[

SOLVING LARGE OUT-OF-CORE SYSTEMS

OF LINEAR EQUATIONS
USING THE INTEL iPSC® /860

D. §. Scott

7.1 Introduction

7.2 The iPSC® /860*

7.3 The Concurrent File System
7.4 Block Gaussian Elimination
7.5 Parallel Matrix Multiply

7.6 Parallel Matrix Inversion

7.7 User Interface

7.8 Stability

7.9 Node Optimization

7.10 I/0O Optimization

7.11 Performance

7.12 Extensions to Odd Powers of Processors
7.13 Extensions to Tertiary Storage
7.14 Conclusions

7.15 Addendum

References

7.1 Introduction

Certain engineering problems, such as radar cross-section modeling
using the method of moments, give rise to systems of linear equations

AX =

B, where A is a large, dense, 128-bit complex matrix and B

is a matrix of right-hand sides. Solving systems as large as 20,000 is

*

i860 and Concurrent File System are trademarks of Intel Corpo-

ration; iPSC is a registered trademark of Intel Corporation.

— 247 -

248 7. Solving Out-of-Core Systems Using Intel iPSC ®/860

desired now with even larger problems anticipated in the near future.
This chapter describes LOOCS, an implementation of a Large Out-Of-
Core Solver on the Intel iPSC/860 hypercube with a Concurrent 1/0
disk subsystem. Block Gaussian elimination with restricted pivoting
is used, swapping blocks on and off the disks as needed. The initial
implementation runs only on even powers of two processors (1, 4, 16,
64). The code cannot take advantage of any symmetry in the matrices.

At both the cube and node level, the basic operation X = X -Y*Z
has been carefully optimized. A hand-coded 1860 assembly language
routine is used at the node level and at the cube level, asynchronous
message passing and asynchronous disk I/O overlap almost all data
movement with computation. A 64-node iPSC/860 with eight I/0O
nodes and 16 disks can factor a 20k problem in 3 hours and 50 minutes,
achieving a sustained rate of 1.52 gigaflops. A hundred megaflop ma-
chine would take about 2 1/2 days to factor the same problem. Plans
to extend the algorithm to run on odd powers of two processors and
to even larger problems using tertiary storage will be described.

7.2 The iPSC® /860 System

The Intel i860 ™ processor is a million transistor RISC chip, with
an 8k byte data cache, a 4k byte instruction cache, 32 integer registers,
and 32 floating point registers. In each cycle, the chip can do one integer
instruction, start one add, and start one 32-bit multiply. At 40 MHz,
the peak speed is 80 Mflops in 32-bit precision. A 64-bit multiply can
only be started every second cycle, so the peak 64-bit speed is 60 Mflops
if the number of adds is twice the number of multiplies, or 40 Mflops
if the number of adds and multiplies are equal (as they are in matrix
computations). For more information on the i860 see [1].

The iPSC/860 System is a distributed-memory, message passing,
hypercube multi-processor, containing up to 128 compute nodes. Each
compute node has 8 megabytes of memory, an i860 processor, a network
interface, and a message router. Each compute node lies at a corner of
a d dimensional cube. The wires of the communication network form
the edges of the cube. Each router can handle up to eight bidirectional
wires. Seven of them are hypercube edges (which leads to the 128 node
limit) and the eighth is for external I/O. The routers and the backplane
form a circuit-switched communication network which allows any node
to form a circuit to any other node and then transmit a message di-

7.3 The Concurrent File System ™ 249

rectly. The network interface contains two 4k byte FIFOs (queues). To
maintain consistency of memory and the on chip data cache, the i860
is responsible for all data movement between memory and the FIFOs.
Fach node can send and receive messages at 2.8 megabytes /sec.

Each compute node runs a separate user process which is a com-
plete program. These programs have the ability to send and receive
data by making system calls to send and recv. The best analogy to
the communication system is a set of offices with two fax machines
each, one for sending messages and one for receiving messages. Each
office can send a fax directly to any other office. The message will then
remain in the fax queue until the worker comes and gets it.

Message passing may either be synchronous or asynchronous. Syn-
chronous message passing does not return until the message has been
processed. Asynchronous message passing returns immediately and is
useful if the node process has computation to do while the message
is being sent or received. In either case, the i860 will be interrupted
occasionally to move data to or from the FIFOs.

