a conducting halfspace and a two-layer
conducting earth. Both VMD and HMD arrangements are analyzed us-
ing Laplace transform methods and by neglecting displacement current
in the air. Electromagnetic coupling in both the frequency and time
domains between grounded wires over a layered medium have been
computed by Dey and Morrison [60]. The general approach employed
involves brute-force numerical integration over frequency and the use
of the Fast Fourier Transform (FFT) algorithm [61] for the integra-
tion over wavenumber. Results were obtained for up to two layers of
stratification despite a multilayer formulation.

Kaufman (62] examined peculiarities in the behavior of transient,
late-time, fields due to a VMD in a homogeneous conducting medium
for applications to geophysical exploration. Lee and Lewis [63] analyzed
the induced voltage in a large horizontal current loop, due to a step
excitation in the loop, over layered conducting ground. The transient
response of a multi-layered medium to an incident plane wave pulse
of finite width has been discussed by Lytle and Lager [64]. In their
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paper, the natural frequencies, corresponding to pole singularities in
the complex frequency plane of the layered structure determined from
experiments are matched with those obtainable theoretically to deduce
the electrical and physical parameters.

The early and very late time responses were evaluated for a pulsed
VMD, HMD and infinite line current over a two-layer model for ground
by Botros and Mahmoud [65]. The early time responses were deduced
using geometrical ray theory while closed-form late-time responses were
obtained by neglecting displacement current in air. The depth and
conductivity of the bounded layer was shown to be deducible from
the solutions. Kaufman [66] also investigated the late transient fields
due to a step-excited horizontal current loop over a two-layer medium.
The solution was expressed as a sum of terms proportional to inverse
powers of time t. Mahmoud et al. [67] again discussed the transient
electromagnetic fields of a VMD with step and pulsed current exci-
tations over a two-layer earth model. Two methods, based on inverse
Laplace transform and the natural frequencies concept [64, 54] respec-
tively, were employed. Only displacement currents in the ground layers
were neglected and no closed-form expressions were obtainable.

In 1981, Ezzeddine et al. [68] evaluated the time response of a
VED over a two-layer nondispersive dielectric. The geometrical optics
approach was employed for early arrivals, together with an explicit
inversion scheme, analogous to the Cagniard-de Hoop method [41],
that is valid for all times. The solution is expressible as single integrals.
Ezzeddine et al. [69] continued the study of the pulse response of a VED
over a two-layer medium by applying the double deformation technique
(70] that invuives complex plane deformation in both the wavenumber
and frequency planes. The resulting solution, although numerical in
nature, does not require excessive computation, and may be readily
extended to consider dissipative and dispersive media. The results as
presented in the paper, lacked a complete investigation for the early
time solutions for both lossless and dissipative media.

The studies cited above have primarily dealt with lossless and dis-
sipative media. Transient radiation in the presence of dispersive, strat-
ified plasma medium has also been widely investigated, although more
so for infinite plane waves [71-76] than for finite-source excitations [77-
78]. The dispersive nature of the plasma, in general, makes the analysis
more complex and the methods employed in the two classes of prob-
lems seldom overlap. For instance, the Cagniard-de Hoop approach,
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which gives elegant simplified solutions in a lossless environment, fails
in the presence of dispersive media.

An understanding of time-domain dipole source radiation in the
presence of media over a perfectly conducting ground plane is poten-
tially useful in the analysis of transient signals propagation in transmis-
sion line systems. Time-domain analysis of transmission line systems
have been investigated by Chang [79] and Agarwal [80]. Existing meth-
ods employ the TEM or quasi-TEM assumption for the wave propaga-
tion. In pulse propagation, a broad spectrum of frequencies exist and
higher order modes propagation may not be neglected thus requiring
more rigorous analyses.

We find that the problem of transient dipole radiation over lay-
ered medium is not new. However the general difficulty of evaluating
the formal double integral solution based on the Fourier inversion of the
Sommerfeld-type integral has continued to present a challenge to those
seeking more efficient and general methods of solution. Aside from the
few special cases where the field solutions exist in closed-form [46],
the most elegant and well-known approach has been that attributed
to Cagniard and de Hoop [41-43]. A weakness of this technique lies
in its inherent inability to be applied to problems involving dispersive
media. It is also most readily used in the evaluation of impulse or step
responses thereby requiring an additional (convolution) integration in
the case of more general current excitations. The geometrical optics
theory approach, being a high frequency approximation, is valid only
for very early time responses whereas neglect of displacement currents
leads to solutions that are valid for late times. A significant time in-
terval may exist where neither early nor late time approximations are
valid [55)].

There clearly remains a need to develop a reliable method general
in the sense of being able to provide results that are valid for all times
and to be applied to dispersive media. Insofar as this need is concerned,
we choose to consider the double deformation technique, first suggested
by Rosenbaum [81] in his study of elastic wave propagation, and applied
by Ezzeddine et al. (69], Tsang and Kong [70] and Poh and Kong [82].
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Figure 1.1 General configuration for double deformation solution.

b. Double Deformation

The starting point for the double deformation technique is to ex-
press the transient fields on the surface of a layered medium in terms of
contour integrals in the complex frequency and transverse wavenumber
planes. The general configuration studied, vertical electric (VED) and
vertical magnetic (VMD) dipoles on the surface of a layered medium,
is shown in Figure 1.1. In Sections 2 and 3, we will study dipoles on the
surface of a single dielectric medium of infinite extent, which is equiv-
alent to having d approach infinity in Figure 1.1, or letting € = ¢ .
In Sections 4 and 5, we will let the conductivity of the bottom layer,
medium 2, be infinity; we will refer to the resulting configuration as a
“coated perfect conductor”. Finally, in Sections 6 and 7, we will con-
sider the full two-layer medium case; in Section 6, we will also let the
bounded layer, medium 1, become slightly conductive.

From [83], we have the frequency-domain expression for the 2-
directed magnetic field on the surface of a layered medium a distance
p away from a VMD also on the surface of the medium:

1A k?; (1) TE
HZ:—18—7r- sff)k”k_,H" (kop) [1 + R™*] (1)

where k, = /k2 — k2 and ko = w./Jio€o - The Sommerfeld integration
0 p

path (SIP) in the k, plane is shown in Figure 1.2. Also, the response
of the layered medium is entirely contained in RTE ; only this quantity
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Figure 1.2 SIP, branch cuts and Riemann sheets.

will change as we consider different configurations. Using
10
——(pEy) = tkomoH,, 2
550 (2)
where mo = \/po/€0, we obtain the frequency-domain Ej :

1 Akymy k2
e Sltf)kp—:’Hfl)(kpp) [1+ RTF] (3)

Eq
We convert this to the time domain by means of the inverse Fourier

transform, and since Ey is a real function of time, it can be expressed
in the following form:

o] ] - k2
Ey(7) = gm{ /0 dko koe ™1 (ko) /S dky L2H (kop) [1+ RT7] }
(4)



The double deformation technique 183

"VMD" SOURCE

-25

T (meters)

Figure 1.3 Current source waveforms, 7 = ct,c =3 x 10 m/s.

where T =1/,/lig€g and
Ttho) = [ dr' e 167 (5

We use the notation that I(7') has the units of ampere-meter 2, thus
including the area of the current loop A. It is also important to note
that, since we have normalized our time and frequency variables, I (ko)
has the units of ampere-meter 3 . By duality, H, » from a vertical electric
dipole (VED) in the same configuration is

1 o k2
Hy(r) = gRe{i / dkoe™ "I (ko) | dk, ZH{ (kpp) [1 + RTM]}
0 SIP z
(6)

In this case, I(7’) has the units of ampere-meter, and I(ko) the units
of ampere-meter 2.

In general, therefore, we can write the field quantities as

RE{/Odko f(kO)/.Sfdpkpg(kOakp)} ()
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We then deform the k, integral to its steepest descent path. This gives
us two contributions: one from the integral over the steepest descent

path
Re{/odko (ko) Agﬁpgg(kOakps)} (8)

where k,, is the value of k, on the steepest descent path. The other
contribution is from the residues of the poles in the k, plane enclosed
by the deformation,

Re{Z(:t%ri) /

dko f(ko)Res [g(ko,kp)lkfk,,"}. (9)
where k,_ is the value of k, at the nth pole. Next, we interchange the
order of integration in (8) and deform the ko integral to its steepest
descent path. Again, this gives two contributions: the first from the
double steepest descent path:

RE{ dkl’s / dkﬂs f(kos)g(kos; sz)} (10)
SDP SDP

and the second from the enclosed poles in the kg plane:

Req Y (£2mi) [ dkp,Res [f(ko)g(ko, ko)l —k, (11)
sSbp .

n

Thus, the highly oscillatory double integrals in the original ex-
pression have been converted to single integrals over pole residues, (9)
and (11), and a much more rapidly convergent double integral (10).
This reduces the overall computation time. The double deformation
method has some analytical benefits as well. The enclosed poles in the
complex wavenumber plane can be related to natural modes of the
physical system, thus giving insight into the nature of the excitation.
Also, the causality of the electromagnetic signal can be demonstrated
analytically.

While the double deformation method is able to handle dispersive
and lossy media, unlike the Caignard-de Hoop method, it has its lim-
itations. In order for the deformations in the frequency plane to be
possible, the Fourier transform of the source function must vanish at
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infinity in all directions in that plane. This limits the class of func-
tions that can be used with double deformation to those whose Fourier
transforms are purely algebraic — that is, those that have a source
pole, and no exponential behavior.

In this chapter, a modification to the double deformation method
will be presented. This modification is based on splitting the Fourier
transform of the source current into “before” and “after” sections, the
dividing point being the arrival time of the earliest electromagnetic
signal at the observation point. The benefits of the modification are
two-fold.

First, it permits a much wider range of source currents than are
possible with the original double deformation. With the original tech-
nique, only those sources whose Fourier transforms vanished at infinity
in all directions were acceptable. These functions have algebraic Fourier
transforms in general, and thus have poles that have to be taken into
account when deforming the frequency integral. With the modification,
on the other hand, there are never any source poles if the source is zero
before some initial time and remains finite thereafter. This is because
the “before” part is in that case an integral of a finite function over a
finite range, and must therefore be finite.

Secondly, the modification allows a stronger statement, of causality
than is possible with standard double deformation. It will be shown
that only the “before” part of the current transform contributes to
the response. This is intuitively appealing, since the “before” part is
Fourier transform of all the current from times early enough so that
the electromagnetic waves could have reached the observation point. In
double deformation, the statement of causality is that the response is
analytically identically zero before the first part of the signal can reach
the observation point. With the modification, one can make a stronger
statement: the response only depends on that part of the signal which
could possibly have influence. If two signals are the same up to some
time ¢, , then their responses at a distance p away will be analytically
identical up to time t; + p/c. With standard double deformation, one
cannot make this claim; the response at any one time depends on the
source at all times.

The modified method retains all of the advantages of standard
double deformation: speed of calculation combined with the physical
insight gained by examining the various modes. The insight gained
from these modes is strengthened by the modification, since all modes
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are now continuous, without the step discontinuity at the first arrival
common in the standard method. Thus, each mode represents a causal,
continuous signal. Also, modified double deformation can treat lossy
and/or dispersive media, as can the original technique.

In this article, we will consider the responses of various layered
media to three current sources. The first two are decaying exponentials:

I(1) = Iyt sinwpTe™*°7, (12)

which has the Fourier transform

-~

7(:@:2[( 1 ! ] (13)

2 ko + tag + u)o)2 h (ko + 10 — wo)2

and
I(1) = Iy sinwgre™°", (14)

which has the Fourier transform

. 1 !
Itko) = To [(ko +iap —wo)® (ko +iao + ‘UO)S] . 19)

The first of these we will use in VED problems; the second in VMD
problems, so that requirements of continuity of responses are satisfied.
Since the Fourier transforms of these current sources contain only poles,
they can be used in standard double deformation. These sources are
shown in Figure 1.3 for Iy = 1, wo =1 and ap = 0.5. We will also
consider the following current source, which is a smoothed trapezoidal
pulse:

¢

0 z<0or
2T+ Tp+ 75
Io(u + 1)*
I(r)=1{ -(16—29u+20u?-54%)/32 0<z <™
Io T <T<Tr+Tp
Io[1 — (v +1)*
{ (16 —29v + 2002 — 50%)/32] T+ T <T< T+ T+ Ty

(16)
where u = (1—1+/2)/(7+/2) and v = (1 — 7 —Tp —77/2)/(77/2) . This
functional form was chosen so that the current would be sufficiently
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smooth, or in other words that its first, second, and third time deriva-
tives would be continuous. The rise time is 7., the fall time is 77, and
the pulse remains at its maximum value, Iy for 7. The Fourier trans-
form for this current is very complicated, but it can be expressed in
closed form. It is not solely composed of poles, so this source can only
be used with the modified double deformation technique. This current
source is also shown in Figure 1.3, with Iy =1, 7 =1, 7, =3, and
Tf = 2.

Finally, we must consider branch cuts and Riemann sheets. In all
unbounded regions, kn, = ,/enkg — k2 will have branch points in the

k, plane at k, = \/enko. (In bounded regions, all expressions are
even in ky., so that the branch points are unimportant). We choose
our branch cuts so that kn, is purely imaginary along them; the up-
per Riemann sheet is defined where Re {kn:} is positive, the lower
Riemann sheet where Re {kn,} is negative. With this definition, the
Sommerfeld integration path in (4) and (6) lies entirely on the upper
Riemann sheets. In Figure 1.2, for cach quadrant in the k, plane, we
show the quadrants in which kn. lies on both the upper and lower
Riemann sheets (lower sheet in parentheses).

2. Modified Double Deformation for Vertical
Magnetic Dipole over Lossless Halfspace

a. Single Deformation

The original expression for the electric field generated by a ver-
tical magnetic dipole (VMD) on an infinite halfspace with dielectric
constant €; is:

o) ) - k2
Eys(r) = gn;—QRe{ /0 dko koe™ %7 T (ko) /S Idpk,,k—ZHgl)(k,,p) [1+RTE]}
(1)

k., — ki
RTE =2 % 2
k2+klz ( )

k. = \/k& — k2, ki = y/€1kE — k2 (3)

where

and
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The first step in applying the double deformation technique to this
problem is to deform the k, integral to its steepest descent path
(SDP). When we do this, we find that no pole singularities in the
k, plane are enclosed. We do have two integrals the integration paths
of which loop around the branch points at k, = ko and k, = Veiko ,
as shown in Figure 2.1. OQur expression can thus be divided into two
parts,

E¢ = SDPy + SDP,; (4)
where
SDPy = ——___Re / dko e~ tkoT / dg k2k, H" (k,p)
2m2(€) — 1) i s

(5)

with k, = kg + ig, and

Mo * I(ko) -,kof/ 2 (1)

SDP, = "o e, = 1)Re{z tédko ko dq kyki2 11, (kyp)

(6)

with k, = \/erko + ig. While the sum of these expressions is perfectly
regular along the path of integration in the ko plane, individually they
have single poles at the origin. In order to avoid this difficulty, we have
changed our integration contour to start a small distance § above the
origin, make a quarter clockwise circle down to the real axis, and then
go along the real axis to infinity. This slight deformation of the contour
does not cross any poles of the integrand when both parts are together,
so it makes no difference to the overall result.

b. Double Deformation

The evaluation of the two expressions is very similar; let us con-
centrate on SDP o (5). We now want to interchange the order of inte-
gration and deform the kg integral to its SDP. It is clear that this path
will either be straight up (ko = ip) or straight down (ko = —ip). The
decision depends on whether the integrand vanishes quickly enough in
either the upper or lower half plane. The determining factor is the expo-
nential behavior of the integrand. First of all, since we are now consider-
ing the behavior when |ko| gets large, we can replace e~ ko7 [/ 1( 1)(Ic,,p)
with its asymptotic behavior, —+/2i/(m (ko + iq)p)e=9Pe~tko(T—p) |
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Figure 2.1 Deformation in k, plane for Sommerfeld integration path
(SIP); VMD on Lossless Halfspace.

Let us first consider a current source, such as

I(1) = Iyt sinwpre™*°"; (7

this source is shown in Figure 1.3 for Ip =1, wp =1 and ag =0.5.
The Fourier transform of this source is

. 1 !
I(ko) = Io [(ko +iag —wo)® (ko +ic0 + w0)3] ’ ©

which is made up entirely of poles, and thus vanishes as ko — o0 in
any direction in the complex plane. Therefore, in this case, the factor
¢~*o(7=P) ig the only one with an exponential dependence on ko, and
we will deform upward for 7 — p < 0 and downward for 7 —p > 0.
The ko plane for both of these cases is shown in Figure 2.2.

It is easy to show that when we deform upward, the contribution
is identically zero. Since there are no singularities of the integrand in
the upper half plane, SDP ¢ becomes just the double steepest descent
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Figure 2.2 Deformation in k¢ plane for both SDPy and SDP;.

path:

ot [ (S I0P) pray )
DSDP = =7~ I)Re{z /0 dq /6 dp =P 2k H (kpo) [ (9

Since o
H(ip) = / dr' e~ I(+') (10)
0

is real, as is k, = ,/g/q+2p, and since k, = i(p + q) is positive
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imaginary, we can use
. 2, .
H{D(iz) = =(=i)™*' Kn(2) (11)

to obtain

_ o ) 00 o opT 00 - ,
DSDPg = mRe{z/ﬁdq /6de [/Odv- e P I(r )]
(p+0)2\/6\/q+2pK1((p+0)p)} =0. (12)

This result satisfies the causality requirement; since the source turns
on at time 7 = 0, there can be no response a distance p away while
T—p<O0.

