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2.1 Background and Summary

In the recent past, many new computer architectures have been
proposed as being cost-effective for simulating key physical phenom-
ena and engineering problems on indefinitely expanding scales. Usu-
ally, these architectures concurrently apply large numbers (greater than
100) of either off-the-shelf or custom microprocessors and associated
memory units, providing the necessary processor-to-processor commu-
nication. Special programming languages or compilers may be needed
to efficiently utilize the moderate to massive processor concurrency
implied.

At Cray Research, the most recent series of supercomputers is
based upon the Cray Y-MP/8 architecture running the UNICOS op-
erating system. The general design philosophy behind the Y-MP is to
deliver balanced supercomputer performance by combining a set of fast
vector functional units, a very high-speed central memory bandwidth,
an extremely efficient I/O subsystem, and software that allows use of
these resources from high-level languages such as standard FORTRAN.
Specifically, the Y-MP/8 has:

- Up to eight processors clocked at 6 nsec, operating concur-
rently if needed under the autotasking compiler;

- A common central memory of up to 128-million words (128
Mwords), with a memory bandwidth of 4 billion bytes per
second (4 Gbytes/sec) per CPU;

- An optional solid-state device (SSD) providing up to 512
Mwords of secondary memory storage, achieving peak trans-
fer rates to main memory of 2.5 Gbytes/sec.

Standard FORTRAN code can be ported to the Y-MP usually
within hours or a few days, thereby minimizing program development
time.

Given the availability of alternative computer architectures, it is
reasonable for workers engaged in supercomputer simulations at the
cutting edge of science and technology to have the following questions
concerning Cray-based algorithms regarding possibilities for expanding
simulation sizes well beyond current levels:

“Can we efficiently exploit the multiprocessing potential
of the Y-MP/8 architecture....that is, will the concurrent use of
eight Y-MP processors provide simulation speedups of almost
8:17”
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“Can we go out of core on the Y-MP/8 for the largest
problems, especially onto magnetic disk(s), without suffering
from being I/O bound (running time .dominated by slow reads
or writes to disk)?”

Cray Research has been involved in addressing these problems in a
number of contexts. This paper reports recent progress in this area in
an important engineering application, computational electromagnetics
(CEM). Since 1986, Cray Research has been involved in porting and
optimizing CEM codes for its Cray-2, X-MP, and Y-MP computer se-
ries at the request of major U.S. aerospace firms. Of particular interest
here is the potential for using CEM codes to model the largest possi-
ble three-dimensional (3-D) targets for electromagnetic wave scattering
and radar cross-section (RCS). As described in the next three sections,
Cray has been working with three principal algorithms of current in-
terest in CEM:

a. Method of Moments

The frequency-domain method of moments (MM) has been the
main tool in formulating detailed models of EM wave radiation, scatter-
ing and RCS. In this area, two important groups of predictive codes are
widely used for RCS analysis of arbitrary shaped 3-D conducting struc-
tures: (1) Rao-Wilton-Glisson triangular surface patching (1]; and (2)
Newman quadrilateral surface patching [2]. For either group of codes,
Cray Research analysts determined that the primary computational
problem involves the solution of ultra-large, dense, complex-valued lin-
ear systems arising from the MM procedure. Target electrical sizes are
such that MM linear systems can greatly exceed 10,000 (10K) equa-
tions, resulting in matrices having storage requirements substantially
exceeding the available central memory or solid-state device (SSD).
Further, because it is desired to obtain the monostatic RCS at a large
number of illumination angles (right-hand sides), the number of right-
hand sides can be in the thousands, approximating the order, N, of
the MM matrix.

An initial strategy evolved to develop a complex-valued lower-
upper matrix decomposition program that utilizes an efficient out-of-
core scheme and is adaptable to multiple CPU usage. The result was
the program, CLUD—Complex Lower-Upper Decomposition, with ver-
sions developed for the Cray-2, X-MP, and Y-MP. Subsequently, Cray
analysts developed an out-of-core solver for the N right-hand sides
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problem, and then a parallel-processing version of the N right-hand-
sides code. This work rapidly gained popularity among MM users, and
Cray scientists have provided assistance to members of the CEM com-
munity in adapting these new tools to many different MM codes.

In 1989, J. Brooks of Cray Research took this work to its present
state by developing a highly efficient out-of-core LU decomposition
code for dense complex-valued matrices. His work, based on BLAS-
3 algorithms (Basic Linear Algebra Subroutines), is summarized in
Section 2.2 of this chapter. MM matrix sizes up to 40K x40K have been
benchmarked. Concurrently using the eight processors available on the
Cray Y-MP/8, average computation rates exceeding 2 billion floating
point operations per second (2 Gflops) are achieved using 60 million
words (60 Mwords) of central memory. In one benchmark example,
a total program running time (wall clock time) of only 1.99 hours is
required to process a 20K x 20K matrix. Brooks has also developed
BLAS-3 based out-of-core solvers for symmetric matrices. These should
have interesting applications to MM modeling of body-of-revolution
types of objects. However, they are not covered in this chapter.

b. Iterative Spectral Domain Methods

As an alternative to the full-matrix MM, a variety of iterative
spectral domain approaches for CEM has been developed for modeling
EM wave scattering and RCS. Here, the fast Fourier transform (FFT)
is widely used. In 1989, K. Ghosh of Cray Research developed parallel,
out-of-core formulations of the Temperton FFT algorithm for 1-D, 2-
D, and 3-D. The 1-D work is the focus of Section 2.3 of this chapter,
but selected 2-D and 3-D benchmark results are also provided. On
the Cray Y-MP/8, these codes achieved sustained computation rates
as high as 2.3 Gflops. In one benchmark example, a wall clock time of
only 18.4 sec is required to perform an FFT of size 227 points (134 M).
Ghosh’s codes are currently being applied to optimize spectral domain
formulations for modeling the RCS of large 3-D targets.

c. Space-Grid Time-Domain Solvers

In the past 4 years, non-matrix grid-based time-domain CEM al-
gorithms have been the subject of increasing interest. These algorithms
promise to avoid many of the problems of high-dimensional computa-
tional burdens, error accumulation, and slow convergence inherent in
frequency-domain MM and iterative CEM techniques. They are becom-



2.2 Large Complex LU Decomposition for the Method of Moments 27

ing increasingly useful for modeling the RCS of structures of complex
shape and material composition, and large electrical size (spanning
more than 10 wavelengths in three dimensions).

Since 1990, Cray Research has concentrated on the optimization
of two in-core, grid-based, 3-D time-domain EM codes: finite-difference
time-domain (FD-TD) by Taflove [3]; and finite-volume time-domain
(FV-TD) by Shankar [4]. The FD-TD work is summarized in Sec-
tion 2.4 of this chapter. On the Y-MP/8, both FD-TD and FV-TD
codes achieved sustained computation rates exceeding 1.6 Gflops. In
one benchmark example for FD-TD, a wall clock time of only 3 minutes
40 seconds is required to solve for 23-million vector EM field compo-
nents. This represents a speed-up factor of 7.97:1 relative to one Y-MP
processor (maximum possible speed-up = 8:1).