For more information on the iPSC/860 see [2].

7.3 The Concurrent File System ™

The iPSC/860 System has an optional disk subsystem containing
an arbitrary number of 1/O nodes and disks. Each 1/O node has an
Intel 80386 processor, a SCSI bus controller with two 760-megabyte
disks, and a network interface. It is directly connected to only one
particular compute node (its anchor node) but it is part of the circuit-
switched network. Messages from I1/0 nodes to compute nodes compete
for the same wires as node-to-node messages and travel at the same
2.8 megabytes/sec.

All of the disks in the system form a single Concurrent File Sys-
tem ™ (CFS). The root directory of CFS is “/cfs”. All files rooted in
this directory are in CFS. Unless otherwise specified, all CF'S files are
spread out across all of the disks in 4k byte blocks. Thus different
compute nodes can access different parts of a file without creating a
bottleneck at a particular I/O node. This disk striping is invisible to
the user, functionally CFS$ is equivalent to one big disk with processes
opening, reading, and writing files. A single 1/O node can transfer
data from compute node to disk and back at about 1 megabyte/sec.
To obtain this transfer rate the I/O node maintains a disk cache in

250 7. Solving Out-of-Core Systems Using Intel iPSC ® /860

memory and aggressively reads ahead and writes behind.

Compute nodes cache structure information but not data. This
is to ensure consistency of the data when one node writes and an-
other one reads. Unfortunately, standard FORTRAN I/O thwarts this
attempt by buffering I/0 in the runtime system. To get around this
problem, CFS provides special byte oriented files which do not use the
FORTRAN I/0 library and do not insert any control characters in the
file. These files can be accessed using byte oriented I/O routines cread
and cwrite for synchronous reads and writes and iread and iwrite for
asynchronous access. The system call lseek can be used to randomly
reposition the file pointer in byte oriented CFS files.

For more information on CFS see [3].

7.4 Block Gaussian Elimination

The Large Out-Of-Core Solver (LOOCS) code implements a vari-
ant of block Gaussian elimination to compute the block LU factoriza-
tion of A and then uses block forward and back substitution to solve
for the unknown matrix X, one block column at a time, given the
factorization and the right-hand side matrix B. If X isan rx s sub-
matrix of A (or B), the cost of reading X from disk is proportional
to r *s. The work associated with multiplying X by another block
is proportional to r * s * min(r,s). Thus partitioning A into square
blocks was chosen to minimize 1/O overhead. These square submatri-
ces are called disk sections and they are the units which are swapped
on and off the disk during the algorithm. The size of disk sections is
determined as a function of the size of the matrix and the amount of
memory available, as described below.

Diagonal disk sections are explicitly inverted. This is not required
by the algorithm but the extra work needed is more than compensated
by the improved efficiency of the parallel implementation as described
below. Pivoting during the inversion is restricted to columns inside a
disk section since the rest of the pivot column would not be available
in memory. To avoid dealing with non square disk sections, the matrix
is implicitly padded to make all disk sections square. The steps of
the algorithm are ordered so that all modifications of a disk section
are done before the section is written to disk. Figure 7.1 shows the
labelling and elimination order for the factor algorithm assuming 4 x 4
disk sections.

7.4 Block Gaussian Elimination 251

| | T 1
1 3 7 13
A11 Al12 A13 A14
2 4 8 14
A21 A22 A23 A24
5 6 9 15
A31 A32 A33 A34
10 11 12 16
A41 A42 A43 A44

Figure 7.1. Labelling and elmination ordering of a 4 x 4 block matrix.

The actual block operations for a ¢ x t matrix of disk sections is

as follows:
fori=1,1t

for j =1, i-1 //do ith row
for k =1, j-
Aij = Aij - Aik*Akj
endfor '
Aij = Aij*Ajj //Ajj already inverted
endfor
for j =1, i-1 //do ith col
for k=1, j
Aji = Aji - Ajk*Aki
endfor

endfor

252 7. Solving Out-of-Core Systems Using Intel iPSC ®/860

for j =1, i-1 //do ith diagonal block
Aii = Aii - Aij=*Aji
endfor
Aii = inverse of Aii
endfor