What remains is to evaluate SDPg when 7 — p > 0. We wish
to deform the ko integral in (5) to the negative imaginary axis. This
will leave three parts: the residue due to the singularities of the source
function, a residue due to the simple pole at the origin, and the integral
along the negative imaginary ko axis. The latter is identically zero, as
we will now show.

The integral along the axis is

_ o . > j(zp) p‘r/oo 2 (1)
DSDPg = pycTm— I)Re{z-ﬂdp > e 0dqls:plrc,H1 (kop)

(13)
Now, k, =i(¢g—p) and k, = \/GV/q — 2p . The inner integral naturally
divides into three regions:

Region 1: ¢ <p. Here, k, = —iﬁ\/ﬁp — ¢ is negative imaginary,
since we are on the upper Riemann sheet. k, = —i(p — ¢) is also
negative imaginary. We have

HO(=i(p - 9)p) = ~2i1((p~ )p) + =Kil(p =)o) (1)
We obtain

=T
DSDPo; = — 53

{/ I "’ -w/”dq,, 02Vav2 — ek ((p - qp}. (15)
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Region 2: p < ¢ < 2p. Here, k. is still negative imaginary, but
k, =1i(q — p) is positive imaginary. Thus,

HM(i(g-p)p) = —%Kl((q—p)p) (16)
and we obtain

___
DSDPoz = 52—

o T({_s 2p
{/6dp1(+p)e""/dq(q—p)2\/<7\/2p—qu((q~p)p)}- (17)

Region 3: q > 2p. Here, k, = \/q\/q —2p is real, and k, is still
positive imaginary, so H gl)(kpp) is real. Thus, the entire expression in
brackets is imaginary, so the contribution is zero.

Now, in DSDPy,;, let ¢ =p —u. Then

Tlo

DSDPO] = —m

{ / I(—ip) w) /"duuﬂm\/mxl(um}

(18)
In DSDPg2, let ¢ =p+u. Then

__ ™
DSDPoz = 52—

{/0;1) —7—(—_—@26"” /pduuQW\/mKl(up)}
s 0

p
(19)
Since DSDPg; = —DSDPys, the entire contribution to the total from
this double steepest descent path is zero.
Next, we have the residues of all the pole singularities of the source
function. For our example, this is just the triple pole at kg = wg—tag =
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ks . This gives
. m
SPo = 2m(er — 1)
00 2 T ]
-Re / dq ‘92 (ko — ks)Sﬁ“L)e-*o%?k,Hf”(k,,p)
Ok2 ko p -

(20)

Finally, we have the residue of the simple pole at the origin. We

obtain —mi times the residue, since we are detouring halfway around
the pole clockwise:

DCo = ﬂhm{*(o) /O(t)iaqq3 (—%Kl(qp))} (21)

Using
[o o] 1 —
/dxanm(ax):2n—la—n—lF( +n+m>r(1+n m) (22)
o 2 2
we obtain 3
_ "o
DCo = 5r—rs Re{]( )} (23)

The sum of SPy and DCq gives Ey for times 7 < /€;p. In order to
obtain the rest of the response, we need to consider SDP; (6).

SDP, is very similar to SDP ¢, except for a minus sign, and the
fact that that k, = \/e1ko + ig and ki, = N 2i./€rkog . In this
case, the deciding factor in the integrand is e tko(T=veir) 5o for T <
Veip we deform the ko integral upward, and for 7 > /e;p we deform
it downward. When we deform upward, we enclose no poles, and the
double SDP contribution again is identically zero.

The source pole contribution is

"o
2m(e; — 1)

oo 2
{/ aakﬁ[k" ko) (,:)0) _ikOTkgklel(l)(kpp)] } (24)
ko=k,

SP; = —
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and the contribution from the pole at the origin is

DC, = ﬁ%’fl—)Re{l(O /dqq (“Kl(qp)>}

3o ~ _

Thus, the total solution with the double deformation technique is

Ey=0 TP
- _’70__
2n 61 - 1)
oo 62 (k()) —tko'r 2 (1)
{ Bk2 [ko ke)}——= ko kok:Hy " (kpp)
ko=k
3o
T 2m(ey — 1)p° {I(O)} p<T<Vap
-
2n(e; — 1)

~ 9? T(ko) _ikor
{ i [kﬂ_muk@e . kgk,Hgn(k,,,»} |
0 ko=ks
27r (1 —1)

~ 92 I(ko) _ikyr
{ 5 [ko—ks)“%’le ko k§k1,H§‘>(k,,p)] }
0 ko=k,
T> Jep (26)

The total response is shown in Figure 2.3; the closed form solution,
which will be discussed in the next section, overlays this result. The
individual components of the solution are shown in Figures 2.4 and 2.5.
We notice that the origin pole contributions are very small compared
to the total result; this contrasts with the modified double deformation
results, given below, which is entirely due to the origin pole.
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Figure 2.3 Total double deformation result and closed form solution;
VMD on lossless halfspace; source, Eq. (14).
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Figure 2.4 ko-plane pole contribution to double deformation result; VMD
on lossless halfspace; source, Eq. (14).
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Figure 2.5 ko-plane source poles contribution; VMD on lossless halfspace;
source, Eq. (14).

c. Modified Double Deformation

In the previous section, we made use of the fact that the Fourier
transform of the current, I(ko), was made up entirely of poles. This en-
abled us to use e *o(T=#) a5 the deciding factor in whether to deform
the ko integral up or down. However, only a special class of current
functions have Fourier transforms that have no exponential kg behav-

ior. In general, consider the two factors from asymptotic expansion of
the integrand of SDP ¢ (5),

e~ o(T=A) ] (ky) (27)

If we write I(ko) in its integral form and include e~*o("=p) in the
integrand, we obtain:

[o ]
/ dr' e~ko(T=o=") 1 (1/) (28)
—00

If we now consider deforming the ko integral, we see that the deciding
factor about which half-plane we can close the contour in is 7 — p—1,
which, in general, is positive for some values of 7 and negative for
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other values. Thus, we can neither deform upwards nor downwards
and have the integrand vanish at infinity.

Since the problem comes about because of the wide range of 7’
values, one possible solution is to split the Fourier transform of the
current source into two halves, a “before” part, I,, and an “after”
part, I.:

I (ko) = Ty(ko,7) + Ta(ko,7) (29)
where
Tv(ko,7) = / ar' eko 1 () (30)
and ”
Ia(ko,7) = / o e*o™ I(1") (31)
vy

Combining these with e~o(7=p) and setting v =7 — p we obtain
T(ko)e~t*o(=0) = Ty(ko, 7 — p)e~*(7=P) 4 T, (ko, T — p)eko(T=+)
= / dr e kalT=r=T (1)

o0
dr' e~ Ho(T=P=T (7). (32)
T—p

Examining the above, we can see that, in the I, part, T—p — 7' is
always positive, and so therefore we may deform it to the bottom half
of the ko plane without it becoming singular. Conversely, in the I,
part, 7—p—7' is always negative, so we may deform it to the top half
of the ko plane.

However, there is one more difficulty that must be overcome; in
order for the contribution from the section of the contour at infinity
to vanish, the ko integrand must go to zero faster than 1 _/ ko ; this is
Jordan’s Lemma. Because of this, we require both I, and I, to vanish
at infinity faster than 1/ k2 . Unfortunately, in general, the behavior of
I, and 1, is as 1/ko . As long as the time function of the current is
sufficiently continuous, we can solve this by writing:

I(ko) = / dr' I(r')e*™ = _lz / dr' I (r')ete™ (33)
0 ko 0 '
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This assumes that the current is zero for 7 < 0, and that both the
current and its derivative are zero at 7 = 0. We now split the Fourier
transform of the current into two parts:

I(ko) = 10 [ ar I'()e + :2:' 1”(r’)e"°°T'] (34)
=-73 [I2b(k0a T—p)+ I2a(k0’ T— P)] (35)
k()

We substitute this into our expression for SDPo (5) and deform the
ko integral of the half containing Ioa upward, the half containing Top
downward. Since Iz, and izb both vanish at infinity as 1/ko, Jordan’s
Lemma is satisfied.

It is easy to show that the part containing Iz is identically zero;
the demonstration is very similar to that for standard double deforma-
tion for 7 < p and is omitted here. It is important to note, however,
that this demonstration of causality is stronger than that possible for
standard double deformation. There, one can only show that the field
is zero for 7 < p; the field for 7 > p depends on the current for all
time, through I(ko). With the modification, the field at point p at
any time 7 has no dependence at all on the current from the source
later than time 7 — p.

What remains is to evaluate the part containing I, . We have

-
SDPo = 272(e; — 1)

{ / dq / ok, L2k 7 = 0) I2b(k0, = 0) ko2, 1O k)

(36)
with k, = ko +ig. We wish to deform the ko integral to the negative
imaginary axis. This will leave only two parts: the residue due to the
triple pole at the origin, and the integral along the negative imaginary
ko axis, since Iop(ko, T — p) , being the integral of a finite integrand
over a finite range (assuming the current is zero before a certain time),
can have no pole singularities. The integral along the axis vanishes
in the same way as it did for standard double deformation. The only
contribution is therefore the residue of the triple pole at the origin of
the ko plane. We obtain —mi times the residue, since we are detouring
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halfway around the pole clockwise:

___ ™
SPPo =~ - 1)
© 9? —ikoT § 2 (1)
Rel [da g e Ttk 7~ R ot _,
(37)

Let L

g(ko) = e~ %" Ty (ko, T — p) (38)
and )

f(ko,q) = K3k H) "’ (kpp). (39)

where k, = ko + ig. Then we can express the SDPg integral very
simply as

SDPg = —mlm_—l)Re{g(o)/onf”(O, q)

+24(0) / dq £/(0,9) +4"(0) /0 dg f<o,q>}. (40)

Since r—p
g(kO) — /;)dT’ III(TI)eiko(T'—‘r), (41)
we have
9(0) = I'(t - p) (42)
gl(o) — Z d;)l (T’ _ T)I”(T,)
0
= —i[pl'(t — p) + I(T — p)) (43)
and
§'(0) = - [(dr' ('~
0

= —[p*I'(T — p) + 2pI(T — p) + 2 Td_:’ 1(1)) (44)
0
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We must also keep in mind that k, = ig and k, = ¢ when ko =0.
Now,

3
£(0,9) = —¢*H " (igp) = 2%Kl(qp), (45)

[aroo-r@r@)-3 o

so0, using (22),

Now,

f'(ko,q) = k:k,H (k) — W D (k,p) + k2pk, HS (k,p) (47)

4 2
J'0,q) = —;q2K 1(gp) + ;r-pq”Ko(qp) (48)
and o
/ d £/(0,q) = 0 (49)
0
Finally,
(1
" _ quHl (kop) (1) o2 2D
(ko q) = 2o io + 3kekopHo " (Kop) = kskpp™Hy(kop)
_ 2igk 2igk2p
=2 H D (kop) = == HE (ko) (50)
2
1"(0,9) = = [5¢°pKo(gp) — gK1(9p) — ¢*p* K1(gp)] (51)
and
2 1
/dqf (0,9) = > (52)
0 p
Thus,
SDPy = —™ 43 [ a7 1() +3pI(r = p) + p2I' (7 — p) b, (53)
2m(e; — 1)p* 0 ’

which is the closed form solution for times 7 < ,/€;p. The other term,
SDP,, gives us the rest. It is very similar, except for a minus sign,
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and that k, = \/erko +1iq and ki, = V@2 = 2i\/etkoq . By following a

similar process to that for SDP o, we obtain
o o
P = —— '
SDP; e I)Re 91(0)/0dtm (0,9)

+ 29} 0)/dqf1(0 q) +91(0) /dqfl(O q)} (54)

where o
g1(ko) = e~ * T Iy (ko, T — /€1p) (65)
and
filko,q) = K2k H (kop) = f(/Erko, q)- (56)

By applying these changes to our previous work, we find that

Tlo

DP, = ——m@m—
SDPy 2n(ey — 1)pt

{ Td_T?(T)+3\/_pIT"\/-_p)+€1p21(7"'\/_p)}

(57)
which is the other half of the closed form solution.
The total solution for the electric field from a vertical magnetic
dipole over a halfspace dielectric is therefore:

Es=0 T<p

no !
27r(el —1)p4{ dT I(r') + 3pI(1 = p) + p°I (T—p)}

p<T<eap

S/ I—" Td_r\'/?(pr') + 3pI (T — p) — 3 /e pl (T — /e1p)
2”(61 - 1)p4 T—p P ' P

+p2I'(r — p) — e1p’I'(7 - \/f_fp)} T > Jeap

(58)
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We can see the advantages of the modified double deformation
technique over the standard form. Not only are we able to consider a
wider variety of sources, and have a stronger demonstration of causal-
ity, but modified double deformation gives us the closed form solution
for the VMD over a dielectric halfspace.

3. Modified Double Deformation for Vertical Electric
Dipole over Lossless Halfspace

a. Single Deformation

The original expression for the magnetic field from a vertical elec-
tric dipole (VED) on an infinite halfspace with dielectric constant €;
is:

1 . * —ikoT T k
Hy = B?Re{z/odkoe o™ T (ko) sg)kp ka(l)(ka)[l“"RTM]} (1)

where

kz - klz (2)
€ 1kz + kl z
The first step in applying the double deformation technique to this
problem is to deform the k, integral to its steepest descent path
(SDP), as shown in Figure 3.1. When we do this, we find that we
enclose no pole singularities in the k, plane. The Sommerfeld poles,
where €1k, + k1, =0 and Ro; — 00, occur at k, = £y/€1/(e1 + 1)ko,
but they require that k, and kj, be of opposite signs, and thus are
not on the UU Riemann sheet. We do have two integrals which loop
around the branch points at k, = ko and k, = \/€1ko . Our expression
can thus be divided into two parts,

Hy = SDPg + SDP, (3)

RTM RO

where

€t

4r2(e; — 1)

K2k, HY (k,p)
‘R dko I (ko) dg—25=-L %
e{/ oTtheer [ B[ W

ko = ko +1g

SDPy =




The double deformation technique 203

) Im{k,}

4

_—— — — - — — —

-
|
|
|
|
SDPoy4 SDP:
|
|
|
|
|

e ———— e P —————

Poles
AW

/
|

R
g
b
(o]
oy
—~—
>~
©
-

R _ k
—Veke ko

Figure 3.1 Deformation in k, plane for Sommerfeld integration path
(SIP) VED on lossless halfspace.

and
€1

T 4m2(e — 1)

o . o K2k, H Y (kop)
R dko I(k ""°de pz 1 1P 5
e{_/o 0 ( 0)6 0 q f]kg _ (61 + l)kg ( )

SDP,; =

kp=\/ak0+iq

b. Double Deformation

The evaluation of the two expressions is very similar; let us first
concentrate on SDP . We now want to interchange the order of inte-
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Figure 3.2 Deformation in ky plane for both SDPy and SDP; VED on
lossless halfspace.

gration and deform the ko integral to its SDP. Let us first consider a
current source, such as

I(1) = IpT sinwore™°; (6)

this source is shown in Figure 1.3 for I = 1 , wo=1 and ap =0.5.
The Fourier transform of this source is

ily 1 1 ]
2 | (ko +iap + u)o)2 (ko + tag — w0)2 !

I(ko) = (7)
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A Im{p}
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R F
e @ -
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Figure 3.3 Integration contour C,, Eq. (11) VED on lossless halfspace.

As was the case for the VMD on a halfspace medium, with this kind of
source, the factor that determines whether the ko deformation is up or
down is e~*o("=#) . for 7 < p the deformation is up, for 7 > p, down.
Both cases are shown in Figure 3.2. Examining the case with 7 < p
first, we deform the ko integral to the positive 1magmary axis, letting
ko = ip. Since both of the zeroes of the expression e1kE — (€1 + 1)k2
lie on the negative imaginary axis in the ko plane, we enclose no poles
in this deformation. We are thus left with the double steepest descent
path integral

2
DSDPy = —mRC{Z/dq /dpl(zp ep‘r

(0 +0)*Vala+ 2 H e+ ) | g
ap® — (e +1)(p+9)?

Since both p and ¢ are positive over the range of integration,
Hgl)( (p + q)p) = —(2/7)K1((p + q)p) , which is purely real. Also,

1(ip) = / dr' e P I (9)

is also real. Therefore, the entire contribution from (8) to the magnetic
field is zero. This is required, by the principle of causality, since the
electromagnetic field at time 7 < p must be zero, since the waves
travelling at the speed of light have not yet arrived at the observation
point.
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Considering now the situation when 7 > p, we wish to deform
the ko integral in (4) down to its steepest descent path, on the neg-
ative imaginary axis. Since there are poles of the integrand on that
axis, corresponding to the Sommerfeld poles in the k, plane, we do
not enclose them, but detour around them. If we let ko = —ip, our
integration path Cy is shown in Figure 3.3. We also enclose the poles
of the Fourier transform of the source function — for our example, the
double pole at ko = wp —iap = k, . This gives

2

_ €
SPo = 27(ey — 1)
Red [[dg o | (ko ~ k) (ke kpks Y (kpp)
— — s e
A 9 Bko |\© e1kg — (e1 + 1)k2 Kok,

(10)

From the integration along C,, we obtain

€
DSDPg = Re{/dq /dpl( —ip)e”PT

272(e) — 1)
(¢ —1)*\/a(g — 20)H"(i(q — p)p) (1)
(p— 19)(p — 529)

where
- : (12)
S1= 1+ (\/61/\/61 + 1)
and
1
2T (Va/VarD (19)

For 0 < €, < 00, 1/2 <51 <1 and 1 < s3 < oo so that there
is never a double pole. In addition to the two poles, there are two
other critical points along the integration path. First, for p < ¢/2,
k. = \/q(q — 2p) is real and positive; for p > ¢/2, k, = —i\/q(2p — q)
is negative imaginary (since we are using k, as on the top Riemann
sheet). Second, for p < ¢, Hj"(i(g — p)p) = —(2/m)K1((a - P)p)
which is purely real; for p > ¢, Hfl)(—i(p —-q)p = 2/m)K((p -
q)p) — 2il,((p — q)p) which is complex.
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It can be shown that the total from the integrations along the
axis, excluding the semicircles around the poles, is zero. To do this, we
divide the integration interval into five regions: (1) 0 < p < ¢/2, (2)
g/2<p<519,(3) s1g<p<gq, (4 g<p<s2q,and (5} s2<p.