We now proceed with the discussion of the three Cray-based CEM
algorithms. The reader should note that all of the multi-tasked code
performances and out-of-core performance rates are given implicitly for
unloaded or lightly loaded machines. This, of course, is the maximum
performance. Workers not having access to unloaded or lightly loaded
machines may experience reduced performance, even if using the same
software.

2.2 Large Complex LU Decomposition for the Method
of Moments

This section discusses a new algorithm and code for performing
out-of-core LU decompositions for large, dense, complex-valued ma-
trices of the type resulting from MM modeling of radar cross-section.
Because the method is based on BLAS-3 kernels, it runs at near peak
performance on all Cray Research computers. In addition, the method
employs asynchronous input /output (I/O) and requires a reduced num-
ber of total operations. The operation count can be further reduced by
making use of larger memory sizes.

a. The Method

The Problem with CLUD. An out-of-core LU decomposition solver
for complex matrices (CLUD) has been available in the Cray Research
BENCHLIB for some time. Although CLUD works well, it has two
drawbacks that needed to be addressed for very large problems.



28 2. Cray-Based Algorithms for Computational Electromagnetics

I. The input /output (I/O) for CLUD is either synchronous
to disks, or synchronously staged from disk to the Cray solid-
state device (SSD). If the matrix is scaled to fit entirely in
SSD, this is not troublesome. In fact, CLUD runs at near-peak
performance on Cray X-MP and Y-MP machines. However,
a 20K x 20K MM matrix would require an 800-Mword SSD,
which is not currently available. In CLUD, problems of this size
require synchronous I/O between disks and SSD. That is, large
“superslabs” of the matrix are moved synchronously between
disk and SSD, and smaller “slabs” are transferred between
the SSD and memory. (A slab is a matrix block consisting of a
large number of adjacent columns of the matrix.) This method
reduces I/O wait time considerably compared to small slabs to
disk only, but the synchronous I/O from disk to SSD reduces
overall performance for very large problems. The total amount
of synchronous 1/0 to disk in CLUD is approximately

nslabs® x slabsize /2

where nslabs is the total number of slabs (or superslabs if using
an SSD) and slabsize is the size of a slab (or superslab).

II. The CLUD algorithm is based on a SAXPY type kernel
which works on individual columns. This kernel runs at peak
performance on the Cray X-MP and Y-MP, but not on the
Cray-2 system because of a high ratio of memory operations
to computation.

New Approach. Because the Cray math software group had opti-
mized the BLAS-3 (Basic Linear Algebra Subroutines) to run at near-
peak performance on all Cray machines, an algorithm was used that
was based on these kernels. A block-oriented method was adapted from
LAPACK* to run out-of core. The original routine, CGETRF (LA-
PACK’s standard in-core complex LU solver), uses two BLAS-3 kernels,

* LAPACK is a public domain, transportable linear algebra library
in FORTRAN 77 designed to replace EISPACK and LINPACK li-
braries. It was jointly developed by Argonne National Laboratory, the
Courant Institute of Mathematical Sciences, and the Numerical Algo-
rithms Group, Ltd. It is based on BLAS-2 and BLAS-3 algorithms and
solves dense linear algebra problems efficiently on high-performance
computers.
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CGEMM (complex matrix multiply) and CTRSM (complex triangular
backsolve). Both of these kernels run at near-peak performance on all
Cray machines. :

To adapt CGETRF to run out of core, the matrix is divided into
slabs. The matrix is decomposed from left to right, one slab at a time.
Computation works on pairs of slabs. In order to compute a new leading
slab, all preceding slabs need to be brought into memory, one at a
time, for computation. This is an I/O pattern similar to that used
in the existing CLUD code. However, three slab-sized memory buffers
are used in the new code to allow for asynchronous I/O. The partial-
pivoting scheme used in CGETRF is preserved in the new out-of-core
version, which is designated CGETRFO. Slabs are updated according
to an index vector. CGETRFO also employs an enhanced complex
matrix multiply scheme, described below.

Optimized Complez Matriz Multiplication. Some additional fea-
tures are used in CGETRFO to enhance the performance of com-
plex matrix multiplication. Multiplication of the complex numbers
(a 4+ ib) X (¢ + id) normally requires the computation of ac — bd and
ad + be. That is:

(a 4+ ib) * (¢ + id) = (ac — bd) + i(ad + bc)

This requires four multiplications and two additions to compute. The
computation can be completed with fewer multiplications (see Fam,
Ref. [5]) using an identity attributed to Golub [6]:

(a+ ib) * (c + id) = (a(c — d) + (a — b)d) + i(b(c + d) + (a - b)d)

Since the quantity (a — b)d is used twice, this method takes only
three multiplications and six additions. Since additions and multipli-
cations are comparable on Cray machines, this identity does little for
optimizing complex multiplication. However, if a, b, ¢ and d are
themselves the imaginary and real parts of two matrices, the iden-
tity still holds. That is, complex matrix multiplication can be writ-
ten in a similar manner. Under this assumption, a multiplication is
O(n®) operations while an addition is only O(n?). Thus, applying the
Fam/Golub approach results in about 25% savings in the overall op-
eration count for complex matrix multiplication. The price to pay for
this is the workspace required to hold several temporary matrices.

A routine called CMXMA was written to take advantage of the ef-
ficient Fam/Golub complex matrix multiplication. CMXMA converts
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complex matrix multiplication to three real matrix multiplies and sev-
eral matrix additions. This routine will be available in SCILIB 6.0 as
CGEMMS. :

In addition, the Strassen’s real matrix multiply (SGEMMS) was
used to further save on operations in CGETRFO. SGEMMS is a Stras-
sen’s algorithm [7] extension to the standard BLAS-3 matrix multiply
routine, SGEMM. In this algorithm, the matrix is recursively cut in
half. At each stage, the full-size matrix multiplication is converted to
seven half-size matrix multiplications and several half-size matrix ad-
ditions. Under a normal algorithm, a full-size matrix multiplication
would be converted to eight half-size matrix multiplications and the to-
tal operations required would be conserved. Hence, SGEMMS reduces
the operations necessary to about 7/8 at each stage in the recur-
sion, if we ignore the O(n?) overhead of matrix additions. In general,
doubling the size of a given matrix requires only 7/8 of the opera-
tions necessary using the traditional method. The recursive method is
halted when sub-matrices reach sizes less than or equal to 64 (128 on
the Cray-2 machine). Thus, large matrices have an increased relative
speedup. For this reason, it is advantageous to run the decomposition
with wide slabs. SGEMMS was written by the math software group
and is scheduled for a future release of UNICOS.

b. The Results

Computation Rate for Matriz Multiplication. Although the result-
ing routine requires a large workspace, a significant performance in-
crease was achieved over CGEMM. The effective gigaflop* (Eflop) rates

* Complex matrix multiplication with the usual method takes 8n3
operations. However, as stated, the method used in CMXMA is based
on a scheme that requires fewer operations. Thus, quoting the perfor-
mance of CMXMA in actual gigaflops may be misleading when com-
paring algorithm and machine performance. To normalize the perfor-
mance across different machines and algorithms, we define an “effective
gigaflop” rate simply by assuming 8n3 operations and dividing by the
computation time. Because the the actual operation count is less, of
course, we see Eflop rates that seem to outperform the capabilities of
the machines.