The corresponding solve algorithm, once for each block column of
B is:
for i =1, t / /forward elimination
for j =1, i-1
Bi = Bi - Aij*Bj

endfor
endfor
for i =¢t, 1,-1 //back substitution

for j = t,i+1, -1
Bi = Bi - Aij*Bj

endfor
Bi = Ai1i*Bi
endfor

The ordering of the updates was chosen so that all modifications to
a particular disk section are done at once. Thus only finished disk
sections are written to disk (except during the forward solve). This
minimizes disk writes which are often slower than disk reads and it
provides for a natural checkpointing of the factor algorithm since no
partially computed block is ever on the disk. Since each block column of
the solve algorithm is independent and is completed relatively quickly,
checkpointing of the solve algorithm is less important, but could be
obtained by storing the forward solve results in temporary files. Only
three types of operations are needed. In order of importance, they are
(for X, Y ,and Z disk sections):

. X=X-Y=xZ
2. X=YxZ
3. explicitly invert X .

Without the explicit inversion, a fourth kind of operation would be
needed which implemented block forward and back substitution. This
cannot be implemented as efficiently on a parallel machine as matrix
multiply. In any case only t inversions are needed total so that for large
matrices the inversion time is insignificant. The algorithm as described

7.5 Parallel Matrix Multiply 253

at this level is completely sequential. All of the parallelism is hidden
inside of the three disk section operations.

7.5 Parallel Matrix Multiply

Both X = X -Y *xZ and X =Y % Z are implemented using
the functionality of the BLAS3 (see [4]) subroutine ZGEMM which

computes
X=a*xY*xZ+pxX (1)

with a =—1, =1 and a = 1,8 = 0 respectively.

The cube level algorithm treats the nodes as a k X k torus (which
will be called the mesh), which is a subset of the hypercube topology.
Each disk section is divided in square subsections called node sections,
one for each node. In computing a disk section matrix product, each
X node section requires k node section multiply accumulate opera-
tions. At the beginning of the matrix multiply routine each node has
in memory one X node section, one Y node section, and one Z node
section. Each will implement equation (1) for its node sections while
simultaneously passing its Z section up and its Y section left in the
mesh. If node sections are large enough, the message passing will fin-
ished before the computation, so the next node section computation
(and message passing) can begin immediately.

The disk section multiply loop consists of k& phases in which each
node does the following:

Post receive from down

Post receive from right

Post send to up

Post send to left

Multiply-Add

Wait for completion of messages

In the kth (last) phase no data is sent since there will be no further
phases.

To obtain the correct answer, the initial assignment of node sec-
tions to disk sections must be done carefully. X node sections are as-
signed in their natural ordering, Y node sections are shifted by rows,
and Z node sections are shifted by columns. Node sections in the first
row of Y are assigned in their natural order. The next row is circularly

254 7. Solving Out-of-Core Systems Using Intel] iPSC ® /860

< X‘ - E L 4 X = ; 4 X =Y *2 X = Y °2 >
11 1 g1] 12 12 ‘22 13 13 !33 14 14 ‘44
C X-E‘Z X =Y *2 X = *Z X =Y *2Z
21 22,21 22 23|32 23 24 |43 24 21 414
x-;-z X =Y *°2 X =Y *2 x-;'z
31 33,311 32 34,42 33 31,13 34 32,24
x C-7 |x -¥%z |x Y%z |x -z P
41 44 141 42 41 412 43 42 423 44 43 434
\J \VJ

/U

AWA

U

Figure 7.2. Initial assignment of node sections to nodes (and communi-
cation pattern).

shifted one position left in the mesh. Each succeeding row is shifted
further left. Similarly, the first column of Z is assigned naturally, the
second column is shifted up one position, and each succeeding column
is shifted further up. See [5] for more details. Assuming a 4 X 4 node
mesh, Fig. 7.2 shows the initial assignment of the X , Y ,and Z node
sections and communications paths.