In region 1, both k, and H {1) are real, so the total answer is zero.

In region 2, k, is negative imaginary but H {1) is still real. This gives

819

DSDP, g 0 [dpi(—ip)er
02-——m /0 q q/QP (—ip)e

(q— p)ZﬁWKl((q —p)p)} (14)

(p—519)(p — s29)

Region 3 is the same as region 2, except for a change in the limits of
the p integral:

2 ] q
____ 49 F(—im\e—PT
DSDPg3 = TP 1){_/0dq s}zipl( ip)e

(m#NVﬂ%—wKA@—MM} (15)

(p—$19)(p — 529)

In region 4, k, is still negative imaginary, but H fl) is now complex.
Only the real part of H fl) will contribute:

2 00 329 _
DSDPo4 = ;3—(:1-1'_—1)'{./(‘)(&] Ad;l(—ip)e'w
OF@VV“%—@KK@—®M} (16)

(p—$19)(p — 529)

Region 5 is the same as region 4, except for a change in the limits of
the p integral:

621? 00 o _
DSDPgs = m /Odq dp I(—ip)e™?"

829

@—Qﬂmﬁp—wKﬂ@—QM} a7

(p — 519)(p — 529)
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Now, if we interchange the order of integration in DSDP o2 and let
g = 2p — u, we obtain

62 oo p/33~
DSDPgp = ———1 /dp du I(—ip)e™P"
0 0

m3(ey — 1)
(p —w?v/u2p —w)Ki((p — u)p)} 18)

(p — s1u)(p — s2u)

since 2 — 1/s; = 1/s2. Doing the same thing to DSDP g3 we obtain

€3 RO L pr
DSDPg3 = — —— T(—ip)e
SDPos =~y o, eI

(p —u)*Vu(2p —u)Ka(p ~ u)p) } (19)

(p — s1u)(p — s2u)

Interchanging the order of integration in DSDP g4 and DSDP o5, with-
out making a change of variable, gives us:

€2 o ~
DSDPy4 = ————7{3(611_ ) {/Odp /p:(fg I(—ip)e™?"
(v~ 9> Va@r — ) Ki(p - 9)p) } (20)

(p - 519)(p — s29)

and

/-’2
DSDPg5 = 7r3(el ) {/dp/ (—ip)e™P"

(p—a)*VaCp — ) Ki((p — q)p)} (21)

(p—s19)(p — s29)

Thus, DSDP o5 cancels DSDP g2, while DSDP g4 cancels DSDP q3 .

Now, all we are left with are the contributions from the detours
around the two poles. Each of these we halfway enclose, going clock-
wise, SO we obtain —mi times the residue:

P, = 27r(51 _—) {/dqRes

(g —p)*va(a —20)H"(i(q - p)p)] } (22)
pole n

(p - 519)(p — 529)

—ip)e PT
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The pole at p = s1q contributes nothing, since, at that point,
k. is imaginary and Hfl) is real. For the pole at p = s2q, only the
imaginary part of H fl) contributes:

YViVa ¥ 1+ Ja)®
2m(e1 — )ver+1

Py =&
(23)

-Re{/:;q a*T(—is2q)e "9 I;((s2 — l)qp)}

Now we consider the contribution from SDP; (5). Here, the di-
viding point is T = \/e1p; if 7 < \/e1p, we will deform upward, and
obtain zero, just as we did for SDP¢ . For 7 > ,/e1p, we deform down-
ward and let ko = —ir/\/€; and k, = i(q— ). First, we consider the
source pole:

1

5Py = 2m(ep — 1)

© g e K2RHD (kop)
. Re dag — | (ko — ks 2] —tkor P 1 [4

(24)
From the deformed integration, we obtain

1 © -
_— i —r7/€1
DSDP, 57206, _I)Re{/(;dq /(;ir I(—ir/\/e1)e

(¢ = )*V/ala =2 " (i(a —)p) } (25)

(r — s3q)(r — 849)

where
€e1+1
= —_— 26
3T Jarisl (26)
and
ver+1

= —— (27)
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and the contour C; is just like Cp (Figure 3.3) except that the detours
are around r = s3q and r = s4q. For 0 <€ <00, 1/2 <83 <1 and
1 < s4 < oo so that again there is never a double pole. In addition
to the two poles, there are the same critical points as in SDP . Since
2—1/s3 = 1/s4, we can apply the same reasoning as we did for SDP g
to show that the total of all the on-axis integrations is zero. This leaves
us with only the contributions from the detours around the poles:

1 oo -
- - i -r7/\/e1
P, e 1)Re{‘/odqRes [I( ir/Ver)e

(q—r>2\/mﬂf”(i(q—r>f’)] } (28)
pole n

(r— s3q)(r — s49)

The pole at r = s3q doesn’t contribute, since the integrand is purely
imaginary; the pole at r = s4q gives:

1+ Ve +1)3
2m(e; — 1)ver + 16:1’/2

Py =
(29)

' Re{/oodoq ¢*T(~isaq/\fe1)e™ TV (54 - l)qp)}

Therefore, the total field given by the double deformation technique is
given by SPo (10), SP; (24), P, (23), and P; (29):

Hy=0 TLp
=SPo + P, p<7‘<\/ap
=SPo+SP, + P+ P, 'r>\/e_1p

(30)

For our specific current source, the total with ¢; = 3.2 is shown in
Figure 3.4; this is a virtually perfect match with the closed form re-
sult. The various components of the solution are shown in Figures
3.5 and 3.6.
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Figure 3.4 Total double deformation result and closed form solution;
VED on lossless halfspace; source, Eq. (12).
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Figure 3.5 SDP; Contribution to double deformation solution; VED on
lossless halfspace; source, Eq. (12).
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Figure 3.8 SDP; Contribution to double deformation solution; VED on
lossless halfspace; source, Eq. (12).

c. Modified Double Deformation

We will need to split the Fourier transform of the current into
two parts, one that allows us to deform in the upper half plane and
one that allows us to deform in the lower half plane. Both parts also
need to vanish sufficiently quickly in their respective half planes so that
Jordan’s Lemma will hold; in this case, we require better than 1/kg
asymptotic behavior as ko approaches infinity. As long as the time
function of the current is sufficiently continuous, we can write:

(ko) = [ dr' e = & [ar e @
0 ko Jo

This assumes that the current is zero for 7 < 0. We now split the
Fourier transform of the current into two parts. Due to the asymptotic
nature of the Hankel function, the point of division will be 7 — p, in
order for our integral expressions to vanish in the proper half planes.
Thus,

~ i = o7 o o

I(ko) = — [ dr' I'(t"e'*™ + [ dr' I'(T')e'k"TJ

ko 0 T—p
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i
ko

[Tuu(ko, ™ = ) + Tralho, ™ = )] (32)

While the sum of these expressions is perfectly regular along the
path of integration in the ko plane, individually they have single poles
at the origin. In order to avoid this difficulty, we will change our in-
tegration contour to start a small distance 6 above the origin, make
a quarter clockwise circle down to the real axis, and then go along
the real axis to infinity. There are no singularities encountered in this
small deformation while the two halves of the current transform are
together, and, when we split them apart, we avoid the singularity at
the origin.

We therefore split the SDP expressions into two parts, one con-
taining I, , the other containing .

2 o ] a(ko, T -p) .
L) ; 2\ 7 kot
SDPob 5726, — 1)Re{z wdko % e
© k2, H (kop)
dg —>5 5 (33)
o eki—(a+ l)kp
and
oo 7 O(k{),T—\/Elp) ,
. = — €1 . 1y —ikoT
SDPlb _—_27r2(el — 1)Re{z/wdlco %o e

o k2k HY (k,p)
dg —L——1 ~F 34
/; q C]kg —(aa + l)kg (34)

Taking SDP g, first, we interchange the order of integration, and
deform the ko integral to the positive imaginary axis, letting ko = ip.
Since both of the zeroes of the expression €1k — (€1 + l)kf, lie on the
negative imaginary axis in the ko plane, we enclose no poles in this
deformation. We are thus left with the double steepest descent path
integral

2 00 o T. (s _
DSDPg, = ___GI__RJe{i/dq /dp _I_lﬁpr__p_)ew
o Js

212(eg — 1)
(p+ 9)2va(g + 20 H (i(p + 9)p) (35)
ap? — (e +1)(p +9)?
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Figure 3.7 Integration contour C,', for Eq. (36); VED on lossless halfspace.

which vanishes in the same way that (8) did for standard double de-
formation.

Turning now to SDP ¢, , we wish to deform that ko integral down
to its steepest descent path, on the negative imaginary axis. Since the
only poles of the integral are on that axis, we do not enclose them, but
detour around them. If we let kg = —ip, our integration path C’ is
shown in Figure 3.7. We therefore obtain

1
DSDPOb = 2 61 _1 {/dq d lb( lp) p)e—p‘r

p

(0~ VT T (i o) } (36)

(p—519)(p - s5209)

where s and sz are defined in (12) and (13), respectively. In addition
to the three poles, there are the same two other critical points along
the integration path. The total from the integrations along the axis,
excluding the semicircles around the poles, is zero, just as before. We
are left with are the contributions from the detours around the three
poles. Each of these we halfway enclose, going clockwise, so we obtain
—mi times the residue:

€? o0 Iy(~ip, T — p)
Pp=-—1__Re /d Res | 20 P T = P) o—pr
2m(e; — 1) { 0 9 [ P

(¢—p)*Valg— 2p)H§”(i(q—p)p)} } (37)
pole n

(p — s19)(p — 529)
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The pole at the origin gives

2 00
-t It —
P %(61 —l)SlszRe{/dqq 16(0,7 — p)Hy (WP)} (38)
- =) [ daakiton (59)
since —p
Lip(0,7—p) = [ dr' I'(7") = I(7 - p) (40)
0
Now, since
o 1+4n+m l1+n—-m
n __on-1_-n-1
/Od:m: Km(az) =2"""a F( 5 )F( 5 ) (41)
n>m
we obtain o L 3 .
™
/Odq qKi(gp) = ?F <§> r ('2‘) =22 (42)

which gives the contribution due to the pole at the origin as

€f

Php= ——1—
T 2m( - 1)p?

I(T —p) (43)

The pole at p = s;q contributes nothing, since, at that point,
k. is imaginary and Hgl) is real. For the pole at p = s2q, only the

imaginary part of H 51) contributes:

e (52122551

Py =
2 m(er—1)  s2(s2—s1)

(44)

: /dq ql(—is2q, 7 — p)e" T I1(q(s2 — 1)p)
0

Remembering that

- —p
I(-issg, = p) = [ dr e 1), (45)
0
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we obtain
5/2 T—p oo ,
Py = (\/61 +14 \/_ /dT’ I'(T’) / dqqe—sa('r—'r )qll((82 _ l)qp)
2m(ef — 1) 0 0 6)
We use the fact that
x n_—azx 1 m a
(47)

where P]* is an associated Legendre function. For our case, where
m =1 and n =1, we obtain

- g
/;dx xe 11(,33’,') = m (48)
Applying this result to our expression for P, , we obtain
ep T—p 1
Po=—2— [dr (" 49
= w@-0 L Oarve—rp—amr @

Using integration by parts to express everything in terms of I(r1), we
can combine with P, to obtain the total contribution due to SDPg:

1

SDPo = 2n(e; — 1)p?

z

. {efI(r — p) —3€3p° /pTd“(T RS

— e10?]572 }
(50)
For T < p, this expression gives zero.
Now we consider the contribution from SDP; (34). The deforma-
tion of the term containing I;, will give zero, just as it did for SDPg,

so we are left with I),. Deforming downward, we let ko = —ir/ NG
and k, =i(q — r). We obtain

DSDP, = 737 l_l)Re{/dq/d L(- zr/\/_'r—\/_P
e /YA (g - r)* V(g —2r) HY' >(,-(q ")) } (51)

(r — s3q)(r — s4q)
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where s3 and s4 are given by (26) and (27), respectively. and the
contour C; is just like C, (Figure 3.7) except that the detours are

around r = s3q and r = s4q. As before, only the contributions from
the detours around the poles matter:

= Ilb( 1.7'/\/_-,7‘—\/_/)) =TT
P, = o (61 — 1)Re{/dqRe Ve

(q—r)ﬁmﬂ’(i(q—”ﬂ)] } (52)
pole n

(r — s3q)(r — saq)

The pole at the origin gives

Py = _mf—lj—l)s—;;Re{flb(O,’r - \/ETP)/Odqul(QP)} (53)

€1

The pole at r = s3g doesn’t contribute, since the integrand is purely
imaginary; the pole at r = s4q gives:

1 (s4—1)%y/254 — 1
m(er—1)  s4(s4 —s3)

/ dqqls(—isaq/vel, ™ — Vap)e VI ((s4 — 1)gp) (55)
0

Py=—

Using (48) as above, we obtain:

/p / 1
P, = _m /()dr I (T)[(61 T 1) (T — )2 —e1p?Pl (56)

Using integration by parts, and combining with (54), we obtain

1

DP) = ——
SDP, 2n(ey — 1)p?

T T
. {I(T — Veip) - 3eip’ \/Zi_ff)l(r —2) [(e1 + 1)z2 — 6102]5/2}

(57)
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This expression is zero for 7 < \/e1p.
Therefore, we obtain the complete modified double deformation
result for a vertical electric dipole over a halfspace medium:

H¢=0 TP

1
= 21(e1 — 1) {G?I(T - p)

—333/2 I(r — z
| del(r =) ey

p<T < Jap
1
ZW{C¥I(T—P)—I(T—JEI’)
vep T
—-3e3p° [ dxI(r -
€10 , zI(T x)[(61+1)z2—61p2]5/2}
T > ap
(58)

Again, we see the power of the modified double deformation technique,
since it provides for us the closed form solution for the VED over a
halfspace medium.

4. Modified Double Deformation for Vertical
Magnetic Dipole over Coated Perfect Conductor
a. Single Deformation

The electric field on the surface of a coated perfect conductor from
a vertical magnetic dipole also on the surface a distance p away is

00 ] ~ k2
Belr) = %’5‘“{ | dbokoe= = T(ko) [ ak, 21 ool + RTE]}
(1)
where ik d
RTE Ry —e Rot = k. — ki, @)

T 1= Roye2ikizd’ ks + ki
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= /K2 — k2, ki = Jerkd — k2 (3)

The dielectric coating is of thickness d and dielectric constant ;.

The principal difference between the coated perfect conductor case
and the halfspace case studied earlier is the existence of pole singular-
ities in both the k, and ko planes due to resonances of the structure.
We first deform the k, integral in (1) to its steepest descent path
(SDP). This path goes from k, = ko + icc on the top sheet, down to
k, = ko, and back up on the bottom sheet, as shown in Figure 4.1;
there is only one steepest descent path, since there is only one un-
bounded region. If we call height on the SDP ¢, then the steepest
descent path contribution becomes

and

SDP = —;—O-Re{ /dko koe %71 (ko)

> kf, (1) TE
[ da |2HO ot + BT
z top

[Z‘; H{Y (k)1 + RTEI] } (4)
bottom

which can be written as

SDP = — L Re{ i / dko koe~*" (ko)
8m?

(1) 1+ R01)2(1 _ e2ik1,d)2
/dq pH )(1 — Rore2%1:4)(Ry; — e2ik1,d)} (5)

where k, = ko +1ig and k, is evaluated on the top Riemann sheet.
We must be careful, however, to consider any poles that we may have
enclosed in deforming the k, integration path. These poles are zeros
of the denominator of (1),

This transcendental equation has an infinite number of solutions in the
complex k, plane. In order to find and examine them, we resort to a
modal approach. We let

ROI = Cid’ (7)
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Figure 4.1 Deformation in k, plane for Sommerfeld integration path;
VMD on coated perfect conductor.

where ¢ is a complex number whose real part lies between 0 and 27 .
We substitute this into (6) and, by taking the logarithm of both sides,
arrive at the modal equation

&+ 2k1.d = 2(m + 1), m=0,1,2,... (8)

where the different m’s distinguish the different modes.

Some typical loci of poles (m = 0,1,2) are shown in Figure 4.2.
The solid lines refer to poles on the upper Riemann sheet; the dashed
curves to poles on the lower Riemann sheet. Since (1) is even in k,, the
locus is symmetric; we will concentrate on the half with Re {k,} > 0.
For ko very large, we have two poles, both near k, = /€1 ko — one
on the top Riemann sheet, and one on the bottom. As ko decreases,
both poles move towards the point k, = kg, remaining on the real
axis. The pole on the bottom sheet reaches that point at the “cutoff”
frequency:

(m+1/2)n

bom = Jer=1d (®)
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Im(kf,lko)
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Figure 4.2 k, pole loci, m = 0,1,2; VMD on coated perfect conductor;
vertical line at Re(k,/ko) = 1 is steepest descent path.

at which point it switches to the top sheet and approaches the other
pole. They meet, and one moves away from the axis to the first quad-
rant on the top sheet, while the other moves to the fourth quadrant
on the bottom sheet. As ko approaches zero, these loci are symmet-
ric about the real k, axis. The one in the first quadrant intersects
the SDP at ko = kpm and ko = kam before moving out towards in-
finity. The locus for mode 0 is slightly different. One pole remains at
k, = /€1 ko on the top sheet for all values of ko, while the other
starts at k, = (/€1 ko on the bottom sheet for large ko, moves to-
ward k, = ko, crosses there to the top sheet, and moves back toward
k, = \/e1 ko as ko approaches zero.