This parallels LINPACK guidelines that, for example, require one
to divide 2/3n> by the solution time when counting Gflops for the
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Cray-2/128 : Y-MP 8/32
SRAM (sn2025) 6.41ns (sn1001)

Size Time (sec) Eflops Time (sec) Eflops
128 0.0085 1.96 0.0065 2.56
256 0.058 2.29 0.048 2.79
500 0.41 243 0.34 2.92
512 041 2.61 0.36 2.95
1000 2.75 291 2.27 3.58
1024 2.94 2.92 2.25 3.80
2048 | 20.6 3.33

Table 2.1 Effective Gigaflop (Eflop) Rates for CMXMA.

for routine CMXMA are shown in Table 2.1 for a Cray-2/128 having
four processors and 128 Mwords of central memory, and a Cray Y-MP
8/32 having eight processors and 32 Mwords of central memory.

It should be noted that the column width used for slabs in
CGETRFO corresponds to the size of the matrices multiplied by
CMXMA. Therefore, wider slabs give increased computational per-
formance for the LU problem.

Overall LU Decomposition. Table 2.2 shows the results achieved
on several large LU decomposition problems on the 4-processor Cray-
2/256 and the eight-processor Cray Y-MP 8/64.

To illustrate the significance of the benchmark results of Table 2.2,
consider the 20K MM matrix case for the Y-MP 8/64. We see that
138 Gbytes of I/O are discharged to and from 7 DD-40 disk drives
during this run. Yet, the wall clock time is only 1.99 hours, of which
only 228 sec (3.8 min) represents I/O wait time. In fact, 90% of the ac-
tual I/O operations are performed concurrently with the floating point
arithmetic by virtue of the asynchronous 1/0 scheme, and therefore do

1000 x 1000 real-matrix LU decomposition benchmark, regardless of
how many operations one’s solution actually requires. One drawback of
counting Eflops for CMXMA is that it is slightly less accurate because
the total number of additions is increased. However, there seems to be
general agreement that the Eflop rate is an easier metric for explaining
performance than alternatives such as just using the solution time.
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N C I/0 (IOT || T GFA |GFE
10K [2K 6.4 37 | 0.33 | .968 |2.20
20K | 1K 73.6 | 304 | 2.69 |1.12 |2.20
30K |968 [ 245 837 | 9.11 j1.12 |2.19
40K | 1K 550 1331 1208 [1.16 |2.28
10K [910 11.2 57 | 0.24 |2.20 |2.94
20K (500 | 138 228 1.99 1224 ]2.98
30K {334 | 671 697 | 7.15 [2.10 |2.80
40K [ 250 | 2086 1824 [16.8 [2.12 |2.82

< ==l alalalalz
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Table 2.2 Benchmarks for Out-of-Core LU Decomposition Code. Ab-
breviations: M= Machine (C2 = Cray-2/256 or Y = Y-MP 8/64); N=
Matrix Order N; C = Columns per slab; I/0O = Input/Output to disks
(Gbytes); IOT = I/O wait time (sec); T = Wall clock time (hours); GFA
= Actual Gflops; GFE = Effective Gflops; D = Number of DD-40 disks.

not contribute to the observed wait time As matrix size increases, the
relative efficiency of the asynchronous scheme improves, with the I/0
concurrency factor rising to 94% for the 30K matrix, and to 95% for
the 40K matrix. Effectively, what has been shown is that the massive
I/O associated with solving huge MM matrices can be almost com-
pletely buried. This permits Crays with small central memories (as
little as 16 Mwords) to efficiently process these problems using rel-
atively inexpensive disk drives, and to achieve average computation
rates approaching the maximum peak values permitted by the hard-
ware.

For such large matrices, roundoff error can become a serious prob-
lem. The code discussed above uses partial pivoting which improves
stability; however the matrix multiply kernel is less accurate than
CGEMM. In our test cases, the code achieves good results to 13 deci-
mal places solving one right-hand side in diagonally dominant random
matrices of size 20K, but only 4 or 5 decimal places for matrices hav-
ing randomly distributed entries between —0.5 and +0.5. In these
cases, solutions can be improved through single-precision iterative re-
finement. More work is needed in the detailed error analysis of this
method.
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2.3 A Parallel Out-of-Core 1-D FFT for Cray Y-MP
Systems

Applications demanding use of efficient Fourier transform algo-
rithms in computational modeling and data processing exist in many
areas of science and engineering. A considerable amount of work has
been directed towards designing efficient fast Fourier transform (FFT)
algorithms for vector parallel supercomputers (for example, see [8]).
Users of Cray X-MP and Y-MP systems running either COS or UNI-
COS have access to several 1-D FFT routines resident in SCILIB and
BENCHLIB. These routines have been developed and packaged during
the past decade by various analysts. A summary of the routines avail-
able to users of the Cray X-MP and Y-MP is provided in [9]. Some
Cray users have a need for out-of-core solutions because of a mismatch
between the size of the problems being solved and the central memory
resources available on their systems. This prompted Cray Research to
develop and package very efficient out-of-core FFTs centered around
CFFTMLT, an existing kernel from SCILIB.

This section describes parallelized out-of-core 1-D FFTs developed
for use on Cray Y-MP computer systems.* We discuss the performance
delivered by the I/O subsystem of the Y-MP, including techniques for
optimizing the I/O. Benchmarks demonstrate that the I/O subsystem
allows transfer of data to a variety of physical and logical devices at
average speeds close to the peaks expected from the hardware, that is,
close to 2 Gbytes/sec. It is significant that this rate is competitive with
a transfer of 2 words per cycle from memory to an individual processor.
The transfer of data to striped disks occurs at rates of the order of
100 Mbytes/sec. The performance of cached disks lies somewhere in
between.

This section also discusses a parallelized 1-D FFT built around an
existing single-processor kernel. It is significant that when the SSD is
used as an auxiliary device, the I/O transfer rate of 2.0 Gbytes/sec
encourages the use of concurrent processing for out-of-core FFTs. As
an example, the CPU usage for an FFT of size 32-million points is

* The FFTs discussed here are based on powers of two. We find no
memory advantage from using FFTs which are not based on powers
of two. Any degradation in memory access for power-of-two FFTs has
been minimized both by the design of the memory subsystem and by
the algorithmic methods applied.
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23.9 sec on a single Cray Y-MP processor, and the associated wall
clock time is 26.3 sec. The I/O time of 2.4 seconds implies a transfer
rate of 1.8 Gbytes/sec.

All of the measurements were performed on a Cray Y-MP 8/128
(sn1033) at Mendota Heights executing UNICOS 5.1. Each test was
repeated multiple times, with the best performance data observed dur-
ing these repetitions reported here. The machines were usually lightly

loaded.
a. Basis

The need for out-of-core FFTs arises from applications that require
transforms where the size of the sequence exceeds the size of memory
available. In some instances, the total memory required exceeds the
size of the physical memory a process can access. The philosophy un-
derlying an out-of-core solution is that pieces of the sequences fit in
memory and therefore the transform could be computed in parts.