7.6 Parallel Matrix Inversion

Parallel matrix inversion is implemented using the Gauss-Jordan
algorithm for hypercubes as described in [6]. Each node owns a node
section of a diagonal disk section. At each phase of the inversion one
pivot column and row are processed. Pivoting is done only inside of
node sections so that no communication is needed. A sketch of the
algorithm follows:

7.7 User Interface 255

Loop over diagonal elements:

If I own the pivot point
pivot
send pivot number to other nodes in my row and column
invert diagonal element
scale my part of pivot column
send my part of pivot column to other nodes in my row
(including inverted diagonal element)
send my part of pivot column to other nodes in my column
update my node section
elseif I own part of pivot row
receive pivot number
pivot
send my part of pivot row to other nodes in my column
receive part of pivot column
update my node section
elseif [own part of pivot column
receive pivot number
receive part of pivot row
scale my part of pivot column
send my part of pivot column to other nodes in my row
update my node section
else (I own neither)
receive pivot row
receive pivot column
update my node section
End Loop

After all of the updates, apply pivoting to columns in reverse order.

Each update is a rank one change to the node section. It was
implemented as a call to ZGEMM with Y a single column and Z a
single row respectively.

7.7 User Interface

A 20k matrix requires 6.4 gigabytes of disk space to hold the fac-
tors. If the initial data is also in a disk file, then almost 13 gigabytes
are required. To allow maximum use of disk space, LOOCS does not
require an input file, it requires a user-supplied subroutine to fill node

256 7. Solving Out-of-Core Systems Using Intel iPSC ®/860

sections as needed. Whenever a new disk section is needed all nodes
call the matrix routine to fill in their node sections. This routine can
read a disk file, but alternately, the matrix could be computed on the
fly from the initial model, which requires much less space than the ma-
trix itself. Similarly the solve routine calls a user supplied subroutine
to generate sections of the B matrix. Any memory needed for these fill
computations will not be available as buffer space for LOOCS.

In addition to these routines, the user specifies the problem size
and the amount of workspace provided to LOOCS for buffer space. The
size of the workspace sets an upper bound on the size of a node section
since each node must be able to store eight node sections (three for
the in core matrix multiply, two for node-to-node communication, and
three for asynchronous I/0). This node section size and the number of
processors defines the upper bound on the size of a disk section. The
disk section size is compared to the size of A to see how many disk
sections are needed. In general the last disk section in each row and
column will extend beyond the edge of the matrix. The node section
size is then reduced to minimize the overlap. For example, for a 20,000
problem, 64 processors, and enough memory for node sections of size
240, the node section size will be shrunk to 228, the disk section size
will be 1824, there will be 11 disk sections per row of the matrix and
the last disk section will overlap by 64. This overlap is actually stored
on the disk and manipulated to avoid the hassles of handling odd sized
sections.

The solve algorithm uses rectangular node sections. The row di-
mension of a solve node section is the same as the dimension of a factor
node section. The column dimension is a free parameter and is deter-
mined in exactly the same way as the factor node section dimension
based on the available memory and the number of columns in the B
matrix.

7.8 Stability

Gaussian elimination with no pivoting is unstable (except for spe-
cial classes of matrices) since the diagonal matrix elements may be
much smaller than the rest of the matrix elements. This is solved by
using row swaps (pivoting) to bring large elements to the diagonal. In
the block algorithm used by LOOCS, pivoting can be done only over
the part of the column which is in memory. Thus the algorithm is un-

7.9 Node Optimization 257

stable and may fail completely or produce inaccurate results on certain
problems for which accurate results could be obtained by pivoting over
the whole column.

Full column pivoting can be supported by a slab style algorithm.
This provides better stability at the cost of increasing the I/O to com-
pute ratio. On a 20k problem on 64 compute nodes, a slab width of
about 300 could be supported. This increases the required I/O (both
disk and node-to-node) by about a factor of 3 or 4, and would prob-
ably slow the performance by at least a factor of 3. Furthermore, this
performance degradation increases as the size of the problem increases.

The crucial question is how often do unstable matrices arise in
these large problems. This would require significant testing on real
data to determine. Many real problems are quasi diagonally dominant
in which the large matrix elements cluster near the main diagonal.
Such problems are less likely to be unstable than uniformly random
matrices.

Since LOOCS cannot prevent instability, it has a user option to
monitor it. Since the explicit inverse of the diagonal sections is com-
puted, it is possible to compute the condition numbers of these sections.
A large condition number is an indication of instability. LOOCS offers
the user an option to monitor stability and terminate a run if too large
a condition number is encountered. If a diagonal section is exactly sin-
gular, then it is impossible to invert it and LOOCS terminates with
an error message. Only significant field experience with the code will
determine whether instability is a significant problem in practice.