Thus, for each mode, only two parts of each locus are enclosed when
the integration path is deformed. For a range of frequency between kqm
and Kkpn , poles on the upper Riemann sheet are enclosed. These poles,
with Re{k,} > 0, Im{k,} > 0, Re{k;} > 0, and Im {k;} < 0,
correspond to so-called “leaky” waves. For frequencies greater than
kom , poles along the real k, axis on the lower Riemann sheet are
excited; these poles, with k, and k,, purely real and positive, and k.
purely imaginary and positive, correspond to “guided” waves. Mode 0
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has only guided waves.
The contribution to the total field from these k, poles is

| o
which becomes

I(ko) _ikor | Kok, H" (k,p)
z 2#(61—1) { k:imko ko o [pll/kzl—’idp (11)

for the guided poles, where k, is evaluated on the bottom Riemann
sheet, and

0 I(ko) —ikor | okt HY (k
> - 2“1—1) { iy 10 -t [pl/kl—(idpp)]} (12)

0. k2
o Re{i / dko koe %7 T (ko) Res lk—prl)(kpp)[l + RTE)

m=1 kam 0

for the leaky poles, where k, is evaluated on the top Riemann sheet.
The total field is thus given by the sum of (5), (11), and (12). If we
stop the analytical process here, and evaluate these three expressions
numerically, the technique is called single deformation. While we have
eliminated one of our highly oscillatory integrals, we still have the
integral over kg in its original form.

b. Double Deformation

The double deformation method takes the single deformation re-
sult and deforms the ko integral in the SDP term, (5). To evaluate
this, we want to interchange the order of the ¢ and ko integrations,
and deform the latter to its steepest descent path. The issues which
decide whether the deformation in the ko plane will be up or down
are exactly the same as in the halfspace case; for a source, such as

I(1) = IyT* sinwpre 2", (13)

which has the Fourier transform

1 1
(ko + i —wo)® (ko + 0o + wo)3

I(ko) = I, ) (14)



The double deformation technique 223

we deform upward to the positive imaginary ko axis for 7 < p and
downward to the negative imaginary ko axis for 7> p.

It can be easily shown (Appendix A) that the total contribution for
T < p is identically zero, which satisfies causality. Therefore, we will
concentrate on the contribution for 7 > p. For this case, we will deform
the ko integral in the single SDP term (5) downward, to ko = —ip.
In so doing, we obtain two more contributions: the double steepest
descent path integral and the residues of the enclosed poles in the ko
plane.

The double steepest descent path integral is not difficult. After
manipulation, we obtain

o > z
DSDP = —Re i/dppe""](—ip)
871'2 0

00 kg 1 (1+R01)2(1 _e2ik1.d)2
[ o g o) gy — ey | (19

where k, = i(g — p), k. = V@ —2pgq, and ki, =
V@* — 2pg — (€1 — 1)p?. First we notice that I(—ip) is purely real.
There will be three critical points on the ¢ integration path, ¢ =
p, ¢ = 2p, and ¢ = (1 + /e1)p, and thus four separate regions to
consider.

Region 1: 0 < g <p. Here, k, = —i(p — q), so

HO(=i(p - )p) = 2K:((p - 0p) ~2ih((P =)o) (16)

Also, both k, = —iy/2pg — ¢* and ki, = —iy/(e1 — 1)p? + 2pg — ¢
are negative imaginary. Thus, both Roy and e?*1:¢ are real. This
leaves us with

DSDP; = 4—"7}3{ / dppe~P1(~ip)
0]

— )2
/pdq '—(p——q)—EKl((p — 90|
0

V2pq—q

Region 2: p < ¢ < 2p. Here, k, = i(¢g —p), so

(1 + R01)2(1 _ e?ikl,d)Q
1= Roje®*1:d)(Rop — €2k1:9) (17)

O (i(g =)o) = ~=Ki((a = P)o) (18)
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However, both k, and k. remain negative imaginary. This gives
7 00 .
DSDP, = ——2_ —PTi(—4
SDP, 13 / dp pe (—ip)

201 _ ,2ik1ed)\2
Ki((g - p)p) Lt Ro) (1 — e727) }(19)

dq (¢—p)?
(1- ROlezzkl.d)(Rm _ e21.lc1,d)

P 2pq — ¢?

If we make the substitution ¢ = 2p — u, we can write (19) as

DSDP, = —%{/dppe_”‘rl( —ip)

(1 4 Rop)2(1 — ¥kt
/du 2pu u2 Ki((p - U)P)(l — Rmezi}cl,d)(Rm _e2ik1,d)} (20)

where, in terms of wu, k, = —iy/2pu—u? and k;, =
—iy/(e1 — 1)p? + 2pu — u? . It is clear, by comparison of (20) with (17),
that the contributions from regions 1 and 2 exactly cancel each other.

Region 3: 2p < ¢ < (1+ ,/€1)p. Here, k, is positive imaginary, as
before, so H 51) is purely real. The change is that k, is real, while k;,
remains complex. This means that Rp; is a complex number with a
magnitude of unity, or that we can write R, = €%, where 1 is real.

Let e?*1:d = X where X is also real, and we obtain:

(1 + R01)2(1 _ eQikl,d)2 B (l +e2iw)2(1 _ X)2 B
(1 — Rg1e%k1:d)( Ry — e2ikisd) — (1—e2¥X)(e2¥ — X) ~
(€% — e¥)2(1 — X)? 1)
(e — eV X)(eW —e~WX)

By inspection, we note that this expression is equal to its complex con-
jugate and is therefore real. Since k, is real, we can see by examining
(15) that the contribution from this range is zero.

Region 4: Here, q > (1 + \/€1)p. Now, both k, and k), are real.
This means that Ro; is real, but that |eZ*1+4| = 1. We write

(L+ Roy?(1 — e¥hiedy
(1 — Rg e2k1:d)(Ry; — e2ik1:d) -
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Figure 4.3 ko pole loci, m =0,1,2; VMD on coated perfect conductor.

(1 + R01)2(eik1,d _ eiklzd)Q

" (Ropeki:d — e=tk1:d)(Rg e~ k14 — eik1:d) (22)

Again, we can see that this expression equals its complex conjugate
and is therefore real, and therefore the g integration for this range
is zero. Thus, since the contribution from region 1 cancels that from
region 2, and both region 3 and region 4 give zero, the entire double
steepest descent path integral (15) is zero.

When we deform the ko integral to its SDP, we enclose poles of
the integrand. There are two kinds of poles; the source pole, due to
the singularities of I(ko), and the poles that arise from zeroes of the
denominator (6). In I(ko), only the triple pole at ko = wo — icp is
enclosed, so we obtain:

7)010 62 —iko'rklz’ (1)
_ 100 = |k LY (|
87 e{/odq Bkg [ 0€ k, 1 (kop)

(1 + Rop)?(1 — e%Fie)® ] (23)
(1 — R()le?ik“d)(ROl - e2ikl'd) ko=wo—1io
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Turning now to the roots of (6), we look for solutions with complex
ko and k, = ko + ig on both the top and bottom Riemann sheets,
instead of solutions with real ko and complex k, as we did in the
k, plane. We can use the same modal technique as previously, and
discover loci such as those shown in Figure 4.3. The solid lines refer to
poles on the upper Riemann sheet; the dashed curves to poles on the
lower Riemann sheet. For all modes except m = 0, two sections of the
locus are enclosed by the deformation of the integration path to the
negative imaginary axis: the part from ko = k., towards ko = kpym ,
which we will call “ky finite”, and from ko = kupm to ko — —ioco,
which we will call “ko infinite”. For m = 0, since the locus in the k,
plane never crosses the SDP, the locus in the kg plane never crosses
the ko -real axis, so there is only a ko infinite locus. The integrals for
these poles are

—fj—rﬁe{ / dgRes [koe-"Wf(ko):—'fﬂf"(kpp)[l + R”ﬂ] } (24)

which, after calculating the residues, gives the following expressions for
the contributions:

2, é‘ﬂ%“{/ dge=*7T (ko) H}" (kop)
m=0

Gam
k2k?,(q — 2iko) '
2 : 2 (25)

for the ko infinite poles, and

> o Pm kot (1)
Z T].)'Re A dq C_lkoTI(ko)Hl (kpp)

= 2m(e
k2k3,(q — 2iko)
5 . (26)
ko [ko(el —1)d - lkz] + kodk?,

for the ko finite poles, where ¢um and gun are the value of ¢ where
the locus in the k, plane crosses the SDP; for m =0, g,0 =0.

The complete double deformation solution is thus made up of five
parts: the k, guided modes (11), the k, leaky modes (12), the ko
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infinite modes (25), the ko finite modes (26), and the source pole
contribution (23).

¢. Modified Double Deformation

We can apply the modified double deformation technique to this
problem, just as we did for the halfspace case. As in that case, to satisfy
Jordan’s Lemma in this case, we will have to do two integrations by
parts:

w . 7 w . ’
I(ko) = /d'r'I(T')e"‘"T = ——%—/dr' 1"(1")ekeT (27)
0 ko 0

This assumes that the current is zero for 7 < 0, and that the current
and its first derivative are zero at 7 = 0. We now split the Fourier
transform of the current into two parts:

~ TP : ’ 00 : ’
I(ko) — —'Is_g [ A dTI III(TI)e‘LkoT + d‘l" III(TI)eIkoT] (28)
T—P

—kig [jzb(k(),’r - p) + j2a(k0> T— p)] (29)

We substitute this into our expression for SDP (5) and deform the
ko integral of the half containing I5. upward, the half containing I
downward. However, since we have introduced a pole at the origin, we
must deform our integration path in the ko up to i6 before separating,
as we did in the halfspace case. If we also split the integrals over the
poles in the k, plane into a part containing I,s and one containing
T, we can show (Appendix A) that the total for Isa is identically
zero, which satisfies causality. Therefore, we will concentrate on the
part containing Iop:

- ﬁ_ Y —ikoT ij(kO: T p)
SDP SWQRﬁ{t /ﬁdkoe ST

) kg (1) (1-{-1?01)2(1—-62“‘1"1)2
[[aa g H o) gty — ey |

We will deform the kg integral downward, to ko = —ip. In so doing,
we obtain three contributions: the double steepest descent path con-
tribution, the residue from the pole at the origin, and the residues of
the enclosed poles in the ko plane.
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The double steepest descent path contribution is similar to that
for standard double deformation, except that —(1/k2)I5(ko, T — p)
replaces I(ko) . Examination of equations (15) through (22) shows that
this change will not alter the conclusion that the total contribution is
Z€ro.

There is, however, a contribution from the pole at the origin. Since
we half enclose this pole clockwise, we obtain:

7 = SﬂRe{/ dq [Tgb(ko,'r — p)e~tkoT
™ 0

k_gHgl)(kpp) (1 + R01)2(1 - 62“:“‘1)2 ]k -0} (31)

k. (1 — Ro1€2k1:8)(Ry; — e2k12d)
Using the fact that

Inp(0,7 — p) = I'(r — p) (32)
we obtain 0o
Z = %I’(T - p) /0 dq gsin®(qd)K1(gp) (33)
which becomes
_ Mo p, i I
Z = 4ﬂ_1 (r—p) [pz (02 + (2d)2]3/2] (34)

The contributions from the poles of (6) in the ko plane are very
similar to the standard double deformation results, except that there
is no source pole. We obtain

o0

™ o) [ eiker I2o(ko, T = ) Ly
mz;o 27r(el—1)R£{/q,(iqe i (k)

k22, (q — 2iko) (35)
ko [k2(€1 — 1)d — ik,] + kodk2,

for the ko infinite poles, and

—~ ™ B _ikor T20(Ko, T = P) (1)
mzzl e =1 _I)Re{ 0dqe — ' H; " (kop)

k2k,(q — 2iko)
ko [k3(er — 1)d ~ ik,] + kodk3,
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for the ko finite poles.
We also have the contributions for the k, poles, which are now

= Mo [ Top(ko,T = P) _ikor kﬂklnggl)(ka)
gzn(el—l)Re{’/kff“ K- 1/k, — id

(37)
for the guided poles and

i ™ Redi ’;"k'; Izb(ko,;f - p)e—iko‘r kpk%zHgl)(‘ka)
L 2m(ey - 1) Kam kg 1/k, —id

(38)
for the leaky poles. The total modified double deformation solution is
therefore given by the sum of the k, guided modes (37), the k, leaky
modes (38), the ko infinite modes (35) the ko finite modes (36), and
the origin pole contribution (34).

d. Results

Results are shown for the configuration with p =3, d =1, and
¢; = 3.2. Two sources are used; the first is the damped sinusoid (13)
with Io =1, wo =1 and ap =0.5. The second is the smoothed pulse,
discussed in Section 1. In order to analyze the response we calculate, it
is helpful to look at the situation from the viewpoint of rays. We can
look at the waves sent out from the dipole source as being rays coming
out at all angles from the dipole. We can trace the path of each ray
through the model to see if it arrives at the receiver, and if so, when.
These arrival times will tell us when to expect changes in the total
response due to new waves contributing to the field.

The simplest rays which arrive at the observation point are those
which travel directly from the source, one in free space and one in the
dielectric. The travel times for these are:

T=0p in free space (39)

T=+ep in dielectric (40)

These waves are the only ones which exist in the halfspace case.

The next simplest ray is that which reflects off the bottom bound-
ary at p/2 to reach the observation point from the dielectric. This
“reflected wave” is the simplest member of an infinite family, all of
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which reflect off the ground plane n times and the air-dielectric inter-
face n — 1 times. The travel times for these rays are:

T = e v p? + (2nd)? n=123,... (41)

The remaining rays are the so-called “lateral waves”. These start out
from the line source propagating downward at the critical angle (the
angle at which total internal reflection would occur between the di-
electric and free space). They reflect off the ground plane, and the first
member of the family is transmitted into the freespace medium with a
transmission angle of 90° . The wave then travels straight to the obser-
vation point. The other members of this family reflect off the ground
plane n times and the air-dielectric interface n—1 times. The number
of members in this family is not infinite, because, since the point of
emergence from the dielectric must be to the left of the observation
point, there is a limit on the number of reflections possible.
The members of this family are those for which

n < E__vf;d—l, (42)

The transit time for these waves is:
T=p+2ndve —1, n=12,3,... ez (43)

In the following table we list all the ray arrivals for this case before
T=12:

Wave Arrival Time
Direct (air) 3.000
Direct (dielectric) 5.367
First Lateral 5.966
First Reflected 6.450
Second Lateral 8.932
Second Reflected 8.944
Third Lateral 11.900

It is clear from this table that, before 7 = 5.966, the response
should be identical to what it would be if the ground plane didn’t exist.
Comparison with the closed-form halfspace solution thus provides a
good check on the results.
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Figure 4.4 Total double deformation and halfspace solution; VMD on
coated perfect conductor, source, Eq. (14); circles show various ray ar-
rivals.

We present three sets of results. First, we use standard double de-
formation with the damped sinusoidal source. In Figure 4.4, we com-
pare the total using eleven modes with the closed-form, halfspace result
from Section 2. As can be seen, the fit is extremely good. One can also
see the effects of the subsequent ray arrivals on the total waveform. In
Figure 4.5, we show some of the components of the total; the source
pole contribution and the first two modes.

Next, we do the same problem, but using modified double defor-
mation. The total result would overlay the double deformation result
in Figure 4.4. In Figure 4.6, we show the origin pole contribution and
the first two modes. Comparing this with the standard double defor-
mation result, we notice some interesting things. First, the agreement
between the two techniques is very good. Also, in contrast with the
standard double deformation method, all components in the modified
results start smoothly from 7 = p, with no discontinuities of value or
slope. This comes about from the stronger statement of causality pos-
sible with the modification (see Appendix A). Also, since the response
at time 7 only depends on the current for all times before 7 — p,
in some sense the modes for modified double deformation are more
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Figure 4.7 Modified double deformation result and halfspace solution;
VMD on coated perfect conductor, source, Eq. (18); circles show various
ray arrivals.

physical than those for the standard technique.

Finally, we use modified double deformation with the pulse source,
to demonstrate the versatility of the new technique. In Figure 4.7, we
compare the total with eleven modes to the halfspace result; in Fig-
ure 4.8, we show the origin pole contribution and the first two modes.
While the character of the response is markedly different from the
damped sinusoid, and the higher order modes relatively more promi-
nent, we see that the total answer agrees with the halfspace solution
almost exactly up to the arrival of the first lateral wave. Examination
of later arrivals is complicated by the fact that we can expect changes
in the response due not only to the start of the signal pulse, but also
the points at 7 = 1, 4, and 6. Standard double deformation is inca-
pable of considering this source, since its Fourier transform is not made
up entirely of poles.
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Figure 4.8 MDD: Modes 0 and 1, and origin pole contribution; VMD
on coated perfect conductor, source, Eq. (16).