The theoretical foundation for an out-of-core formulation (see the
Appendix of this chapter for the details) is summarized as follows. We
view a 1-D data sequence as an N; by N; matrix where N = Ny N,
and Ny = NY/2. First, the rows of the matrix need to be transformed.
We compute N; transforms, each of length N,. Since the data resides
on disk, the points of the sequence have to be read with a stride. The
I/0 would be very inefficient if we were to read with a stride and fetch
the rows. A better method is to transpose the matrix and rewrite the
matrix to the external device. When the transpose is performed, we
use the fact that if a matrix A is viewed as a collection of submatrices
A;j, then its transpose B is obtained by transposing the submatrices
Ai; and forming the new matrix B = [B;j], where B;; = A]Tl These
submatrices are records now, written one at a time to the external
devices. Because they are relatively large in size, the I/O transfers
proceed at near-peak speeds.

A phase shift is performed as indicated in (7) of the Appendix.
Next, one needs to compute N, transforms of length N;. A transpose
is necessary again to access the elements of the sequence as a column
instead of as a row. So the transpose is performed before the transform
is computed. Finally, a transpose is necessary to put the data in the
right order. The two multiple transforms are excellent candidates for
concurrent execution. The phase shift is performed on elements of an
N1 by N, matrix and lends itself to parallel execution, as does the
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transpose.
b. Performance, Single CPU, Using the Solid-State Device (S5D)

The out-of-core software for 1-D FFTs has been designed to ex-
ploit the device-independent 1/O software available on Cray Y-MP
computer systems. What this implies for the user is that the same
software may be used regardless of the source and destination of the
data sets representing the linear sequence to be transformed. From an
operational standpoint, this is accomplished by specifying the char-
acteristics of the input file and a scratch file in a shell script, and is
essentially a user-definable parameter that is set at execution time.
The friendliness of this approach is a convenience that allows using the
out-of-core software in widely different site-dependent situations.

In this section, we consider Cray’s primary physical means of ex-
ternal mass storage, the solid-state device (SSD). We shall look at
three different ways of configuring the SSD as a fast logical device, and
discuss the associated rates and elapsed times of data transfer:

1. SSD configured as a secondary data segment (SDS);
2. SSD configured as a filesystem (e.g. /ssd); and
3. SSD used as a logical device cache for a disk-configured filesys-
tem, i.e., a filesystem such as /tmp could be cached on the SSD.
The reader is referred to [10] for the Unix environment variables needed
for assigning disks and SSDs.

To be specific, consider as the physical device a 512 Mword SSD.
The three different logical devices are chosen via shell scripts that
would accomplish the equivalent of the commands below.

# CASE 1 - SDS

env FILENV=filezz assign -a SDS -s u -n 65536 fort.31

env FILENV=filezz assign -a SDS -s u -n 65536 fort.32

env FILENV=filezz a.out < infile > outfile

# CASE 2 - /ssd

env FILENV=filezz assign -a /ssd/abc/xx1 -s u -n 65636 fort.31
env FILENV=filezz assign -a /ssd/abc/xx2 -s u -n 65536 fort.32
env FILENV=filezz a.out < infile > outfile

# CASE 3 - ldcache (/tmp as cached filesystem)

env FILENV=filezz assign -a /tmp/abc/xx1 -s u -n 66636 fort.31
env FILENV=filezz assign -a /tmp/abc/xx2 -s u -n 65536 fort.32
env FILENV=filezz a.out < infile > outfile



36 2. Cray-Based Algorithms for Computational Electromagnetics

SDS (s) /ssd (s) ldcache (s)
S |Size CPU |[Wall [CPU |Wall |CPU |Wall
20 1. M| 051 | 057 | 052 | 0.58 | 0.52 0.67
21 21M § 1.07 | 1.18 | 1.08 | 1.21 | 1.08 1.39
22 42M | 222 | 245 | 2.24 | 2.87 | 2.24 2.52
23 84M | 4.57 | 5.03 | 4.61 | 5.16 | 4.60 5.86
24 | 16.8M | 9.40 |10.3 947 [10.6 9.47 | 124
25 [ 33.6M (19.5 214 |19.6 [21.8 |19.6 40.4
26 | 67.1M [40.3 |44.6 |40.7 |45.1 |40.7 70.5
27 1134.2M [82.8 |91.3 [82.8 (92.0 |83.4 |[340.0

Table 2.3 Comparison of SDS, /ssd, and ldcache as external devices for
out-of-core 1-D FFT (single Cray Y-MP processor). S = log,(size).

The application software implementing out-of-core FFTs utilizes
“BUFFER IN” and “BUFFER OUT” calls to request transfer of data. The
option named “-s u” is used in the scripts above to request bypass-
ing of library and system buffers. The condition imposed by this re-
quest is that all transfers have to be a multiple of the sector size (512
words). Positioning within a file is accomplished with the aid of calls to
“SETPOS”. It is significant that all of the high performance I/O can be
accomplished from within the FORTRAN source. Two other issues are
relevant. First, FORTRAN’s sequential “read” and “write” statements
could be used as well, in conjunction with calls to “SETPOS”. Second,
the choice of an external device is made when the code is executed, not
during compilation or linking. The Cray I/O libraries allow this vital
“device independence” for all devices, from the fastest SDS down to
single disks.

Table 2.3 shows the CPU time and elapsed (wall clock) time for
FFTs of sizes 22° through 227 when using these devices as secondary
storage for input /output data and for intermediate storage. A graphical
description of this table is shown in Fig. 2.1.

The following comments pertain to these results:

1. The I/O to the SSD is optimum when the SSD is used as a sec-
ondary data segment (SDS) primarily because the user is able to
bypass the overhead of executing code necessary for file manage-
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Figure 2.1 Wall time for 1-D out-of-core FFT — comparison of SDS,
/ssd and LDCACHE. Solid: SDS, dashed: /ssd, dotted: LDCACHE.

ment. Each I/O operation involves a system call to initiate the
transfer (overhead 2 10us) followed by a high-speed data trans-
fer from the SSD to central memory. Since this takes place at a
rate of 2 words/clock, the Y-MP cycle time of 6 nsec leads to a
peak transfer rate of 2.5 Gbytes/sec.

2. When reading to and writing from a file on /ssd, one incurs the
cost of performing operations relevant to UNICOS file manage-
ment. It is believed that the physical data transfer from a file resi-
dent on /ssd to central memory occurs at the fast SDS-to-memory
transfer rate. In fact, it is the added software overhead that leads
to a smaller effective transfer rate to /ssd than to SDS.