7.9 Node Optimization

To obtain optimal performance on the i860, the ZGEMM routine
was hand-coded in assembly language, taking advantage of the data
cache, dual-instruction mode, pipelined arithmetic, pipelined memory
access, and the delayed jump instruction. The kernel is a triply nested
loop. The inner loop is the complex zaxpy operation, T =7+ a*7,
where a is a constant in a register, T is a vector in cache, and 7 is
a vector pipelined in from memory. The middle loop is over columns
of the matrix Y , accumulating the result in cache. The outer loop is
over different columns of the matrix X . The elements of the Z matrix
are the constants for different times through the inner loop. The 1860
has no native complex arithmetic so that each complex multiply add is

258 7. Solving Out-of-Core Systems Using Intel iPSC ® /860

implemented as four real multiplies and four real adds. The inner loop is
16 instructions, processes two elements of the vector Z, and performs
eight multiplies and eight adds. To accommodate this, factor node
sections are required to have even dimensions. The asymptotic speed of
the inner loop (at 40 MHz) is 40 Mflops. Some overhead is attributable
to memory refresh and outer loop overhead. The asymptotic speed
obtained in the kernel is 37.5 Mflops with an n-half of about 10 (see
Table 7.1). For a more detailed description of this kernel see [7].

It is possible to improve the performance of the matrix multiply
algorithm by about 25% by using the implementing complex matrix
multiply using three real matrix multiplies and five matrix adds, as
follows:

(A+iB)(C+iD)= A*C—-BxD+i((A+ B)(C+D)- A*xC - BxD)

See [8] for a numerical stability analysis. Since matrix adds require
much fewer flops than matrix multiplies, this formula saves about 25%
of the flops. However, single matrix adds cannot be implemented with
high efficiently on the i860 because no operand is reused. Capturing the
performance advantage requires writing a custom assembly language
routine which does the entire operation at once. An implementation
of this algorithm is in progress and it is estimated that the overall
performance would improve by about 20% when this modification is
inserted, but no measured numbers are available.

There is a similar strategy due to Strassen for multiplying two real
matrices. If the two matrices are partitioned into 2 x 2 block matrices,
then the multiply can be accomplished in seven half multiplies and
eighteen half adds. This was shown to be useful on a Cray computer in
[9]. It is less clear whether this approach can be effectively implemented
on the iPSC/860 and is not currently being pursued.

7.10 I/O Optimization

Each 1/0 node can transfer data on or off the disk at about one
megabyte/second. Enough disks are needed to hold the factors and
solution files. Enough I/O nodes are needed to provide enough band-
width to ensure that during a matrix multiply, the I/O finishes before
the computation. Because I/O scales as the square of the node section
and computation scales as the cube, the number of I/O nodes required

7.11 Performance 259

depends on the node section size which in turn depends on the avail-
able memory. For 64 i860 nodes with eight megabytes of memory, eight
I/0 nodes are sufficient.

However, a further tuning was necessary to obtain optimal per-
formance. The data cache on the I/O node is a shared resource. 64
compute nodes requesting service from a single I/O node thrashes the
disk cache and causes a degradation in performance. This could be
solved by increasing the memory on the I/O nodes, but in this in-
stance it was solved by partitioning the factor results into a separate
file for each of the columns of the processor mesh, and restricting each
file to the single I/0 node anchored in that column. Thus only eight
compute nodes were active at any one I/0O node. This had the added
advantage of eliminating all contention among 1/0 messages headed
for different I/O nodes, since each 1/O node only communicated up
and down its column of processors.

There is one problem with the partitioning strategy. A node section
written by one compute node is read by a different one which may not
be in the same column of the mesh. This was solved by pre-processing
disk sections before they were written to the disks. Node sections are
sent by node-to-node messages from the node which computed them
to the node who will later read them before they are written. Thus
sections below the main diagonal, who will later be left factors, are
twisted by rows, and sections on or above the main diagonal, who will
later be right factors, are twisted by columns. Thus when nodes read
node sections for matrix multiplies, they only have to read the node
sections which they wrote.

Finally, the anchor nodes to which the 1/O nodes were connected
in each column were chosen to minimize the contention between 1/0
messages and node-to-node messages. This further reduced message
contention.