5. Modified Double Deformation for Vertical Electric
Dipole over Coated Perfect Conductor

a. Single Deformation

The magnetic field on the surface of a coated perfect conductor
from a vertical electric dipole also on the surface a distance p away is

1 o0 . - k2
Hy = —S?Re{i /0 dko e~ (ko) /S g}k,,k—"Hfl)(kpp)[l+RTM]} (1)

where )
grv _ Bor el L ek ki @)
1+ R{)lemkl'd, ! e1k; + k1.

kzzﬂkg—k%, k12=1/61k8—k,2, (3)

The coating is of thickness d and dielectric constant ¢ .

The details of the double deformation technique for the VED are
very similar to the VMD case, so we will concentrate on the differences.
We first deform the k, integral in (1) to the standard steepest descent
path (SDP). Calling the height on the SDP ¢, we obtain

and
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Figure 5.1 k, pole loci, m =0, 1,2; VED on coated perfect conductor;
vertical line at Re(k,/ko) = 1 is steepest descent path.

1 0 . -
SDP = —Re / dko e~ 7T (ko)
87r2 0

00 k2 2 2iky  d\2

1+ R()le?‘k“d)(Rm + eQikl.d)

where k, = ko + iq and k, is evaluated on the top Riemann sheet.
The poles enclosed in the k, plane are zeros of the denominator of (1),

1 4+ Rgie?*1=4 = 0 (5)
We again use a modal approach to study these poles. We let
Roy = €* (6)

where ¢ is a complex number whose real part lies between 0 and 27 .
We substitute this into (5) and, by taking the logarithm of both sides,
arrive at the modal equation

& + 2k1.d = (2m + 1), m=0,1,2... )

where the different m’s distinguish the different modes.
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Some typical loci of poles (m = 0,1,2) are shown in Figure 5.1.
The solid lines refer to poles on the upper Riemann sheet; the dashed
curves to poles on the lower Riemann sheet. The behavior is similar to
that for the VMD over coated perfect conductor case, except with the
cutoff frequency being defined by

mm

kem = e —1d (8)
We also have the intersection points of the locus with the SDP at
ko = kvm and ko = kam . This gives us the same guided and leaky
wave poles; however, the locus for mode 0 is different. There is only
one pole for this mode, which starts at k, = (/€] ko on the bottom
sheet for large ko and moves toward k, = ko, as ko approaches zero.
Therefore, mode 0 has only guided waves.

The contribution to the total field from these k, poles is

o o]

Z 27((611— 1)

m=0

o kok.k2, HV (k,p)
R dk —tkoTI przivizi ] P
e{/km o€ 1 (ko) [elkg F ik dleik? — (€1 + 1)k2]

} (9)

for the guided poles, where k, is evaluated on the bottom Riemann
sheet, and

00
D
m___l?ﬂ'(fl - l)

o kokok2, HO (k,p)
_zko'rI pzlz 1 £
Re{ | dkoe™" I (ko) [flkg Fikdlerkd — (e + D& | [ 10

am

for the leaky poles, where k. is evaluated on the top Riemann sheet.
The total field is thus given by the sum of (4), (9), and (10).

b. Double Deformation

Using our standard damped sinusoidal source,

I(1) = IpT sinwpre™ %7 (11)
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with its Fourier transform

(ko) = 220 . - :
0= 79" | (ko + ico + wo)? (ko + iap — wo)?

(12)

we deform the ko integral in (4) upward to the positive imaginary
ko axis for 7 < p and downward to the negative imaginary ko axis
for 7 > p. The total for 7 < p is analytically zero; the details of
this are almost identical to the VMD case and are therefore omitted.
Deforming downward, then, our answer is in two parts: the double
steepest descent path contribution, and the residues of the enclosed
poles in the ko plane. The double steepest descent path contribution
vanishes in the same way as it did for the VMD over coated perfect
conductor. _

The poles enclosed are due to singularities of I(ko) and zeros of
(5) of (4). For this source, the source pole contribution is:

k2
—ikoT P 1y(1)
- R{/dqal [ kH (kop)

(1+ Ro1)?(1 + e%ki-d)2 (13)
(1+ Rore®*1:9)(Roy +€2Rid) || _

We now consider the contribution due to the zeros of (5). Using
the same modal technique, we can find loci of these poles; loci for
m =0, 1, and 2 are shown in Figure 5.2. The solid lines refer to
poles on the upper Riemann sheet; the dashed curves to poles on the
lower Riemann sheet. For all modes except m = 0, two sections of the
locus are enclosed by the deformation of the integration path to the
negative imaginary axis: the part from ko = kem towards ko = Kpm ,
which we call “kg finite”, and from kg = kem to ko — —ioo, which
we call “kg infinite”. For m = 0, since the pole locus in the k, plane
never crosses the SDP, there are no finite poles. It turns out that the
m = 0 locus in the ko plane lies along the negative imaginary axis;
this means that these poles are only half-enclosed by the deformation.
If we let n(q) be 1 if the poles are fully enclosed, and 1/2 if they are
half enclosed, the integrals are
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Figure 5.2 kg pole loci, m = 0,1,2; VED on coated perfect conductor.

>3 e =T) {/Emmw*wnm>
m=1 Gam

k2k3, k. H{" (k,p)

€1kok,q + k.d[(e1 — 1)ko — z'q][ellcg —(e1 4+ l)kg] } (14)

for the kg infinite poles, and

> € dom —tkoT 7
zg—ngjﬁm{ﬁdw "1 (ko)

K3kS ks HYD (Kop) a5)
e1kokoq + kod|(e1 — 1)ko — iq][elkg — (1 + l)k‘g]

for the ko finite poles, where gam and g are the values of ¢ where
the locus in the k, plane crosses the SDP. For m = 0, we define
qlz() == 0 .

The complete double deformation solution is thus made up of five
parts: the k, guided modes (9), the k, leaky modes (10), the ko
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infinite modes, (14), the ko finite modes (15), and the source pole
contribution (13).

¢. Modified Double Deformation

Applying the modification as we did in the halfspace case, with
one integration by parts necessary to satisfy Jordan’s Lemma,

j(k{)) — /dTI I(Tl)eiko-r’ _ —l—/dTI II(TI)eikoT/ (16)
0 ko Jo

We now split the Fourier transform of the current into two parts:

= i TR N ikoT! O 1 1y kot
T(ho) = - /Od'r e 4 [ ar I'(r)e (17)

i 4
= kL() [ilb(ko, T — p) + Tla(kO,T - P)] (18)

We substitute this into our expression for SDP (4) and deform the
ko integral of the half containing I1a upward, the half containing Tb
downward. However, since we have introduced a pole at the origin, we
must deform our integration path in the ko up to i6 before separating,
as we did before. It can be shown that the total for I), is identically
zero, which satisfies causality; the details are similar to the case of
VMD over coated perfect conductor. Therefore, we will concentrate on
the part containing Ip:

ko

o k2 1 2(] 4 e2iki:d)2
[t rP o e } (19)

SDP = —Re{ i / ko e*“%f-——j to(ko. 7 — 0)
8772 6

1+ R01€2“°“d)(1?o1 + e2ik1.d)

We will deform the ko integral downward, to ko = —ip. In so doing,
we obtain three contributions: the residue from the double steepest
descent path contribution, the pole at the origin, and the residues of
the enclosed poles in the ko plane. The double steepest descent path
contribution is similar to that for standard double deformation, except
that (i/ko)T1s(ko, ™ — p) replaces I(ko) . This change does not alter
the conclusion that the total contribution is zero.
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There is, however, a contribution from the pole at the origin. Since
we half enclose this pole clockwise, we can write this as follows:

_ __1_ 2 T _ —tkoT
Z = Sﬂ_Re{/odq [Iu,(ko,r p)e

k3 ) (1+ Roy)*(1 + e¥kisd)?
EHl (kpp) (1 n R0162ik1'd)(R01 + eQikl.d)] ko=0 (20)

Using the fact that I,,(0,7 — p) = I(T — p) , we can write this as

1 [ gcos’(gd)Ki(gp)
Z= wQI(T 2 /;dq cos?(gd) + sin?(qd)/€? (21)

Unfortunately, unlike the VMD case, this integral cannot be evaluated
in closed form.

The contributions from the poles of (5) in the ko plane are very
similar to the standard double deformation results, except that there
is no source pole. We obtain

°° € > T(ko, T = p) ik
——Rel i dgn(q)————e dd
mz=1 27!'(61 - 1) { q..,..q (q) ko
kgk%zsz{I)(bpp) (22)
elkok,,q + kzd[(ﬁl - 1)’60 b iq][elkg - (61 + l)kg]

for the ko infinite poles,

o qom 7
€1 . Ilb(kO, T p) —ikoT
2 :———Re do 2220 = F)
= 2m(a—1) {1 0 1 ko ¢

erkokoq + k-d[(e1 — 1)ko — iq][elkg —(a+ l)kg]

and for the kg finite poles. We also have the contributions for the k,
poles, which are now

oo PO
€1 : L(kos T = P) _iker
m2=:0 2n(e1 — 1)Re{l kiko ko ¢

kok: ki, H El)(kpp) (24)
€1k + ik dle1kd — (e1 + 1)k2]
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for the guided poles and
Koo Ilb —p) _i
—ikoT
Z 2o _1)Re{/dko ——————e

kokok3, H{ (kop) (25)
€1k(2) + ikzd[qk’g — (61 + l)kg]

for the leaky poles. The total modified double deformation solution is
therefore given by the sum of the k, guided modes (24), the k, leaky
modes (25), the ko infinite modes, (22), the ko finite modes (23), and
the origin pole contribution (21).

d. Results

Results are shown for the configuration with p =3, d =1, and
€; = 3.2. Two sources are used; the first is the damped sinusoid (11)
with Ip =1, wp = 1 and ap = 0.5. The second is the smoothed pulse,
discussed in Section 1. We have the same arrival times as in the VMD
case:

Wave Arrival Time
Direct (air) 3.000
Direct (dielectric) 5.367
First Lateral . 5.966
First Reflected 6.450
Second Lateral 8.932
Second Reflected 8.944
Third Lateral 11.900

First, we solve the damped sinusoid with the standard double defor-
mation technique. The total answer, with eleven modes, is shown in
Figure 5.3, where it is compared to the closed-form halfspace result;
the source pole and the first two modes are shown in Figure 5.4. As in
the VMD case, all the arrivals can be clearly distinguished in the final
result, but not in any of the separate components; they are features of
the solution as a whole.

Next, we solve the same case, but using the modified double de-
formation technique. The total result overlays the double deformation
result from Figure 5.3; the pole contribution and the first two modes are
in Figure 5.5. As can be seen, the agreement between the modified and
standard results is very good. Furthermore, in contrast to the standard
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Figure 5.3 Total double deformation and halfspace solution; VED on
coated perfect conductor, source, Eq. (12); circles show various ray ar-
rivals.

case, the components of the modified result have no discontinuities of
value or slope.

Finally, we use modified double deformation to solve the case with
a pulse source. Again, the total response (eleven modes, Figure 5.6)
agrees with the closed-form halfspace solution very well up until the
arrival of the first lateral wave. The origin pole and the first two modes
are shown in Figure 5.7. While the relative strength of the higher order
modes is larger than in the damped sinusoid case, due to the high-
frequency components of the pulse source, we still obtain a very good
approximation to the total response with only eleven modes; all the
ray arrivals can also be seen in this case.
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Figure 5.4 Modes 0 and 1, and source pole contribution; VED on coated
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Figure 5.5 MDD: Modes 0 and 1, and origin pole contribution; VED on

coated perfect conductor, source, Eq. (12).
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Figure 5.8 Modified double deformation result and halfspace solution;
VED on coated perfect conductor, source, Eq. (16); circles show various
ray arrivals.
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Figure 5.7 MDD: Modes 0 and 1, and origin pole contribution; VED on
coated perfect conductor, source, Eq. (18).
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6. Modified Double Deformation for Vertical Mag-
netic Dipole over Two-Layer Medium

a. Single Deformation

The electric field on the surface of a two-layer medium from a
vertical magnetic dipole also on the surface a distance p away is

o] ) _ k2
Ey(r) = 8—'jr°;Re{ /0 dko koe™*o" T (ko) /sg)kp e ()1 + R“’]}

(1)
where
2ik, . d
RTE — Ro1 + Rize Roy = k, — ki, _ kiz — k2.
1 + R01R12e2ik1'd’ ! kz + klz, 12 klz + k2(z2)

and

The middle layer is of thickness d and dielectric constant e ; the
bottom layer is of dielectric constant ¢z .

We first deform the k, integral in (1) to its steepest descent path
(SDP). This path goes from k, = ko +ico on the UU Riemann sheet,
down to k, = ko, and back up on the LU sheet; we will call this part of
the integration path SDPg . It then descends from k, = \/e2 ko + i00,
still on the LU sheet, to k, = \/e2ko and back up on the LL sheet;
we will call this part SDP 2. The convention for naming the Riemann
sheets is that the first letter tells the sheet for k, (U for Re {k,;} >0,L
for Re {k.} < 0), and the second letter is for ka, (U for Re {k2;} >0,
L for Re{ks.} < 0). Since layer 1 is bounded, there is no branch cut
for ki, and therefore no Riemann sheets; indeed, (1) is even in k..
If we call the height on SDPo ¢ and the height on SDP 2> r, then the
steepest descent path contribution becomes

w -~
SDP, = _8_'%12@{1' /0 dko koe ™0™ T(ko)

00 2 2
/0 dg [%Hf“mp)um”]} —[';—jH§"<kpp>[1+R”1] } (4)
LU

[0)0)
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where k, = ko + iq, and
SDP; = —L)Q-RB ’L/oc‘;k() koe_ikoTj(ko)
87!'2 0
k
/dr l 2 gD (k)1 + RTE)} [k"H(”( kop)[1 + RTE]] } (5)
LU z LL
where k, = \/€2 ko + ir . These can be written as
o N —ikoT
SDPO = _WRE{Z [) dko koe I(ko)

00 k2 (1 +RO )2(1+R e2ik1,d)2
dg L HV (k Y 2 : 6
/0 qkz i pp)(l + Ro1 R12€%%1:9)( Ry; + Ryge?iki=d) (©)

and
SDP, = 8’7" { / dko koe~*o7 T (ko)

Zo g0 (g (1 — R2))(1 — R3,)e2ik1=d
/dr i )(Rlez + e2ik1:d) (R, +Rl2e2zk1,d)} ()

where k, and k2, are both evaluated on the UU Riemann sheet. The
poles enclosed in deforming the k, integration path are zeros of the
denominator of (1),

1 + Ro1Rype? 14 = 0 (8)

Using our modal approach, we let

R()l = 6i¢ (9)
and
Rip = Ciw (10)

where ¢ and 1 are complex numbers whose real part lie between 0
and 27 . We thus obtain the modal equation

¢+ +2k,d=2m+3)r, m=01,2,... (11)
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Relkyfig)

Figure 6.1 k, pole loci, m = 0,1,2; VMD on two-layer medium; vertical
line at Re(k,/ko) =1 is steepest descent path.

where the different m’s distinguish the different modes.

Some typical loci of poles (m = 0,1,2) are shown in Figure 6.1.
The solid lines refer to poles on the UU Riemann sheet; the dashed
curves to poles on the LU Riemann sheet. For the relatively large value
of €2 = 80 that we consider, the loci are not very different from that
for the coated perfect conductor case, and the poles on the LL Riemann
sheet do not contribute for times considered and can be ignored. The
main difference is that the cutoff frequency, kcm , cannot be expressed
in closed form, and thus must be searched for numerically.

We have the same guided and leaky poles as we had previously:

1<ko> ko | _KokTHT" (ko)
E 2T 61—1) { dko o [1/;,,;1;1@,:(1 (12)

for the guided poles, where k, and kg, are evaluated on the LU Rie-
mann sheet, and

S o [ e Tk) ik [_koKEHL (k)
Z:l 271'(61—1) { kdko o [l/gz:‘].;kzzp—id (13)

m=
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for the leaky poles, where k., and kj, are evaluated on the UU Rie-
mann sheet. The total field is thus given by the sum of (6), (7), (12),
and (13).

b. Double Deformation

The double deformation method takes the single deformation re-
sult and deforms the ko integrals in the SDP terms, (6) and (7). We
use our standard damped sinusoidal source,

I(1) = IpT® sinwore ™7, (14)

which has the Fourier transform

1 1

I(ko) =1 - ,
(ko) = Io (ko + a0 —wo)® (ko + iap + wp)3

(15)

There are three ranges of 7 to consider. First, for 7 < p, we deform
the ko integrals in both SDPy and SDPs upward to the positive
imaginary ko axis. For the range p < 7 < \/e2 p, we deform SDP g
downward to the negative imaginary ko axis and SDP, upward. Fi-
nally, for 7 > /€3 p, we deform both integrals downward.

It can be easily shown that the total contribution for 7 < p is
identically zero, which satisfics causality. The cancelation of the pole
‘residues in the k, and ko planes is similar to the coated perfect con-
ductor case, but the double steepest descent path contributions are
more interesting, and are discussed in Appendix B. Also, we will not
consider times for which 7 > /e p, and so will concentrate on the
contribution for p < 7 < ,/ez p. For this case, we will deform the ko
integral in (6) downward, to ko = —ip, and the ko integral in (7)
upward, to ko = is. In so doing, we obtain the two double steepest
descent path contributions, and the residues of the enclosed poles in
the ko plane.