3. The performance is consistently better when the file is resident
on /ssd than when the file system is cached (on the SSD) for the
simple reason that there is overhead involved in managing a cache.
Here, the net data transfer rate to central memory is usually much
lower than the peak rate of 2 Gbytes/sec because of cache misses,
falling as low as 100 Mbytes/sec, as shown in Fig. 2.2.

c. Performance, Single CPU, Using Striped Disks

Disk striping is a technique for enhancing the effective transfer
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Figure 2.2 I/O Rates on SDS /ssd ldcache for one-dimensional out-
of-core FFTs (Rates 1.07 faster on a 6 ns CRAY Y-MP.) Solid: SDS,
dashed: /ssd, dotted: LDCACHE.

rates to and from disk-based file systems by employing a form of con-
current I/O to multiple disk devices. In this section, we will use the
out-of-core FFT as an example to show how a system of striped disks
can provide an alternative to an SSD in Cray Y-MP systems without
an SSD. The data transfer rate to a group of 12 striped disks is of
the order of 100 Mbytes/sec, provided that the transfer size is large
enough to exploit the bandwidth of each of the component disks. It
should be emphasized that under UNICOS, individual users have the
resources available to stripe a file, provided that the file system has
been configured to use multiple partitions.

We first discuss the setup that allows users to choose striped disks
as the external device. Consider the following:

# Out-of-core FFT with striped disks as the external device
setf —p1-12 -n65536b:42b /tmp/abc/xx1

setf -p1-12 -n65536b:42b /tmp/abc/xx2

assign FILENV=filezz assign -a /tmp/abc/xx1 -s u fort.31
assign FILENV=filezz assign -a /tmp/abc/xx2 -s u fort.32
assign FILENV=filezz a.out < infile > outfile
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Figure 2.3 I/O Wait time for one-dimensional out-of-core FFT with
striped DD49 (solid - 12disks, x - 10disks, dotted - 8disks, bullet - 4disks,
+ 2disks).

In the script above, we have striped files xx1 and xx2 over 12 par-
titions, pre-allocating a total of 65,536 blocks of size 512 words. In this
example, the allocation size per partition is 42 blocks of size 512 words,
a number that corresponds to the track size of a DD-49. This indicates
a request that for large transfers, entire tracks be written out to the
partitions concurrently.

The UNICOS command “df -p” displays the layout of a file sys-
tem and may be used to plan the striping of a preallocated file. The
character string in the last column of a display from “df” indicates
the 1/0 processor (IOP) and the I/O system (IOS) used. Concurrent
1/0 is achieved by using multiple IOSs, multiple IOPs within each 10S
(such as a BIOP and a DIOP), and multiple devices to each IOP.

Figure 2.3 shows the I/O wait time of a system configured to pro-
vide striping for as many as twelve DD49s. The wait time for an FF'T
of size 16.8M (22%) is seen to be less than 30 sec. From Table 2.3, we
see that the corresponding wait time using an SDS is 0.9 sec (10.3 sec
— 9.4 sec). Thus, the system of 12 striped disks is a factor of about
30 times slower than an SDS, achieving a data transfer rate of about
80 Mbytes/sec.
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Figure 2.4 I/0O rate for 1-D out-of-core FFT with striped DD49 (solid -
12disks, x - 10disks, dotted - 8disks, bullet - 4disks, + 2disks).

Figure 2.4 graphs measured I/O data transfer rates achieved by
striping DD49s. The usual single-disk sustained rate of about 9
Mbytes/sec is seen to nearly double with two striped disks, and quadru-
ple with four disks. The trend continues, and data transfer rates of
80 Mbytes/sec are realized for 12 disks, as stated above. The peak
transfer rate realized in this application depends on the transfer size.
In order to make each disk of a striped disk system deliver at its peak,
the transfer sizes need to be large enough to make the latency and seek
time relatively small.

The size of the sectors allocated per partition can also affect the
I/0 time. Intuitively, we expect that for large transfers, a large alloca-
tion size such as two tracks (84 sectors) is more efficient than allocating
one track (42 sectors) at a time. In fact, measurements reveal that 2-
track allocation is preferred even for moderately sized transfers. Half-
track allocations should be avoided because the effective data transfer
rate is low due the overhead of latency and seek time.

DD40s and DD49s have been reported as having similar sustained
data transfer rates of 10 Mbytes/sec. To check this, we implemented
out-of-core FFTs first with a group of eight striped DD40s and then
with a group of eight striped DD49s, and compared the I/O wait times.
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C Wall-Clock Time (s)
S | Size 1 CPU |1CPU |2 CPUs |4 CPUs |8 CPUs
20 1M | 0.51 0.57 0.32 0.22 0.13

21 2.1IM | 1.07 1.18 0.66 0.40 0.27
22 4.2M | 2.22 2.45 1.36 0.80 0.54

23 8.4M | 4.57 5.03 2.80 1.64 1.09
24 | 16.8M | 940 10.3 5.72 3.34 2.19
25 [ 33.6M |19.5 21.4 11.8 6.85 4.44
26 | 67.1M |40.3 44.6 243 14.0 9.18

27 {134.2M |82.8 91.3 49.7 28.7 18.4

Table 2.4 Parallel Out-Of-Core 1-D FFT. S = log,(size); C = CPU
Time(s).

After statistical variations were taken into account, we found little dif-
ference between the I/0 performance of the striped DD40s and DD49s.

d. Parallel Out-of-Core 1-D FFT

In this section, we discuss preliminary results for programming the
out-of-core 1-D FFT for concurrent operation on up to eight processors
of the Cray Y-MP. Cray autotasking is used to exploit the parallelism
that is built into the basic algorithm (Section 2.3.b and the Appendix).
The code is parallelized simply by inserting two autotasking directives
for concurrent execution of the work performed by CFFTMLT, and by
allowing the preprocessor to identify the parallelism in the phase shift
and the transpose. Wall-clock times for the parallel version of the code
are shown in Table 2.4.

The 5:1 limit in speed-up factor seen in Table 2.4 is due to the
fact the total number of FFTs computed by each processor is small.
From the discussion of Section 2.3b, the size of the fraction of the
given sequence of size N that is memory-resident at any time is de-
termined by the product of N2 and a width parameter w, where w
is also the number of 1-D FFTs to be solved concurrently by N, pro-
cessors (a burden of w/N, FFTs per processor, executed by invoking
CFFTMLT). We choose w = M/N'/2, where M isin the order of the
available central memory. Referring to the analysis of CFFTMLT’s per-
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Wall-Clock Time(s)
X Y |1CPU |2CPUs |4 CPUs [8CPUs [ M
256 [ 256 [0.0175 |0.00887 [0.00457 |0.00277 |6.32
512 | 256 [0.0377 [0.0190 |[0.00964 |0.00544 |6.93
256 | 512 |0.0377 |0.0190 [0.00965 }0.00543 |[6.94
512 | 512 |0.0805 |0.0404 ([0.0204 |0.01050 |7.67

1024 {1024 |0.355 |0.179 0.0900 |0.0452 |7.85

2048 12048 |1.61 0.804 0.399 0.203 7.93

4096 14096 |6.91 3.450 1.750 0.877 7.88

Table 2.5 Parallel In-Core 2-D FFT. X = 2z-size; Y = y-size; M =
Max. Speed-Up.