7.11 Performance

Performance of the parallel matrix multiply routine is summarized
in Tables 7.1 and 7.2. For k * k nodes, the matrix multiply takes k
phases, all but one of which involves node-to-node communication. On
a single node, there is only one phase and no communication so that
column simply measures the performance of the assembly language
kernel. The asymptotic speed is about 38 Mflops and half that speed is

260 7. Solving Out-of-Core Systems Using Intel iPSC ® /860

Nodes
Problem 1 4 16 64
Size
8 17.1

16 284 15
32 34.1 35 53 42
64 36.5 106 113 141
128 374 130 207 365
256 37.8 141 423 763
512 . 147 548 1,379
1,024 . . 578 2,165
2,048 . . . 2,300

Table 7.1 Aggregate performance of parallel matrix product (megaflops)

obtained for matrices about 10 by 10. For more than one node, there
are two possible ways to measure performance. Table 7.1 compares a
fixed size matrix spread out over the available nodes, and measures
aggregate performance.

Table 7.2 assumes fixed size node sections and measures perfor-
mance per node. It can be seen that if a small fixed-sized problem is
run on a sufficiently large number of processors, the efficiency drops
so much that the aggregate performance actually decreases. This is a
common problem. This style of machine is not designed to run a small
problem blazingly fast—it is designed to run big problems fast. For
fixed-sized node sections, the efficiency decreases because more and
more of the phases involve communication. However since the arith-
metic scales as the cube of the node section and the communication
scales as the square of the node section, this effect is almost negligible
for large node sections.

The 2.3-gigaflop performance on a 64-node system is not obtain-
able on a real problem because of the inefficiency of the inversion, the
cost of doing 1/0 while computing, and the I/O which is not overlapped
with communication. The I/O degradation is much more serious than
the node-to-node communication degradation for two reasons. First,
the compute node must do significant work to figure out which disk
blocks are needed from which disks. Furthermore, the 1/O traffic is
packetized into 4k byte disk blocks, which lowers the efficiency of the

7.12 Extensions to Odd Powers of Processors 261

Nodes
Node Section 1 4 16 64
Size
8 17.1 3.8 3.3 2.2
16 28.4 8.8 7.1 5.7

32 4.1 26.5 12.9 11.9
64 36.5 32.5 26.4 21.5
128 37.4 35.3 34.2 33.8
256 37.8 36.8 36.1 35.9

Table 7.2 Efficiency of parallel matrix product (megaflops/node)

communication. The cost of the inversions is noticeable both because
of the additional flops required by the full inversion and because the
inner kernel of the inversion is not as efficient as the full matrix-matrix
product. For node sections of about 200, the inversion achieves only
about 8 mflops per node.

Table 7.3 gives the aggregate performance of the complete factor-
ization algorithm run on a 64-node machine for eight I/0 nodes and
16 disks. A very simple matrix fill routine was used. The run times
obtained in practice would depend on the time taken in the matrix fill
routine. For the largest problem the performance achieved is more than
25 Mflops per node sustained, which is more than 60% of the theoret-
ical peak of the machine for matrix computations. The performance
obtained in the solve algorithm depends on the number of right-hand
sides. For one right-hand side the algorithm is strongly 1/O bound. For
a full disk section of right-hand sides, the solve is more efficient than
the factor since there is no inversion step.

7.12 Extensions to Odd Powers of Processors

The algorithm as described so far runs only on square numbers
of processors. An implementation for odd powers of 2 is in progress.
The approach is to partition the nodes into two square meshes and
update a row and a column of the factorization simultaneously. The
row requires more work because of the multiplication by the diagonal

262 7. Solving Out-of-Core Systems Using Intel iPSC ® /860

Nodes

Problem Megaflops/
Size Seconds Megaflops Node
5,000 495 673 10.5
10,000 2,261 1,178 18.4
15,000 5,434 1,400 21.9
20,000 13,842 1,541 24.1
25,000 25,756 1,612 25.2

Table 7.3 Performance on a 64-node machine.

blocks, so the set of processors doing the column also does the diago-
nal section. A small amount of synchronization is needed between the
processors creating the row and the processors creating the diagonal
block. The final inversion of the diagonal block can be shared among
all the processors. In the solve phase, it is simply necessary to make
sure that the B matrix has an even number of block columns so that
each set of processors can solve for the same number of block columns.