The double steepest descent path contributions are more difficult
than in the coated perfect conductor case, and we leave the details to
Appendix B. For DSDP g, we obtain

7o > 3
DP, = 2 ; —PT(—4
DSDPg g sRe z/o‘dppe I(—ip)

0o k2 (14 Roy)?(1+ R e2ik1.d)2
da - HW (k ) 12 | 16
/(\/a+l)p q 3 1 ( Pp)(l + R01R12€21k1,d)(R01 + R12€2'k1‘d) ( )
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Figure 6.2 kg pole loci, m = 0,1,2; VMD on two-layer medium.

and for DSDP 5, we obtain
DSDP; = ——R Re{ i / ‘ds se*" I (is)
8?2 0

o k; (1 — R}))(1 — R3,)e%hnd
p rr(1) 1 12
-+ , . 17
[ en_l)sdu kz Hl (kpp) (R01R12 + e21k1'd)(R()] + Rlzeztkl'd) ( )

In the deformation, we enclose two kinds of poles; the source pole,
due to the singularities of I(ko), and the poles that arise from zeroes
of the denominator (8). Only the source pole at ko = wo — iap is
enclosed, so we obtain:

molo > 3_2 -ucorﬁ
87 {/odqakg ke

) (1 + Rop)(1 + Rype¥1+2)2 (18)
P/ U F RorRige?™ %) (Rop + Rize?®1=d) |, _, oo

H{" (k,

Turning now to the roots of (8), we look for solutions with complex
ko and k, = ko+ig on both the UU and LU Riemann sheets, instead of
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solutions with real ko and complex k, as we did in the k, plane. We
can use the same modal technique as previously, and discover loci such
as the one shown in Figure 6.2. The solid lines refer to poles on the UU
Riemann sheet; the dashed curves to poles on the LU Riemann sheet.
For all modes except m = 0, two sections of the locus are enclosed
by the deformation of the integration path to the negative imaginary
axis: the part from ko = kon towards ko = Kkpm , which we will call
“ko finite”, and from k¢ = kqm to ko — —ioo, which we will call “kq
infinite”. For m = 0, since the locus in the k, plane never crosses the
SDP, the locus in the ko plane never crosses the kg -real axis, so there
is only a ko infinite locus. The integrals for these poles are

} (19)

Mo
47rRe{/dqRes

which, after calculating the residues of these poles, gives the following
expressions for the contributions:

hor s, K2
koe™*7 T (ko) 2 Hy" (kop)[1 + R
z

n )Re{/dqn(q)f(ko)e'*k°TH§l)(kpp)

27!'(61 -1
2K (g — 2iko) 2
ko [k3(e1 — 1)d — ik, (1 + ks /k2z)] + kodk?, (20)

which becomes

;EF(ZZOTHRQ{/ dgn(g)e"*71(ko)H{" (k,0)

qom
k2k3, (g — 2iko) o1
ko [kg(el —1)d — ik, (1 + k:z/kgz)] + kodk?, @)

for the ko infinite poles, and

M
m2=:1 2m(ey — l)Re{

“dn(g)e=* (ko) HY (k)

Jcm

kaki.(q — 2iko) (22)
ko [k3(€1 — 1)d — iko(1 + kz/koz)] + kodk2,
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for the ko finite poles, where ¢am, gsm 8nd gem are the values of ¢
where the locus in the k, plane crosses the SDP; for m =0, gao = qc0 -
The function n(g) = 1 when the pole in question is on the UU Riemann
sheet, and n(q) = —1 for LU.

The complete double deformation solution is thus made up of seven
parts: the k, guided modes (12), the k, leaky modes (13), the ko infi-
nite modes (21), the ko finite modes (22), the source pole contribution
(18), and the two double steepest descent paths, (16) and (17).

c. Modified Double Deformation

We apply the modified double deformation technique to this prob-
lem, just as we did in the coated perfect conductor case. We do two
integrations by parts:

= o0 - 1 [ N
I(ko) = /d‘r'l(r')e"‘"’ = ——2/ dr' I"(r")e'ko™ (23)
0 ks Jo
and split the Fourier transform of the current into two parts:
- 1 v - o0 —
I(ko) = 2 [/ dr' I"(t")e*™ + / dr’' I”(T')e’k‘”] (24)
0 LJO v

=~z [Tk, + Bl ) (25)

We substitute this into our expressions for SDP¢ (6) with y=71—p
and into SDP 3 (7) with v = 7 — (/€2 p. We then deform the ko in-
tegral of the parts containing Is upward, the parts containing I
downward. However, since we have introduced a pole at the origin, we
must deform our integration paths in the ko up to i6 before separat-
ing, as we did in the halfspace case. If we also split the integrals over
the poles in the k, plane into a part containing Is. and one containing
Is, it can be shown that the total for I5. is identically zero, which
satisfies causality. If we confine ourselves to times 7 < /ez p, we can
concentrate on the part of SDP containing Iop:

o [ iker Lan(ko, T = p)
SDpo = 8—7r-§-RB{2/i;dkoe ¢ ——Eg_——

(1 + Ro1)%(1 + Ryge%ki=d)? } (26)

o) k2
dg-2H®" (k | A
/0 1 z ! ( pp)(l + R01R12€21k“d)(R01 + R)qe?iki.d)
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We will deform the ko integral downward, to ko = —ip. In so doing,
we obtain three contributions: the double steepest descent path con-
tributions, the residue from the pole at the origin, and the residues of
the enclosed poles in the ko plane.

As is shown in Appendix B, DSDP ,,, , DSDP ;4 and DSDP »,, can
be combined into one integral:

DSDP = —E-Re 2/odoq /q/(\/c_z+l)dpe_m_ j2b(—ip, T —p)
8> —q/(Vea-1) p
2 2ik) ,d\2
(14 Ro1)%(1 4 Rype?ki:4) } (27

ks ()
‘k_z‘Hl (kop)

(1 + RoyRi2e%k1:4)( Ro; + Ryge2ikiad)
and, if we indent the contour above p = 0, this will take care of the
contribution from the pole at the origin as well.

The contributions from the poles of (8) in the ko plane are very
similar to the standard double deformation results, except that there
is no source pole. We obtain

R _ikor Tan(ko, T = p) 1
ikoT £126\N0, (1)

m=0
[ k2k3, (q — 2iko) ]}@&

ko [kE(er — 1)d — iko(1 + k;/ko,)] + kodk?

for the ko infinite poles, and

0o .
™ Pm _ikor T2b(ko, T~ p) (1)
E ———_27r(61 — 1)Re{l/o’dqe —kg H;"(kop)

m=1
k2k?,(q — 2iko) 2
by e = 1)d— ik (L4 k)] 7 hodie, | [ 2

for the ko finite poles.
We also have the contributions for the k, poles, which are now

i /MM%,PLWTM%WWW
277'(61 —1 ke 1/k; +1/ko, — id
(30)
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Figure 6.3 Total double deformation and halfspace solution; VMD on
two-layer medium, source, Eq. (14); circles show various ray arrivals.

for the guided poles and

S _m pf, / b ko, ™= 0) inor | kT Hy (ko)

= 2m(ey -1) Kam ks 1/kz + 1/ko, —id
@31)

for the leaky poles. The total modified double deformation solution is

therefore given by the sum of the k, guided modes (30), the k, leaky

modes (31), the ko infinite modes (28) the ko finite modes (29), and

the double steepest descent path contributions (27).

d. Results

Results are shown for the configuration with p = 3, d = 1,
€, = 3.2, and €3 = 80. Two sources are used; the first is the damped
sinusoid (14) with Ip =1, wo =1 and ap = 0.5. The second is the
smoothed pulse from Section 1.

First, we use the damped sinusoid source with standard double
deformation. The results (eleven modes), compared to the halfspace
case, are shown in Figure 6.3; the source pole contribution and the
first two modes are shown in Figure 6.4. One can see, with the large
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Figure 6.4 Modes 0 and 1, and source pole contribution; VMD on two-
layer medium, source, Eq. (14).

value of €2 used, that the electric field does not differ very much from
the coated perfect conductor result, given in Section 4. Indeed, since
the travel time for electromagnetic waves in medium 2 is so long, the
first few ray arrivals for this case are the same as the coated perfect
conductor times from Section 4, as shown below:

Wave Arrival Time
Direct (air) 3.000
Direct (dielectric) 5.367
First Lateral 5.966
First Reflected 6.450
Second Lateral 8.932
Second Reflected 8.944
Third Lateral 11.900

It turns out that the double steepest descent path contributions,
(16) and (17), while not zero, are very small for the values considered,
and thus may be safely ignored. It should also be pointed out that
these results are the first instance of the successful application of the
double deformation technique to the case of a vertical magnetic dipole
on the surface of a two-layer medium.
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Figure 6.5 MDD: Modes 0 and 1, and double SDP contribution; VMD
on two-layer medium, source, Eq. (14).
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Figure 6.6 Modified double deformation result and halfspace solution;
VMD on two-layer medium, source, Eq. (18); circles show various ray

arrivals.
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Figure 6.7 MDD: Modes 0 and 1, and double SDP contribution; VMD

on two-layer medium, source, Eq. (18).

Figure 8.8 k, pole loci, m = 0,1,2; VMD on lossy two-layer medium;
vertical line at Re(k,/ko) = 1 is steepest descent path.
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Figure 6.9 ko pole loci, m =0,1,2; VMD on lossy two-layer medium.
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Figure 6.10 Total double deformation and halfspace solution; VMD on
lossy two-layer medium, source, Eq. (14); circles show various ray ar-

rivals.
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Figure 6.11 Modes 0 and 1, and source pole contribution; VMD on lossy
two-layer medium, source, Eq. (14).

Next, we solve the same case using the modified double deforma-
tion technique. The results would overlay the double deformation so-
lution; the double steepest descent path contribution (27) and the first
two modes are shown in Figure 6.5. The agreement with the standard
result is again virtually perfect. The DSDP contribution is significant
in modified double deformation as opposed to the standard case be-
cause of the added pole singularity at the origin, near the integration
path.

Finally, we use the pulse source with modified double deformation.
The results (eleven modes), compared to the halfspace case, are shown
in Figure 6.6; the double steepest descent path contribution and the
first two modes are shown in Figure 6.7. Again, all the arrival times are
clear, even with the increased importance of the higher order modes
due to the high-frequency components of the pulse source.
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e. VMD over Lossy Two-Layer Medium

One of the advantages of the double deformation technique is its
ability to treat lossy or otherwise dispersive media, without any special
consideration being necessary. If we consider our standard configura-
tion, with the bounded layer now having a dielectric constant ¢; = 3.2
and a conductivity o = 1073 1/(Q-m), and thus a complex dielectric
constant €; = €; + iomo/ko, there are only two changes. The first is
in the pole loci, which shift slightly compared to the lossless case; the
new loci are shown in Figures 6.8 and 6.9. Secondly, because of the
frequency dependence of ¢, , the expressions for the kp poles change
slightly. For standard double deformation, if we let o1 = om0, we have

kokpk?,
— 1)ko +ioy

— 1)koigk, — i014%/2
[fodl(es = Do = i + i) - (Lot Cerd ]

(€2 — e2)koigk, — io1/2[q* — (e2 — 1)k2]] ™"
- kz[(ﬁl — 62)]60 + iO’l] ] } (32)

— 7o > —ikor ] (1)
2 o7 { dqn(q)e I(ko)H, (kpp)(el

dam

for the ko infinite poles, and
kok ki
— 1)k + i1

— y s 2
[ik"d[(“ — ko —iq +101/2] - (elkz[(le)lko_lil;’i)m f;ﬁ] =

- (€1 — €2)koigk, — i01/2lg” — (€2 — 1)kg] -l} (33)

Zﬂ‘lRe{ dgn(q)e *"T(ko) H" (k,p)
m (6 1

m=0 Gam

kz[(el —e2)ko + i0’1]

for the kg finite poles.

We examine the same cases as we did for the lossless configura-
tion. First, we use the damped sinusoid source with standard double
deformation. The results (eleven modes), compared to the halfspace
case and to the lossless case, are shown in Figure 6.10; the source
pole contribution and the first two modes are shown in Figure 6.11. In
Appendix C, the case for lossy halfspace is considered, and a closed-
form solution, similar to that developed for the lossless halfspace in
Section 2, is given. Next, we solve the same case using the modified
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Figure 6.12 MDD: Modes 0 and 1, and double SDP contribution; VMD
on lossy two-layer medium, source, Eq. (14).

double deformation technique. The results again overlay; the double
steepest descent path contribution and the first two modes are shown
in Figure 6.12. Next, we use the pulse source with modified double de-
formation. The results (eleven modes), compared to the halfspace case,
are shown in Figure 6.13; the double steepest descent path contribu-
tion and the first two modes are shown in Figure 6.14. In all of these
cases, the match with the halfspace solution is very good. Since the ray
arrivals are due to the high frequency components of the waveforms,
and since the lossy medium becomes lossless at high frequencies, we
expect the arrival times to be the same for both the lossless and lossy
configurations. Indeed, in all of the above results, the expected arrivals
can be seen.

Finally, as a demonstration of the versatility of the modified double
deformation technique, we consider two more cases, both with the lossy
medium and the pulse source. In the first, we let p = 9 while d
remains 1. The expected arrival times in this case are
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Direct (free space) 9.000

First Lateral 11.966
Second Lateral 14.933
Direct (medium 1) 16.100
First Reflected 16.492
Second Reflected 17.618
Third Lateral 17.899

The results (eleven modes), compared to the halfspace case, are
shown in Figure 6.15; the double steepest descent path contribution
and the first two modes are shown in Figure 6.16. As can be seen, the
results are quite good, although not as good as when p = 3. However,
the arrivals can be seen even more clearly for this case, since there are
fewer of them, and they tend to be spread more apart.

In the second case, we let d = 0.5 while p remains 3. The expected
arrival times in this case are

Direct (free space) 3.000
First Lateral 4.483
Direct (medium 1) 5.367
First Reflected 5.657
Second Lateral 5.966
Second Reflected 6.450
Third Lateral 7.450
Third Reflected 7.589
Fourth Lateral 8.932
Fourth Reflected 8.944
Fifth Lateral 10.416
Fifth Reflected 10.431
Sixth Lateral 11.900

The results (eleven modes), compared to the halfspace case, are
shown in Figure 6.17; the double steepest descent path contribution
and the first two modes are shown in Figure 6.18. As can be seen,
the match is very good, although there are too many ray arrlvals to
distinguish them all in the response.
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Figure 6.13 Modified double deformation result and halfspace solution;
VMD on lossy two-layer medium, source, Eq. (18); circles show various
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Figure 6.14 MDD: Modes 0 and 1, and double SDP contribution; VMD

on lossy two-layer medium, source, Eq. (16).
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Figure 6.15 Modified double deformation result and halfspace solution,
p =9, VMD on lossy two-layer medium, source, Eq. (18); circles show
various ray arrivals.
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Figure 6.16 MDD: Modes 0 and 1, and double SDP contribution, p=29;
VMD on lossy two-layer medium, source, Eq. (16).
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Figure 6.17 Modified double deformation result and halfspace solution,
d = 0.5; VMD on lossy two-layer medium, source, Eq. (18); circles show

various ray arrivals.
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Figure 6.18 MDD: Modes 0 and 1, and double SDP contribution, d = 0.5;
VMD on lossy two-layer medium, source, Eq. (18).
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7.  Modified Double Deformation for Vertical Electric
Dipole over Two-Layer Medium
a. Single Deformation

The magnetic field on the surface of a two-layer medium from a
vertical electric dipole also on the surface a distance p away is

Hy= —Re{ i dkoe-*kov(ko) o ”H(‘)(k,,p)[1+RTM] (1)
87 2

where

™ _ Ro1 + Rype?ikisd Roj = €1k, — ki,
1+ R01R1262ik1‘d ’ ! €1k, + kiz ’

(2)
_ €2k1, — €1Kk2;
62";1:: + 51k2z

The details of the double deformation technique for the VED are
very similar to the VMD case, so we will concentrate on the differences.
We first deform the k, integral in (1) to the standard steepest descent
path (SDP). Calling the height on SDP( ¢ and the height on SDP,
T, we obtain

and

SDP, = Lz {/d,’kge *oT T (ko)

o] 1+R01)2(1 +R1262ik1,d)2
0 Kb gy ( . | )
/0 q E, 1 (kpp)(l + Roy R12€%%1:9)(Ry; + Ryze2ikisd) (4)

where k, = ko + ig, and

SDP, = —S—;Re{ / dko €T ] (ko)
0

Bo (1) (1 R3))(1 — R},)e?ikrad
/Odr k, Hy”(k, )(R01R12 + e2k1:d)(Ry, + Ryge2ikisd) (5)
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Re(ky/ko)

Figure 7.1 k, pole loci, m = 0,1,2; VED on two-layer medium; vertical
line at Re(k,/ko) = 1 is steepest descent path.

where k, = /€3 ko+iq . In both expressions, k, and kg, are evaluated
on the UU Riemann sheet. The poles enclosed in the k, plane are zeros
of the denominator of (1),

1 + R{)]R]Qe?ikl'd =0 (6)
We again use a modal approach to study these poles. We let

Rop = €' (7)
and
Ry = eiw (8)

where ¢ and 1 are complex numbers whose real parts lie between 0
and 27 . We thus obtain the modal equation

o+ Y+ 2k.d=(2m+ ), m=0,1,2,... 9)

where the different m’s distinguish the different modes.
Some typical loci of poles (m = 0,1,2) are shown in Figure 7.1,
where, as before, solid lines show poles on the UU Riemann sheet,
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and dashed lines those on the LU Riemann sheet. The behavior is
similar to that for the VMD over two-layer medium case; we have the
standard intersection points of the locus with SDPo at ko = ke,
ko = kem and ko = kam . This gives us the same guided and leaky
wave poles; however, the loci for modes 0 and 1 are different. These
loci only intersect SDP¢ once, when ko = ke . The contribution to
the total field from these k, poles is

oo & 00
—ikoT T
mz;o 2m(er — I)Re{/kc‘,i,.ko e ko)

1

. k3k, k3—(ey+1)k2
Lk& +ikzdlerkd — (e1 + k2] + 2220 [e[::,/fg-((eel,ﬂ)l)?c]g]

for the guided poles, where k, is evaluated on the LU Riemann sheet,
and

i 1 Re k(;; e~ T (ko)
2m(e; — 1) k 0

m=2 am

1
2 3 _ 2
1kg + ikodlerh] — (e + 1)k3) + it labe itk

for the leaky poles, where k, is evaluated on the UU Riemann sheet.
The total field is thus given by the sum of (4), (5), (10), and (11).

b. Double Deformation

Using our standard damped sinusoidal source,
I(1) = Iyt sinwgre~" (12)

with its Fourier transform

ily 1 1 J

I(ko) = -
(k()) 2 (ko + iagp + WQ)2 (ko +iap — (4)0)2

(13)

we deform the ko integral in (4) upward to the positive imaginary ko
axis for 7 < p and downward to the negative imaginary ko axis for
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T > p; likewise, we deform the ko integral in (5) upward to the pos-
itive imaginary ko axis for 7 < /€2 p and downward to the negative
imaginary ko axis for 7 > (/ezp. The total for 7 < p is analyti-
cally zero; the details of this are almost identical to the VMD case
and are therefore omitted. As before, we will concentrate on the case
T < /€2 p. Deforming (4) downward and (5) upward, then, our answer
is in two parts: the double steepest descent path contributions, and the
residues of the enclosed poles in the ko plane.