Size Wall-Clock Time(s)
(z=y=2) |1CPU |2CPUs [4 CPUs |8 CPUs | M
16 0.00286 |0.00157 | 0.00100 | 0.00087 | 3.28
32 0.0134 |0.00700 }0.00374 |0.00218 |6.16
64 0.0846 |0.0428 |0.0217 |0.0112 7.95
128 0.762 0.380 0.192 0.0966 7.89
256 6.85 3.369 1.706 0.858 7.98

Table 2.6 Parallel In-Core 3-D FFT. M = Max. Speed-Up.

formance presented in [9], we note that the cost per FFT decreases as
the total number increases. Higher speed-up factors here clearly require
increasing the total number of FFTs computed by each processor.

e. Mazimum Speed-Up Using Autotasking: 2-D and 3-D FFT
Benchmark Data

We now provide benchmark data that show that speed-up factors
substantially greater than 5:1 can be achieved for FFTs using Cray
autotasking on the Y-MP/8. Tables 2.5 and 2.6 provide benchmark
results for the wall-clock times of parallel in-core 2-D and 3-D FFTs,
respectively, based on CFFTMLT.

It is clear that maximum speed-up factors can approach 8:1 (the
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number of processors of the Cray Y-MP/8) for the multidimensional
FFTs, indicating an excellent distribution of workload among the pro-
cessors. Using the following formulas for the operations count for the
1-D, 2-D, and 3-D complex FFT algorithms employed by Cray Re-
search:

5% m xloga(m) 1-D FFT of dimension m
5+mxnx*logg(m+n) 2-D FFT of dimensions m and n

10+ m+nxlog,(! *m*n) 3-D FFT of dimensions [, m, and n

FFT performance on the Y-MP/8 has been measured in the range of
less than 100 Mflops to over 2.35 Gflops, depending upon the dimen-
sionality and respective sizes of [, m, and n.

2.4 Multiprocessing Space-Grid Time-Domain Codes

This section reviews computational aspects of an emerging class of
approaches for numerical modeling of EM wave interactions with large,
complex structures: direct space-grid, time-domain solvers for Max-
well’s time-dependent curl equations. The primary current approaches
in this class, the finite-difference time-domain (FD-TD) and finite-
volume time-domain (FV-TD) techniques (3, 4], are remarkably robust,
providing highly accurate modeling predictions for a wide variety of
EM wave interaction problems. They are analogous to existing mesh-
based solutions of fluid-flow problems in that the numerical model is
based upon a direct, time-domain solution of the governing partial
differential equation. Yet, they are nontraditional approaches to nu-
merical electromagnetics for engineering applications, where frequency-
domain integral equation approaches (MM) have dominated.

a. Computational Aspects

Algorithms. FD-TD and FV-TD methods for Maxwell’s equations
are based upon fine-grained, volumetric sampling of the unknown near-
field distribution within and surrounding the structure of interest. The
sampling is at sub-wavelength (sub- A,) resolution to avoid aliasing
of the field magnitude and phase information. Overall, the goal is to
provide a self-consistent model of the mutual coupling of all of the
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electrically-small volume cells comprising the structure and its near
field, even if the structure spans tens of A, in 3-D and there are tens
of millions of volume cells. :

The primary FD-TD and FV-TD algorithms used today are fully
explicit, second-order accurate grid-based solvers employing highly vec-
torizable schemes for time-marching the six vector components of the
EM near field at each of the volume cells. The explicit nature of the
solvers is maintained by either leapfrog or predictor-corrector time in-
tegration schemes. Present methods differ primarily in how the space
grid is set up (either regular, unstructured, or body-fitted), and how
EM field continuity is maintained at the interfaces of adjacent volume
cells. As a result, the number of floating point computations needed to
update the six field vector components at a single cell over one time
step can vary by about one order of magnitude from one algorithm to
another.

However, the choice of algorithm is not at all straightforward, de-
spite this large range of computational burden. There is an important
tradeoff decision to be made. Namely, the simpler solvers have more
involved mesh generation requirements, and the meshes they utilize
may not be compatible with those used in other engineering studies
(primarily computational fluid dynamics and structural dynamics for
aerospace structures). The more complex solvers can utilize existing
mesh generators, but require substantially more computer arithmetic
per space cell per time step.

Vectorizability and Concurrency. Both FD-TD and FV-TD algo-
rithms (in-core) are highly vectorized, having been benchmarked at
about 200 Mflops on a single Cray Y-MP processor for real models.
However, the attainment of even higher Mflop rates may be hampered
by the fact that the the space grids have an unavoidable number of non-
standard cells requiring either scalar operations, mixed scalar-vector
operations, or odd-lot vector operations working on small sets of data.
These non-standard cells result from a number of factors, including the
need to program a near-field radiation condition at the outermost grid
boundary (simulating the grid continuing to infinity), and the need
to stitch varying types of meshes together to accommodate complex
structure shapes and cavities.

On the Cray Y-MP/8, it has been found possible to achieve nearly
100% concurrent utilization of all eight processors using autotasking
for both 3-D FD-TD and FV-TD in-core codes (see discussion in Sec-
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tion 2.4.b for the FD-TD case). This is despite the codes’ residual
scalar, mixed scalar-vector, and odd lot vector operations mentioned
above, which serve to limit vectorization. Only minor modifications to
the original single-processor FORTRAN were required for the FD-TD
case. These were accomplished over a period of several days.

Storage. Years of modeling experience with FD-TD and FV-TD
have shown that 0.1), is the coarsest space resolution suitable for
engineering accuracy (+1dB) in predictions of the near and far fields.
That is, the space grid must resolve the shortest EM wavelength in
its domain (highest frequency component of the illuminating pulse) by
better than 10 parts. It is easily seen that at least 1,000 volume cells
per A3, equivalently 6,000 vector-field components per A3, must be
maintained. For the simplest grid-based time-domain Maxwell’s solver,
FD-TD, applied to model non-dispersive media, the required computer
storage is 18,000 real words per AJ. (The factor of three arises from
the use of one real word to store the most recently computed value
of each vector field component, and two real words to store the two
material-dependent updating coefficients associated with each vector
field component.)

With current interest in computational modeling of 3-D struc-
tures spanning more than 20 A, (i.e., having volumes exceeding about
10,000 X3), we see that FD-TD memory requirements may exceed
200 Mwords. The cubic dependence of the required computer mem-
ory upon structure dimension points the way toward billion-word stor-
age needs for FD-TD in the near future, and even larger demands
by other grid-based solvers using more elaborate algorithms. These re-
quirements exceed existing Cray-based possibilities for central memory
and SSD, and can be easily scaled to exhaust even the most ambitious
Cray Research plans for such memory resources in the future. Clearly,
what is needed is the application of out-of-core techniques to the grid-
based time-domain Maxwell’s solvers.