No performance data for the extended algorithm is available. Hav-
ing twice as many processors will require more I/O nodes to provide
the necessary bandwidth to and from disk. The factor will be somewhat
inefficient because of the needed synchronization. The solve should be
just as efficient as before. There is no reason why a 128-node system
should not run faster than 3 gigaflops.

7.13 Extensions to Tertiary Storage

Users wish to solve problems of order 100,000. The current algo-
rithm would require 160 gigabytes of on-line disk storage to run, which
is not cost effective. The most cost-effective approach would be to use
video disk juke boxes to supply the appearance of large on-line stor-
age. The I/O speeds required by the algorithm are modest and can
be met by existing video disk technology. The algorithm accesses large
segments sequentially so disks will rarely have to be swapped. Each
column of processors would need three disks on-line (two input and
one output). Further tuning of the sequence of disk operations could

7.14 Conclusions 263

further reduce the number of times the input disks would have to be
swapped. A 128-node iPSC/860 with 16 I/O nodes with 16 juke boxes
with three active disks should be able to factor a 100k problem in about
8 days.

7.14 Conclusions

The LOOCS code running on the iPSC/860 parallel computer is a
very effective way to solve large dense systems of linear equations such
as those arising from the method of moments.

7.15 Addendum

Since this manuscript was written, many changes have been in-
corporated in ProSolver-DES. The Winograd kernel has been imple-
mented. The two square algorithm has been implemented. A rank
75,000 problem has been solved on a 128-node iPSC/860 and 96 gi-
gabytes of disk. The factorization took 2.7 days at an aggregate speed
of 4.9 Gflops or 38 Mflops/node (where these measures are effective
megaflops, computed by taking the traditional operation count ((8/3
N*N*N)) and dividing by the elapsed time).

An entirely new “slab” version of the algorithm has been im-
plemented which partitions the matrix into block columns instead of
squares to allow for full column pivoting. A symmetric version of the
block solver has been implemented which saves nearly half the storage
and half the work.

Intel has introduced a new generation of machine, the Intel
ParagonTM System. The nodes have two 50-MHz i860XPs, one ap-
plication processor, and one message processor. The network is a two-
dimensional mesh with bandwidth of 200 MB/sec in each direction of
each link. The operating system is now OSF/1 Unix with extensions
for message passing. Both solvers are being ported to the Paragon. A
Strassen kernel is being implemented. A preliminary port of the block
solver without the Strassen kernel achieved 48 Mflops per node, fac-
toring a rank 25,000 problem on 36 nodes. It is expected that final
performance will be between 60 and 70 Mflops per node when the
Strassen kernel is integrated.

264

7. Solving Out-of-Core Systems Using Intel iPSC®/ 860

References

[1]
[2]
3]

[4]

[5]

[6]

[7]
8]

[9]

1860 64-bit Microprocessor Programmer’s Reference Manual, Intel
Corporation, Santa Clara, CA, 1989.

Lillevik, S., “Touchstone program overview,” Proceedings of the
Fifth Distributed Memory Computing Conference, 1990.

Pierce, P. R., “A concurrent file system for a highly parallel mass
storage subsystem,” Proceedings of the Fourth Conference on Hy-
percubes, Concurrent Computers, and Applications, 1989.

Dongarra, J., Du Croz, J., Duff, I., and Hammerling, S., “A set of
level 3 basic linear algebra subprograms,” ACM Trans. on Math.
Soft., 1989.

Duncan, K., “A survey of parallel computer architectures,” Com-
puter, Vol. 23, No. 2, 9, 1990.

Hipes, P. G., and Kupperman, A., “Gauss-Jordan inversion with
pivoting on the Caltech mark II hypercube multiprocessor,” Pro-
ceedings of the Third Conference on Hypercube Multiprocessors,
1621-1634, 1988.

Scott, D. S., “A fast i860 matrix-matrix product routine”, Tech-
nical Report, Intel Scientific Computers, Beaverton, OR, 1990.

Higham, N. J., “Stability of a method for multiplying com-
plex matrices with three real matrix multiplications,” Numerical
Analysis Report No. 181, Department of Mathematics, Univeristy
of Manchester, England, 1990. "

Bailey, D. H., Lee, K., and Simon, H. D., “Using Strassen’s algo-
rithm to accelerate the solution of linear equations,” Journal of
Supercomputing 4, 357-371, 1990.