The derivation of the double steepest descent path integrals is
almost identical to the VMD case and are omitted. For DSDPg, we
obtain

1 © ~
DSDPg = —WRe{i/odpe""I(—ip)

00 k? (1+Ro))%(1+R e2ik1xd)2
dg 2HM (k 1 12 A "
~/(\/6—2+1)p T% ( pp)(l + Ro1 Ripe2%1:4)( Rg) + Rjpe2ikixd) (14)

and for DSDP 5, we obtain
1 o ~
P, = . i
DSDP, 52 Re<{ i /0 ds e’ I(is)

/oo du ﬁH§l)(kpp) (1 - R%l)(l — R%2)62ik1,d } (15)
(

a-1s Kz (Ro1 Rz + €?%1:4)(Roy + Rjge2k12d)

The poles enclosed are due to singularities of I(ko) and zeros of
(6) of (4). For this source, the source pole contribution is: -

IO > a —ikoT kg
87rRe{ /0 U 5 [e k.

(1 (1+ Ro1)’(1 + Ryge®rr)” ]
HO (k - ' 10
1 ( Pp) (1 + R01R12C2zk1'd)(R01 + R12821k1'd) ko=wop—1iao ( )

We now consider the contribution due to the zeros of (6). Using the
same modal technique, we can find loci of these poles. These are shown,
for m = 0,1, and 2, in Figure 7.2. For all modes m > 2, two sections of
the locus are enclosed by the deformation of the integration path to the
negative imaginary axis: the part from ko = kem towards ko = Kom ,
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Figure 7.2 ky pole loci, m =0, 1,2; VED on two-layer medium.

which we call “kq finite”, and from kg = ko, to ko — —1i00, which
we call “ko infinite”. For m < 1, since the pole locus in the k, plane
never crosses SDP ¢, there are no finite poles. It turns out that part of
the m = 0 locus in the ko plane lies along the negative imaginary axis;
these poles are only half-enclosed by the deformation. The integrals for
the ko poles are therefore

= o
i 61 —iko‘l’" . 212 (1) )

9am

|:€1k0kpq + kzd[(el - 1)]60 - iq][elkg - (61 + l)kz]

(17)

+€162k0kpkzq [e1k3 — (1 + 1)’“;2; -
kaz  [er€2kE — (ea + €1)k2)]

for the ky infinite poles, and

(o o]
__61_ Born —ikoT T 212 1) )
mZ=2 2”(51‘1)Re{/ dgn(g)e 1(ko) - kgky k2 Hy ” (kop)

9em
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erkok,q + kzd[(e1 — 1)ko — ig)[e1kE — (€1 + 1)k]

+€1€2k0kpkzq leaks — (€1 + l)kgl ]—1} (18)

k2. [e1€62k2 — (€2 + €1)k2]

for the ko finite poles, where gam, gom , and gom are the values of ¢
where the locus in the k, plane crosses SDP o . The function n(g) has
magnitude 1 when the pole is fully enclosed, and magnitude 1 /2 when
the pole is only half enclosed. Furthermore, n(q) is positive when the
pole is on the UU Riemann sheet, and negative on the LU sheet.

The complete double deformation solution is thus made up of seven
parts: the k, guided modes (10), the k, leaky modes (11), the ko infi-
nite modes (17), the ko finite modes (18), the source pole contribution
(16), and the two double steepest descent paths (14) and (15).

c. Modified Double Deformation

Applying the modification as we did in the halfspace case, with
one integration by parts necessary to satisfy Jordan’s Lemma,

~ oc . ’ 1 00 . ’
I(ko) = /dr’l(r’)e"“" = i/dr’ I'(7)eke™ (19)
0 ko Jo
We now split the Fourier transform of the current into two parts:
T i ) (N SikoT! °°// N ikot’
I(ko) = — dr' I'(7")e™™ + [ dr' I'(1)e (20)
k() 0 5
i~ -
= - [Tio(ko, ) + Talko, )] (21)
0

We substitute this into our expression for SDPo (4) with y=7—p
and into SDP, (5) with v = 7 — \/é2 p. We then deform the ko in-
tegral of the parts containing Tia upward, the parts containing T
downward. However, since we have introduced a pole at the origin, we
must deform our integration paths in the ko up to i6 before separat-
ing, as we did in the coated perfect conductor case. If we also split the
integrals over the poles in the k, plane into a part containing 5a and
one containing I1p, the total for T1a is identically zero, which satisfies
causality; the proof is similar to the VMD over a two-layer medium
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case and is omitted. If we confine ourselves to times 7 < (/€2 p, we
can concentrate on the part of SDPo containing Iy . We will deform
the ko integral downward, to ko = —ip. In so doing, we obtain three
contributions: the residue from the double steepest descent path contri-
butions, the pole at the origin, and the residues of the enclosed poles in
the ko plane. As in the VMD case, we can combine the double steepest
descent path contributions with the origin pole to obtain:

ST e (i,
DSDP——Re{/ / —pr (=P, 7 — p)
ol P

k2 1 1+R 2ik;,d\2
% 5O (k) (1 + Ro1)*(1 + Rige ) } (22)

where the integration path in the p plane detours around the origin
pole.

The contributions from the poles of (6) in the ko plane are very
similar to the standard double deformation results, except that there
is no source pole. We obtain

> €1 [ Tip(ko, T — p) —ikoT
> g _l)Re{z/qm dgn(q) PR

m=1

k2K, k. HO (k,p)-

[leokpq + kzd|(e1 — 1)ko — ig)lerkg — (&1 + 1)k2)

(23)

-1
 Ereakokok,q e1k§ — (&1 + 1)K2]
ko, [e162k3 — (€2 + €1)k2)

for the ko infinite poles,

> B €] [P Tiy(ko, 7 — p) —ikoT
Z 2W(€l_1)Re{z A dgn(q) e

m=1

k2k? ko HY (kop)-

[leokpq + k.d[(eq — 1)ko — iq][elkg —(e1 + l)kg]
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| Gacakokokq le1kd — (1 + 1)k7) ] } (24)

k2. [6162/68 —(e2+ €1 kg]

and for the ko finite poles. We also have the contributions for the k,
poles, which are now

oo

€1 Lis(ko, T = ) ik
d —_ e 1 T
5 e [
kok,k2, H (k,p) 25)
€1k + ik dle1kZ — (e + 1)k2]
for the guided poles and and

kbm Ilb(ko T — ) —ikoT
Z 27r(el — 1)Re{/ e

kokok2, H (k,p) (26)
flkg + ik d[€1k2 — (&1 + l)k;%]

for the leaky poles. The total modified double deformation solution is
therefore given by the sum of the k, guided modes (25), the k, leaky
modes (26), the ko infinite modes (23) the ko finite modes (24), and
the double steepest descent path contributions (22).

d. Results

Results are shown for the configuration with p =3, d =1, and
€1 = 3.2. Two sources are used; the first is the damped sinusoid (12)
with Ip =1, wo =1 and ap = 0.5. The second is the smoothed pulse,
discussed in Section 1.

First, we solve the damped sinusoid with the standard double de-
formation technique. The total answer, with eleven modes, is shown in
Figure 7.3, where it is compared to the closed-form halfspace result; the
source pole contribution and the first two modes are in Figure 7.4. As
before, all the arrivals can be clearly distinguished in the final result.
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Figure 7.3 Total double deformation and halfspace solution; VED on
two-layer medium, source, Eq. (12); circles show various ray arrivals.
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Figure 7.4 Modes 0 and 1, and source pole contribution; VED on two-

layer medium, source, Eq. (12).
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Figure 7.5 MDD: Modes 0 and 1, and origin pole contribution; VED on

two-layer medium, source, Eq. (12).
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Figure 7.6 Modified double deformation result and halfspace solution;
VED on two-layer medium, source, Eq. (18); circles show various ray

arrivals.
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Figure 7.7 MDD: Modes 0 and 1, and origin pole contribution; VED on
two-layer medium, source, Eq. (18).

Next, we solve the same case, but using the modified double de-
formation technique. The total result overlays the double deformation
result; the double steepest descent path contribution and the first two
modes are in Figure 7.5. As usual, the agreement between the modified
and standard results is very good.

Finally, we use 2T deformation to solve the case with a pulse
source. Again, the total response (eleven modes, Figure 7.6) agrees
with the closed-form halfspace solution very well up until the arrival
of the first lateral wave. The double steepest descent path and the first
two modes are shown in Figure 7.7.
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Appendix A: Causality for VMD over Coated Perfect
Conductor.

In the double deformation case, the expression for the total electric
field for time T < p can be written as follows:

o0 00 ) B k2
> -@Re{i / dko koe ™" T(ko)Res | £ H) (k,p)[1 +RTE]]}
=0 4 kem kz
(A1)
for the guided poles (k. on bottom Riemann sheet),
o0 o kbm ] _ k2 (1)
ER&) i | dkokoe *TI(ko)Res -k—le (kpp){1 + RTE)
m=1 kam z
(A2)

for the leaky poles, (k. on top Riemann sheet),
o0 fore) ) B k2
ﬂf’—Re{ / dg Res [koe‘”wl(ko)—ﬁHf”(kpp)[l + RTEIJ } (A3)
for the ko infinite poles, (k, on bottom Riemann sheet),
had o gam - k2 n
> il / dg Res | koe™* °T1(k°)7c£H1 (kpp)[1 + RTE) (A4)
m=1 qom z

for the ko finite poles (k, on top Riemann sheet), and
o > <
DP = — . | dppe PTI(4
DS 82 Re< i /0 D pe (ip)

> k2 (1 + Ro1)?(1 — e2hi=d)2
-/0‘ dq k_zHl (k'pp) (1 _ R0162ik1'd)(R01 — e2ik1,d) (A5)

where k, = i(¢ + p), k. = +/¢*+2pq, and ki, =
v/¢* +2pg — (e1 — 1)p?. The change in sign in the ko pole integrals
from (19) is due to the deformation up instead of down. There is no
source pole, because any physical source must remain finite as 7/ — 0o,
and so cannot have any poles in the upper half ko plane.

We will show that each integral in (A1) cancels with the corre-
sponding one in (A3),each one in (A2)with one in (A4),and that
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the double SDP integral, (A5), vanishes identically. Since all of the
singularities are single poles, if we write

(1 + Ro1)(1 — e*ki=d)  f(ko, k)

1+ RTE — : =
+ 1~ Roje¥ind ko, k,)

(A6)

the residues are just given by taking the partial derivative of the de-
nominator. This gives:

o0 o0 NN
E%Re{i / dkoIcoe"’“"’I(ko)k—”Hf"(kpp)g_(gf% e) } (A7)
oo 4T kem z g\Ko, )

P

00 k2
—ﬂRe{z / dko koe"kwl(ko)k—szl)(ka)aLg((%%} (A8)
= ok,

oo 0 ikoT 7 ks
Z %Re{/odq koe—zkorl(ko)—ngl)(kpp)%} (49)
> ~ ok

ZZ—;Re{ fi?}"koe—*ofz(ko) ”H(l)(k )———f (’“0”“")} (A10)
m=1

dg(ko, k
(Ko, kp)

Now we change the ¢ integrals to ko integrals. For every value of q
along the paths of integration, we have a value of ko that is the pole
for that value of g. Let us call this value kop. For every value of ¢
along this path of integration, we have

g(ko, kp) =1 — Rge¥*1=4 = ¢ (A11)
This means that d '
Sl = Rore#nd) = (A12)
and thus
d g dko

—(1 - Roje®*1?) = ;9%(1 - Rme”"“d)% a5 (1 — Rore®ks)==

dq ko

=0 (A13)
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Since dk,/dgq = i we can solve (A13) for dg in terms of dko. We
obtain

0 (1 — Roje2ikisd)
dg = zm

dko
6_%(1 _ Rme2ik1,d)

(A14)

With this change of variable, it is clear that, since the integrands are the
same in (A7) and (A9)and since the two paths form a closed contour
enclosing no singularities, they cancel each other. We can also deform
the integrals in (A10)to those in (A8) merely by changing sign and
adding a contour at infinity whose contribution vanishes by Jordan’s
Lemma. So the only part of the field left is (A5).

Now, we need to consider various parts of the integrand of
(A5). First we notice that I(ip) and k, = v/q% + 2pq are purely real.
We have that k, = i(q + p) is positive imaginary, so

HO (g +0)p) = == K1((a + P)p) (A15)

is purely real. Only ki, = v/¢2 +2pq — (e1 — 1)p? will have a critical
point, at ¢ = (/€1 —1)p, and thus we have only two regions to consider.

Region 1: 0 < ¢ < (/€1 —1)p. Here, ki, is complex. This means
that Rp; is a complex number with a magnitude of unity, or that we
can write Ro; = €%V, where 9 is real. if we let e2**1:4 = X | where
X is also real, and we obtain the same result as in (21), which gives
that the contribution from this region to (AS5) is zero.

Region 2: Here, q¢ > (\/e; — 1)p. Now, both k, and k,, are real.
This means that Rg; is real, but that |e%*1:4| = 1. We obtain the
same result as in (22), and here also the contribution to (A5)is zero.
Thus, the total field for 7 < p is zero, which satisfies the causality
requirement.

The above argument also holds for the part of the modified
double deformation results that contains Ios, by just substituting
—(1/k&)I24(ko, T—p) for I(ko) . The change in the p integration range
from 0 to oo to 6§ to oo due to the detour around the pole at the
origin does not alter the result for the double steepest descent path.
Thus, causality is satisfied for modified double deformation, as well,
and in the stronger form we saw for the halfspace case.
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Appendix B: Double Steepest Descent Path Contribu-
tions for VMD over Two-Layer Medium

We have four separate double steepest descent paths to consider:
DSDP( when we deform the ko integral up, DSDP ¢ when we deform
the ko integral down, DSDP, when we deform the ko integral up,
and DSDP; when we deform the ko integral down. Let us examine
DSDPy, deformed up, first. After manipulation of (4) from Section 6,
we obtain

o o 7
DSDPg,, = WRE i/ds se’TI(is)
0

o 1.2 2 iky,d\2
1+R01) (1+R126 1z )
- g® ( ‘ .
/odq . (kpp)(l + Ro1 Ri2e%*%1:3)( Ry, + Ryge2tki:d) (B1)

where k, =i(g+s), k. = \/q? 4+ 2sq, ki, = \/q® +2sq — (1 — 1)s?,
and

ko = \/¢? + 25q — (e2 — 1)s2. First, we notice that I(is) and k, are
purely real, and that

H(ilg +5)0) = —=Kr((a + 9)0) (B2)

is also real. There will be two critical points on the ¢ integration
path: ¢ = (\/e; — 1)s, where ky, shifts from real to imaginary, and
q = (y/e&2—1)s, where ky, shifts from real to imaginary. We then have
three distinct regions in ¢ to examine.

Region 1: 0 < ¢ < (\/e1 — 1)s. We have that k., and kp, are
purely imaginary. This means that Rg; is a complex number with a
magnitude of unity, or that we can write Rg, = €*¥, where 1 is real.
Let Rjpe®*1:4 = X where X is also real, and we obtain:

(1 + R01)2(1 + Rl2e2ik1,d)2 B (1 + 621'1/;)2(1 + X)2
(1+ ROlRlzez)'ik“d)(ROl + R1262“°"d) B 1+ 62i¢X)(62i¢ + X)
(e — e ®)2(1 4 X)?2
T (e e X) (e + e~ W X)

(B3)

By inspection, we see that this expression is equal to its complex con-
jugate and is therefore real. Since k. is real, we can see by examining
(B1) that the contribution from this range is zero.
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Region 2: Here, (\/e1 — 1)s < q¢ < (y/€z2 — 1)s. Now, both
k. and k;, are real. This means that Ry, is real, but that both
Rj2 and e%**1:4 gre complex numbers with magnitude unity. Writing
Ryge?ikied — e2€ e write

(1 + Ro1)%(1 + Ryge?k1sd)2 _
(1 + Ro1 Ry2e%k1:4)(Roy + Ryze?ikixd)

(1 + Ro1)?(e¥ — ¢i¢)?
(Ro1€% — e~ %) (Rg1e~% — e¥€)
Again, we can see that this expression equals its complex conjugate
and is therefore real, and therefore the ¢ integration for this range is
Z€ro.