In fact, the out-of-core techniques discussed in detail in Section 2.3
in the context of performing very large FFTs, and already applied
to very large MM matrices as discussed in Section 2.2, have already
been applied successfully to the 3-D FD-TD algorithm. Developed for
a single-processor of the Cray X-MP, the out-of-core FD-TD code uses
asynchronous I/0, variable buffering, and disk-striping to achieve I/O
concurrency of better than 95% relative to the computer arithmetic
operations when 12 drives are used. In effect, the observed I/0 wait
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time (impact on wall clock time) isless than 1/20 of the actual time for
transferring data to and from the drives. This code is being adapted to
UNICOS for the Cray Y-MP/8, eventually permitting eight-processor
autotasking. The result of these efforts should be a 3-D FD-TD code
that can solve for more than one-billion vector field unknowns in 2 to
4 hours, if CPU concurrency can be maintained near the high level
measured for a multiprocessing in-core FD-TD code (see below).

b. Ezample: Jet Engine Inlet, Conformally Modeled

Problem Description. To illustrate the use of a multiprocessing in-
core FD-TD code to model the RCS properties of an electrically large
3-D structure of engineering significance, we consider the serpentine
jet engine inlet of Fig. 2.5a. Here, the overall system design prob-
lem involves sizing and shaping the engine inlet to meet both aerody-
namic specifications (thrust) and EM specifications (monostatic RCS
response for continuous sinusoidal illumination at 10 GHz). For the
purposes of this publication, we shall assume that the inlet is embed-
ded within a simple rectangular metal box coated with commercially
available Emerson & Cuming Type AN-73 radar absorbing material
(affording approximately 30 dB suppression of EM wave reflections at
10 GHz). Thus, the FD-TD computed near-field and far-field EM re-
sponse is primarily a function of the inside wall shaping of the inlet,
and not any exterior embedding.

In Fig. 2.5a, the incident wave is assumed to propagate from right
to left (in the —z direction), and is polarized so that its electric field
points across the narrow dimension of the inlet (the +y direction). The
aperture of the inlet is located at the right, and the inlet is shorted
by a conducting wall representing the turbine assembly at the far left.
With the box dimensions set at 30” x 10.5” x 10”, the overall inlet /box
target configuration spans 25.4), x 8.89), x 8.47), at 10 GHz. For
this target, the FD-TD space cell size is 1/8” (A,/9.43), and the over-
all lattice has 270 x 122 x 118 cells containing 23,321,520 unknown
field components (4,608)3). Starting with zero-field initial conditions,
1,800 time steps are used (95.25 cycles of the incident wave) to march
the field components to the sinusoidal steady state. The computer run-
ning time is 3 min, 40 sec per monostatic angle on the Cray Y-MP/8
using eight-processor autotasking. An excellent processor-concurrency
factor of 7.97/8 is achieved. This yields an average computation rate
of 1.6 Gflops.
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(a) Geometry of engine inlet embedded in a rectangular metal box coated with
radar absorbing matcrial. 10-GHz incident wave propagates from right to left.

(b) Instantancous distribution of the total Ey ficld component at time step no. 1701
in a 2-D observation planc cutting through the z-center of the geometry.

Figure 2.5 Conformal-mesh FD-TD computational modeling of a 3-D jet
engine inlet (eight-processor Cray Y-MP, 1.6 Gflops average rate, 3 min
40 sec solution time for 23-million field components).
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Figure 2.5b depicts the instantaneous distribution (positive and
negative values) of the total +y-directed electric field component in
a 2-D observation plane (z-y plane) cutting through the z-center of
the 3-D engine inlet. This photograph is derived from a color videotape
display of the propagating electric field penetrating the inlet, generated
directly by the FD-TD time-stepping. The display is taken late in the
time-stepping when the internal field is settled into a standing wave.

Clearly, in addition to simple data for the RCS pattern, FD-TD
modeling provides details of the complex standing wave pattern within
the engine inlet, especially when visualized in the time domain using
color video technology. The latter visualization shows that a general
pulsing of the field pattern within the inlet occurs in the sinusoidal
steady state, emitting backscattered energy in a regular series of bursts.
It may be possible to use this highly detailed time-domain near-field
information to better design such articles in the future.

c. Present Work and Future Directions

At present, grid-based time-domain CEM models of 3-D structures
spanning more than 30), are being developed for the Cray Y-MP/8.
These are apparently the largest detailed CEM models ever attempted.
Work at this time is in the following areas:

(1) Automated mesh generation;

(2) Multi-processing, out-of-core software;

(3) Sub-cell models for fine-grained structural features such as

coatings;

(4) Higher-order algorithms; and

(5) Application to non-traditional CEM areas, including ultra-

high speed phenomena.

By 1993, the next-generation Cray Y-MP/16 should be routinely
available to the academic and engineering communities. The Y-MP /16
will have up to six times the performance of the Y- MP/8 system. The
performance gains come from the following;:

1. 1.5x from the clock period;

2. 2x from the double pipes in each CPU; and

3. 2x from double the number of processors.

Extrapolating from present benchmarks with the Y-MP/8, this
machine should provide a steady 10-Gflop computation rate for grid-
based time-domain CEM codes when using 16-processor autotasking.
The proverbial “billion-unknown” CEM problem (a 3-D computational
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Size CPU time Elapsed Time (seconds)
(seconds) |1 CPU |2 CPUs |4 CPUs [8CUPs
1048576 0.17 0.21 0.12 0.08 0.06
2097152 0.36 0.44 0.25 0.16 0.12
4194304 0.76 091 0.53 0.34 0.25
8388608 1.58 1.87 1.09 0.70 0.52
16777216 3.24 3.82 2.21 1.41 1.03
33554432 6.73 7.88 4.55 2.88 2.10
671088864 14.0 16.3 9.34 5.88 4.23

Table 2.7 Parallel out-of-core 1-D FFTs for CRAY C90 systems.
Notes: Memory used: 67 MW I/0 device: 256 MW SSD

volume of about 150,000 A3) could be completed in as little as 30 min-
utes per monostatic RCS observation. Multiprocessing out-of-core soft-
ware should enable even larger volumes to be modeled in their entirety.
Using such software, the era of the “entire airplane in the grid” would
be opened for a number of important defense systems for radar fre-
quencies up to about 10 GHz. Automated geometry generation would
permit the CEM modeling to utilize structure databases developed by
non-EM engineers, leading to design cost reduction and the possibility
of innovative design optimizations.

2.5 Addendum
Since the completion of this chapter the CRAY C90 system has

become operational. Tables 2.7 through 2.14 update timings for FFTs
and LU decomposition on one to sixteen processors of this system.
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Size Elapsed Time (seconds)
Nx Ny |16 CPUs |8 CPUs (4 CPUs |2 CPUs |1 CPU
64 64 10.000185 ]10.000313 |0.000579 |0.00113 | 0.00222
128 128 {0.000350 |0.000637 |0.00123 0.00243 | 0.00483
256 | 256 [0.000770 {0.00147 0.00288 0.00572 | 0.0114
512 | 512 |0.00382 |0.00464 |0.0092 0.0183 0.0366
1024 11024 10.00938 |0.166 0.0331 0.0662 0.132
2048 |2048 |0.0360 0.0702 0.140 0.279 0.559
4096 4096 |0.154 0.302 0.603 1.21 241
8192 | 8192 |0.715 1.375 2.660 5.31 10.6
Table 2.8 Parallel in-core 2-D FFT for CRAY C90 system.
Size 16 CPUs 8 CPUs 4 CPUs 2 CPUs 1 CPU
Nx Ny CPU | Wall |CPU [Wall |CPU [Wall {CPU |Wall |CPU [Wall
16384 | 16384 | 54.4 8.86 |53.3 11.90 | 52.8 18.30
16384 | 8192 |26.6 |4.38 |26.0 |5.86 25.7 |9.00 25.6 153 ]25.5 28.0
8192 8192 |[13.0 2.17 |12.6 |2.88 12.5 4.41 12.4 7.49 |12.4 13.7
Table 2.9 Parallel out-of-core 2-D FFT for CRAY C90 system.

(Note: Memory Used: 200 MWords, I/O Device: 1 GW SSD.)

LU Results

With the release of UNICOS 6.0, a routine called CGEMMS
(Strassen’s CGEMM) was implemented in the Cray Scientific Library
(Scilib). This routine uses the same algorithm described for CMXMA
in LU factorization.

The CGETRFO algorithm is very deterministic. Performance is
a function of the speed of the kernel (CGEMMS) and of the speed
of the I/O device. A simulation program was constructed that runs
through the same slab loops used by CGETRFO. At each stage of
the algorithm, the computation time can be determined by computing
the number of floating point operations and dividing by the effective
computation rate. Also, I/O time can easily be computed since the size
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Size Elapsed Time (seconds)
Nx | Ny| Nz |16 CPUs |8 CPUs |4CPUs [2CPUs |1CPU
16 16 | 16 [0.000280 [0.000240 {0.000347 |0.000600 |0.001110
32 32 | 32 [0.000587 [0.000794 [0.00143 |0.00275 |0.005510
64 64 | 64 [0.00260 |0.00412 {0.00805 |0.0160 0.0320
126 128 {128 |0.0174 0.0336 0.0667 0.133 0.266
256 1256 |256 |0.160 0.293 0.585 1.17 2.34
512 [512 |512 2.76 5.58 11.1 22.1

Table 2.10 Parallel in-core 2-D FFT for CRAY C90 system.

Table 2.11

Nx

Size
Ny

Nz

16

8 4

Number of CPUs

2

32

32 | 32

9.38

6.9

3.84

2.0

64

64 | 64

12.3

7.76

3.97

2.0

128

128

128

15,28

7.91

3.75

2.0

256

256

256

14.62

7.98

4.0

2.0

512

512

512

7.98

3.96

1.99

Speedup of in-core 3-D FFT.

Size

8 CPUs

Time

Eflops

Time

16 CPUs
Eflops

128

0.001968

8524.33

0.001060

15823

256

0.014467

9277.20

0.007317

18343

500

0.102708

9736.30

0.049712

20116

512

0.101597

10568.66

0.052114

20604

1000

0.719674

11116.14

0.348659

22945

1024

0.712005

12064 .42

0.365284

23516

2047

4.987002

13779.72

2.577519

26661

Table 2.12

Performance of CGEMMS (scilib) on CRAY C916. Eflops =
Effective Megaflops based on 8N3 operations. Time is in seconds.
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Machine [Size |Mcol [ I/O [I/O Time | Time | MFE D
(sec) (hrs)
C916/8 110000 |1000 |10.40 0.00 0.07 |10660.17 |SSD
C916/8 |20000 | 1000 |73.60 | 47.50 0.53 [11220.81 |16
C916/8 [30000 | 512 |[449.50 {121.37 1.84 |[10875.14 |16
Table 2.13 Benchmarks for out-of-core LU decomposition codes.

Notes: I/O = Gigabytes Transferred Gigabytes. I/O time is in sec-
onds. Time for solution is in hours. MFE = Effective Megaflops. Mcol
= width of column used for slabs D = Disks. 16 DD60s were used with
a peak transfer rate of 320 Mbytes/sec. An SSD was used for the 10K
result.

Machine |Size |Mcol | I/O I/O Time | Time | MFE D
(sec) (hrs)
C916/8 | 10000 | 1000 10.40 12.60 0.07 |[10897.75 |16
C916/8 (20000 |1000 | 73.60 | 49.00 0.54 |10992.25 |16
C916/8 |30000 | 512 | 449.50 | 134.80 1.94 |10335.51 |16
C916/8 {40000 | 512 |1061.30 | 277.80 461 |10286.09 |16
C916/16 [10000 |1000 10.40 14.80 0.04 [20997.38 |16
C916/16 |20000 | 1000 73.60 59.00 0.27 121920.75 |16
C916/16 [30000 | 512 | 449.50 | 182.00 1.01 }19830.71 |16
C916/16 40000 | 512 |[1061.30 | 386.00 2.39 |19796.41 | 16

Table 2.14 Simulated results for C916 with 16 DD60 Disk Drives.

of the slab and the I/O rates are known. At each stage of the algorithm,
computation time is compared against I/O time and the maximum is
used in the time calculations.

The parallelization scheme in CGETRFO was changed slightly. In
the original code, parallelization was done inside the matrix multiply
kernel. The new version of CGETRFO does square matrix multiplies in
parallel as it works down a slab of data. For this reason, actual results
tend to be slightly faster than the simulated results.
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Appendix: Mathematical Details for Out-Of-Core FFT
Scheme

The defining equation for a one-dimensional DFT is:
N-1 o
Ye = ije""'(i"/’\’) k=0,1,...,N -1 (1)
—~

The arrays X and Y are redefined as:

X(])——’X(JI,JZ) Jl=0’1saNl_1; (2)
jz =0,1,...,N2 -1
Je—n+i2*xM (3)
k‘—kl-}-kg*N] (4)
Xo XN,
Xl XN1+1

X=| X2 Xwsr - (5)

XNi-1 Xonj+1
Y(k)-—*Y(kl,kQ) k] =0,1,...,N1—1; (6)
k, =0,1,...,Ny — 1

The new defining equation is:

Ni—-1 N2-1
Y(k2,k1) — z lei(jlkl/Nl) e21n'(j1k2/N) Z X(jl’j2)€21ri(j2k2/Ng)
J51=0 72=0

(7)

In (7), the sum within the square brackets represents a 1-D discrete
Fourier transform (DFT) of length N, that can be computed with a
fast Fourier transform (FFT) algorithm. N; such FFTs are computed,
one for each j;.

After the phase factor shown in the square brackets is applied,
the first sum of (7) represents another 1-D DFT of length N;, again
calculable using an FFT algorithm. These 1-D FFTs of length N; are
computed for each k;, so there are N; of them.
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So, in essence, the problem of computing a single long DFT has
been transformed into computing several smaller (approximately N'/2)
DFTs. Even if the original sequence of length N cannot reside in
memory, the smaller FFTs (of length N; during Pass 1 and length
N; during Pass 2) might, and the larger problem is thus solved. Since
multiple FFTs need to be computed simultaneously, “cfftmlt” may
be invoked. Further, multiple CPUs may be employed to compute these
groups of 1-D FFTs.

The input data resides on disk. The sequences generated after the
first pass through the data also are put on disk. Finally, the output
sequence is also placed on disk. Where a solid-state device (SSD) is
available and the size of the data sequence permits, all files can reside
on the SSD.

All input /output (I/0) is performed in a raw mode that bypasses
user, system and library buffers. Consequently, all I/O is done in mul-
tiples of 512-word blocks to utilize the high bandwidth of the devices.
In addition, the structure of the data in disk is such that a series of
submatrices that make up the full 2-D matrix X(j;,j2) are stored,
with random access to the subblocks. This “block-oriented” storage
and retrieval of the data is crucial to the high performance 1/0 scheme
that has been used.
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