Region 3: Unfortunately, the contribution from this region does
not vanish. we are left with

o o plya-1)s 3
DSDPqg,, = mR;e i / ds /0 dq se®" I(is)
0

(B4)

k2 2 ik ,d\2
—-erl)(kp (1 + ROI) (1 + Rize ) } (B5)
z

p)(l + Ro1 Ri2e?*1:4)( Ry + Ryeik1xd)

Next, let us consider DSDP o, deformed down. We obtain

LI I b 7
DSDPy = WRJe i /0 dppe~P" I(—ip)

00 k2 (1 +R0 )2(1 +R eQikl.d)2
d _ﬂH(l) k 1 . 12 . B6
A T% ! ( pp)(l + Ro1 R1ze%*1:4)(Ry; + Ryge?ik1:d) (B6)

where k, = i(q—p), k: = V/¢®> — 2pq, k1. = /¢ — 2pq — (&1 — 1)p?,
and
ko = \/q% —2pq — (e2 — 1)p?. We have I(—ip) purely real, as before.
There will be three critical points on the ¢ integration path, ¢ = p,
g=2p, ¢=(1+/€)p, and ¢ =(1+ ,/ez)p, and thus five separate
regions to consider.

Region 1: 0 < g <p. Here, k, = —i(p—q), so

H ) (-i(p - q)p) = %Kx((p —q)p) — 2iLi((p — ¢)p). (B7)
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Also, k, = —i\/2pq — ¢2, ki, = —i\/(e1 — 1)p? + 2pq — ¢2, and
k2 = —i+/(e2 — 1)p? + 2pq — ¢ are negative imaginary. Thus, R,
Ri2, and e%*1:4 gre real. This leaves us with

DSDPg; = - / ngpe‘”’f (—ip) / pdq =0 1((p - q)p)
4m® | Jo o V2pg—¢?

(14 Ro1)2(1 + RypeZkisd)? (58)
(14 Ro1Ri2e%*%1:4)(Ro + Ryze2k:1-4)

Region 2: p < ¢ < 2p. Here, k, =i(¢—p), so
(1) __2
Hy " (i(g - p)p) = ——Ki((g - p)p). (B9)
However, k., ki, and kg, all remain negative imaginary. This gives

To L *  (g-p)?
DSDPo = 1 /0 dppe~"" (—ip) / dg =LK (1))
i =

(14 Ro1)2(1 + Rype¥kr=d)? (B10)
(1 + Ro1R12e%,1:d)(Ro) + Rype%k1+d)

If we make the substitution ¢ = 2p — u, we can write (B10) as

DSDPoz =~ 250 [dppeT(-ip) [[au 2= g, (p —y
4m3 | Jo 0 /2pu-—u?

(1 + Ro1)?(1 + Rype¥ki=d)2 (B11)
(1 + Ro1R12e%k1:d)(Rg) + Rjge?ikisd)

where, in terms of wu, k, = —i/2uu-—u? k, =
—iy/(e1 — 1)p? + 2pu — u?, and kg, = —iy/(e2 — 1)p? + 2pu — u2. It
is clear, by comparison of (B11)with (B8), that the contributions
from regions 1 and 2 exactly cancel each other.

Region 3: 2p < ¢ < (14 ./e1)p. Here, k, is positive imaginary, as
before, so H fl) is purely real. The change is that k, is real, while ki,
and k2, remain complex. As for DSDP 4, , region 1, this means that
the contribution from this range is zero.
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Region 4: Here, (1 + /e1)p < ¢ < (1 + \/e2)p. Now, both k,
and k;, are real. As for DSDP,, region 2, this means that the ¢
integration from this range is also zero.

Region 5: The contribution from this region does not vanish. In-
terchanging the p and ¢ integrations, we are left with

o 00 q/(Vea+1) .
DSDPo4 = 5 Re /dqi/ dppe P"I(—ip)
8 0 0

k2 (1+ Ro)*(1 + Rypehi-d)2
A ) 1 12
kz H (ko) (1 + RoiR1ze*#1:9)(Roy + Rype?k12d) .

We turn now to DSDP 5. First, deforming upward, we obtain

Mo > <
DSDP», = _-S-FRe i/dsse"l(is)
0

© k2 ) (1 — RE;)(1 — Ry)eki-e
/odr EHI (kop) (Ro1Ri2 + e%k1:d)(Ro; + Ryge?kixd) -

where k, = i(r + /e&2s), k. = \/(e2 — 1)s2 + 2 /ears + 12,

ki = \/(e2—€1)s? + 2 fezrs + 2, and k. = VT2 +2,/ez7s. Since
k, is imaginary, but all the others are real over the entire r integration
range, we have only one region. If we make the transformation r =
u — (/€2 — 1)s, we obtain

00 R oo k2
DSDP,, = ——7—’0—2Re i/dsse”l(is)/ du —pHil)(kpp)
8m 0 (Va-Ds Kz

(1 = R%,)(1 — R2,)e%kid } (B14)

(Ro1 Ry2 + e2k1:8)(Rg; + Rjqe?ikr=d)

where k, = i(u+s), k; = Vu? + 2su, ki = \/u? + 2su — (; — 1)s2,
and

ko, = \/u? + 2su — (€2 — 1)s? . Comparing this with (BS5), we see that
we can combine these two terms:

o > 3 % k?, (1)
P, = — ] STT(4 P
DSD 3 sRe 1/0dsse (is) : 62_l)salu szl (kop)
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[ 1+ R01)2(1 + R12€2ik“‘d)2
(1 + ROlRlzezikl'd)(ROI + Rl262ik1,d)

(1 — R3))(1 — R},)e%kid ]
~ (RoiRuz + e¥*ud)(Rgy + Rjpe2ikisd) (B15)

Since k., k1, and k2, are all real, we can write this as follows:

00 - 00 k2
DSDP,, = —n-OERe i/ds se*TI(is) du2HY (k,p)
8 0 va-1s k:
(1 + Ron)[(e**1+2 + e=2*1:4)(1 + Ry1) Rig + 2(1 + Roy R%,))] (B16)
(e—-ikl,d + RO]R]Qeikl‘d)(eikl'd + IZOIRIQe_ikl‘d)

By inspection, we see that the quantity inside {} is equal to the nega-
tive of its complex conjugate, and this term is identically zero. In other

words,
DSDPy, = —DSDP,, (B17)

thus, for deformation of both steepest descent paths up, for 7 < p, we
obtain no contribution, which is required by the causality condition.
Finally, we turn to DSDP ; deformed downward. We obtain

DSDPyy; = —%Re{i/dppe""f(—ip)
0

oo k2 (1 - R%)(1 - R? )e2ik1zd
dr 2H" (k 0L 12 : B18
/0 " T e s R ¥ Bk} Ry + Rige®eindy [ (B18)

where k, = i(r — \/&2p), k, = \/(ea — 1)p? — 2,/earp+ 12,
k. = /(€2 —e1)p®> — 2\ /earp+ 72, and ko, = /72 — 2,/e2rp. In this
case, we have six critical points, r = (\/&2 — \/e1)p, r = (vez — )p,
r=\ep, r=(/&+1)p, r = (Ve + /e1)p, and r=2,/&2p, and
thus seven regions to consider.

Region 1: 0 <r < (\/e2 — \/e1)p. Here, k, is negative imaginary,
80 H§l) is complex. Also, k. is imaginary, while k;, and ks, are real.
This means that Ro; and e***'+¢ are complex with magnitude unity,
while Rj2 is real. Thus,

(1 - R}))(1 — R},)e%ksd
(Ro1Ry2 + e2*1:4)(Ro; + Rjge#1:d)

(B19)
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is purely imaginary. We can therefore reduce the r integral in this
region to

o oo . ] (\/5_2—\/5_1)17
DSDPy4; = ~an? /dppe L4 I(—zp)/ dr
0

0

K (1—R3)(1— R})ethind
Li((ye2p - r)p)—z(RmRm + e2ik1.d)(R01 + Rme%kud) (B20)

Region 2: (y/€2 — €1)p < r < (/€2 — 1)p. The difference here
is that k;, is imaginary rather than real. This means that Ro; and
e2k1:d gre real, while R), is complex with magnitude unity. However,

(1- R(2)1)(1 _ 3%2)82*1.4
(R01R12 + emkl‘d)(ROl + R12€2ikl,d)

(B21)

is still purely imaginary. We can therefore reduce the r integral in this
region to

o © o (Vea-1)p
DSDPas = —751 [dppeT(=in) [~ dr (v —r)p)
72| Jo (Va~-VEP

Ky (1= R3)(1 — Rp)e*h-? } (522)

k. (Ro1 R12 + €%*1:9)(Ro; + Rige?ikr=d)

Region 3: (/e —1)p < r < \/e2p. The difference here is that ko,
is imaginary rather than real. This means that Ro;, Rjz and e%kisd
are all real, and so neither the real part nor the imaginary part of the
integrand is zero. We obtain

o > F vear
DSDPng = —WRG i/dppe_p‘rl(_ip) (a-1) dr
0 €2—1)p

ky

e [% K1((v/ezp — r)p)) — 2i11((V/ez2p — r)p)]

(1 — R3,)(1 — R,)e?k-d (B23)
(Ro1R12 + €?*1:9)(Ro) + Rypek12d)
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Region 4: (/e2p < r < (y/e2+1)p. The only difference here is that
H f D is real rather than complex, so we obtain

Mo B Bt < veip
DSDP244 = —==Re z/dppe"’"l(—zp)/ dr
8 0 (Va-1p

k2
-2k - o] 2

(1 — R3,)(1 — R},)e¥kisd
(Ro1R12 + €%k1:d)(Ry; + Rype%k1:d) (B24)

If we make the substitution r = /e2p + u here and r = \/e2p —
u in (B23),we see that, since k2 = —u?, k, = Ju?—p?, ki, =

vu? —e1p?, and kg, = y/u? — eap? in each, the terms containing K

differ only by a sign, and therefore cancel each other.
Region 5: (/€2 + 1)p < r < (\/e2 + /&1)p. The only difference
between this region and region 2 is that H fl) is real rather than com-

plex. Since it is only the imaginary part of H fl) that contributes in
region 2, the contribution from region 5 is zero.

Region 6: (\/e2+,/€1)p < r < 2,/€; p. The only difference between
this region and region 1 is that Hfl) is real rather than complex;

therefore, this region gives zero as well.
Thus, the total contribution from regions 1 through 6 is

m ) (% 7
DSDPagy-6 = ~ 2 /Odppe""l(—ip)

NZY k2 1— 1 — R2 e2ik1s
dr i{ver- r)p) p k. (Ro 1R(12 +I:§’lk)’('d)(R01 -)*— R1262’k“d)} (B29)

Region 7: 2,/e2p < r. Here, k, is real. We have no cancellations,
so we obtain

DSDPyy47 = —%Rﬁ{i/dppe_’”f(—ip)

[ ag[-taa-nm)

(1— R%])(l - R%2)62“¢1.d
(Ro1R12 + e2k1:d) (R + Rjpe?ikid) (B26)
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The total result for DSDP 2 when we deform the ko integral downward
is given by (B25) and (B26).

All of the above results hold for modified double deformation
as well, with —(1/ k2)12,, replacing 1 in the deformations up, and
—(1/k3) Iz, teplacing I in the deformations down. However, there is
one simplification we can make to the results for the time span p <
T < /€2 p. In this case, Top(ko, T — V€2 p) =0, and therefore DSDP o4
doesn’t contribute. This fact also implies that Iog(ko, T — Ve p) =
Taa(ko, T — p) + Inp(ko, T — p) . If we make this substitution in (B14),
we can split it into parts. The part containing Iza(ko, T — p) will can-
cel with DSDP 1, by (B17); the part containing Iny(ko,7 —p) can be
converted into

o pa-ls  Fo(ie
DSDP,, = _ﬂq_Re i | ds dq &S I2b(zs) T p)
82 0 0 s

(14 Ro1)%(1 4 Rype?¥s4)?
kpp)(1 + Ro1R12€2%1:8)(Ro; + Rypeik1:d) (B27)

k2
e H

By changing the variable of integration from s to —p, exchanging the
order of the p and ¢ integrations, and combining with the modified
form of (B12), we obtain

q/<¢a+1> T (—im T —
DSDP———Re{/ / —pr I( =i, 7 — )
-9/(Vea— 1) p

(1 +R01) (1 + Rl2e2ik1.d)2
)(1 + Ro1 R12¢%k1:4)(Ro) + Ryge?ikrsd) (B28)

k?
'ﬂHfl)(kpp
Z

Of course, the integration contour in the p plane will have to be in-
dented, as usual, to avoid the pole at the origin.
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Appendix C: Modified Double Deformation for VMD
over Lossy Halfspace

The original expression for the electric field from a vertical mag-
netic dipole (VMD) on an infinite halfspace with dielectric constant ¢,
and conductivity o is:

) ] B k2
Ey(r) = %Re{ /0 dko koe™ " T (ko) /S dky 22 H{D (kpp) [1+ RT7] }

(C1)
where

k. —k
TE _ Mz 1z
R - kz + klz (02)

ky= /K2 — k2, ki =1/k2 — k2 (C3)

Here, we let €¢; = €1 + i01/ko, where o1 = onp.
Deforming to the steepest descent path in the k, plane, which

loops around the branch points at k, = ko and k, = \/ko(e1ko + i01) .
Our expression can thus be divided into two parts,

and

E4 = SDPgy + SDP, (C4)
where
_ Mo [ IY(’CO) —ikoT /°° 2 (1)
3PP = 27?2Re{z/odk0 (1 — ko +io1 oqu'OkZHl (ker)
(C5)

with k, = ko +iq, and

_ Mo Y j(kO) —~ikoT
SDPl = 27T2Re {Z/Odko (61 — l)ko +’i0’16

{o o}
: / qugkqu”wpp)} (Ce)
0

with k, = /ko(erko + i01) + iq.

We then modify the current source, as usual:

~ o0 . ’ 1 © : 4
ko) = [ dr' 166" =~ [ar 1@y (on
0 0J0
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to obtain
T 1 T"? 1"y I\ ikoT’ b 1ty I kot
I(ko) = 2 dr' 1"()e + [ dr' I"(T)e (C8)
0 T—p
1 r-~ -
=-0 [Izb(ko, T — p) + Ia(ko, 7 — p)] (C9)
0

We substitute this into our expression for SDP g, making the standard
quarter-circle deformation of the contours near the origin of the kg
plane, and deform the ko integral of the half containing Ip, upward,
the half containing I, downward. It is easy to show that the part
containing I, is identically zero; the demonstration is very similar to
that for a VMD over lossless halfspace. What remains is to evaluate
the part containing I, . We have

L T Y RSl b Loy(ko, T — p)
SDPy = Re{ [ia [t pritlnr =)

.e-f%fk,%kznf”wpp)} (C10)

with k, = ko + ig. We wish to deform the ky integral to the nega-
tive imaginary axis. This will leave three parts: the residue due to the
double pole at the origin, the residue due to the pole at kg = —ipt,
where p; = 01/(e1 — 1), and the integral along the negative imaginary
ko axis. The integral along the axis vanishes in the same way as it
did for the lossless case. For the double pole at the origin, we obtain
—m% times the residue, since we are detouring halfway around the pole
clockwise:

Zo=-3f:R’3{/odanm[e BT kzk’Hfl)(k””’} }
ko=0

(e1 — 1)ko + iy

(C11)
Let o
9(ko) = e™*" Iy (ko, T — p) (C12)
and \ W
f(ko,q) = 2= (kof) (C13)

(e1 — 1)ko + oy
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where k, = ko +1q . Then we can express the Zp integral very simply
as

SDP, = —%Re{g«» Jdaroa+g0 [ quf(o,q)}. (c14)

We have, from Section 2, that

9(0) = I'(t — p), (C15)
and
g'(0) = —i[pIl'(t — p) + I(T — p)], (C16)

We must also keep in mind that k, = iq and k, = q when kg =0
Now,

. 3

£(0,0) = —fr’quKmqm, (Cc17)
SO

/dqf 0,q) = ——- (C18)
Now,

f(0,q9) = il{ %po1Ko(gp) + [(e1 — 1)g° —201]K1(qp)}

and

/dqf 3(61 )
Thus,

Zo = o {O%I(T —p) - 3(e _012" po1) I'(T _p)}. (C19)

1

Now, we turn our attention to the loss pole. We have

_ * Ioo(=1PL,T = 0) _pirr2y (1)
o= 27m(ey — l)R'e{/odq p? e PTkyk, Hy (kop)
(C20)
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This cannot be expressed in closed form, but we can simplify it some-
what:

[o— ™ Ioy(—ipi, T — p)e™P"
m(e1 — 1) p;

Pt
{ dq (o — q)*Vq(2p. — ) i ((p1 — q)p)
0

2m

dq(q p)*Va(g — 2p) K1((g — pz)p} (C21)

Similarly, for SDP;,

—-1- \/“001
S Y SO SR
(C22)
and
Li—__ Iy(—ip, T — \Ja1p)e™™"
m(er — 1) r

{ rcliq (r — \/ 2r— @)L ((ry ~
+ % /;doq (g—7)*Valg —2r)K1((qg — n)p)} (C23)

where r, = /€1 pi -
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