
Progress In Electromagnetics Research C, Vol. 152, 245–251, 2025

(Received 21 December 2024, Accepted 10 February 2025, Scheduled 18 February 2025)

An Optimized Phase-Only Trapezoid Taper Window for Array
Pattern Shaping

Jafar R. Mohammed∗

College of Electronics Engineering, Ninevah University, Mosul-41002, Iraq

ABSTRACT: Generally, the array pattern synthesizing can be shaped by controlling the excitation amplitude and phase of individual
elements of the antenna array which they could be controlled either separately or jointly to provide most flexible solutions for the desired
pattern shaping. In this paper, a new controllable trapezoid phase-only taper is proposed. In practical applications, phase-only tapers
are more preferable than amplitude-only tapers due to their desirable advantages. The required pattern shaping with fulfilled user-
defined constraints on the sidelobe peaks, beam widths, and steered nulls can be achieved by optimizing only the excitation phases of the
trapezoidal taper. More importantly, the proposed trapezoidal taper offers the best tradeoff between the array directivity and undesirable
sidelobe pattern. In addition, the element excitation amplitudes of the proposed phase-only trapezoid taper are made constant and equal
to that of the original trapezoid taper function. Thus, it enjoys low array complexity. Moreover, the manipulated phases are assumed
to be symmetric to further simplify the array feeding network. The genetic algorithm was used to optimize only the half number of
the elements’ phases. The results show that the phase-only trapezoid taper yields identical main beam shape to that of the amplitude-
only trapezoid taper and much better than the other conventional tapers. Furthermore, it is found that the trapezoid phase-only method
needs more variable elements than the trapezoid amplitude-only method to achieve almost the same performance. Thus, the complexity
reduction percentage of the phase-only method is lower than that of the amplitude-only method.

1. INTRODUCTION

Many applications such as wireless communications, radar,
and remote sensing use phased arrays that have capabil-

ity to generate a concentrated beam of radio waves and elec-
tronically scan it to a point in any direction by means of phase
shifters. However, such beam patterns are usually associated
with undesirable sidelobes that cause leakage of the transmit-
ted/received radio waves power to directions other than the in-
tended ones [1].
In general, far-field antenna patterns and their aperture illu-

mination functions are related to each other by direct and in-
verse Fourier Transform equations [2]. Tapering the amplitudes
and/or the phases of the array’s elements can reduce the un-
desirable sidelobe levels and shape the arrays patterns. In the
literature, for example see [3, 4], there are various amplitude ta-
pering windows that have been proposed, and they can be used
to design the antenna arrays and also in the spectral analysis of
the signals.
Alternatively, phase-only tapering control can be exploited

to shape the array’s far-field pattern and also to reduce the
undesirable sidelobe peaks. These phase-only control meth-
ods have many advantages compared to that of amplitude-only
tapering control, and thus, they become more preferable and
widely reported in the literature [5–8]. In some applications of
active electronically steered antenna arrays, implementing an
amplitude-only tapering control may be difficult where the sig-
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nals amplitudes cannot be varied due to the used power ampli-
fiers in which their efficiencies weremaximized onlywhen they
operate in compression mode. In this case, the signal amplifi-
cation becomes nonlinear, and thus, signal amplitude tapering
can be problematic. Therefore, manipulating phases instead of
amplitudes can be a better choice for shaping array patterns.
Another important issue with parametric amplitude-only

tapers is a trade-off between sidelobe peaks and main
beamwidths. The beamwidth can be significantly widened,
thus causing array’s directivity reduction when the sidelobe
peak is reduced. Therefore, optimization algorithms such
as genetic algorithm [9], particle swarm optimization [10],
convex optimization [11], and many other algorithms have
been used to optimize the amplitude and/or phase of tapered
elements to get the optimum performance and minimized
sidelobes.
Amplitude and/or phase tapering controls have also been im-

plemented at subarray output [12–14]. Controlling the signal’s
amplitude and phase at the subarray output reduces the number
of needed hardware components, but it may cause distortion in
the subarray’s far-field pattern [15, 21].
Partially elemental amplitude and phase tapering adjust-

ments by either controlling a few existing side elements [16, 17]
or adding extra edge elements [18, 19] have also been suggested
for sidelobe depression. It is proved that partially elemental ta-
pers can maintain beamwidths of the resultant patterns undis-
torted and their directivities unchanged. Thus, they are found
to be more preferable than those conventional fully-elemental
tapers especially in large arrays.
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In this paper, the amplitude-only trapezoid tapering method
presented in [20] is further developed and extended to include
phase-only adjustments. Here, we use the original trapezoid
taper window as a fixed and preexisting amplitude-taper for
element excitation amplitudes. Thus, only element excitation
phases are the optimization variables that need to be optimized
to get the shaped patterns under some prespecified user-defined
constraints on sidelobe peaks, beamwidths, and steered nulls.
For easy implementation and also to maintain the correspond-
ing magnitude pattern an even symmetry, the element excita-
tion phases are assumed to be symmetric about the array cen-
ter. The proposed symmetrical taper has been applied to one-
dimensional linear and two-dimensional planar arrays to as-
sess its validation and superiority compared to all other existing
phase-only taper windows.

2. THE AMPLITUDE-ONLY TRAPEZOID TAPER WITH
ZERO PHASES
Consider a linear antenna array composed of N total number
of elements that are symmetrically distributed about the array
center in the x axis with uniform inter-element spacing d = λ

2 .
The element excitation amplitudes and phases are assumed to
be symmetric around the array center. Consequently, the result-
ing normalized far-field Fourier transform pattern is symmetric,
and it can be given by

FF o (θ) =

N/2∑
n=1

wn cos
[
(2n− 1)

2
kd sin θ

]
(1)

where k = 2π
λ λ is the wave length, θ the direction of arrival

angle from the broadside, wn the complex element excitation
of the nth element, and an and pn represent the amplitude and
phase of element excitation wn. In the work presented in [20],
an was first chosen as a trapezoid taper with partially controlled
elements. Then, the controllable elements were optimized us-
ing an efficient constrained-optimization algorithm, while all
the elements’ phases pn were set to zero. In this work, the val-
ues of an are assumed to be fixed according to the trapezoid
taper function, and the phases are partially optimized (i.e., the
phases of sided elements are only optimized while those at the
central region of the taper are made zero). The trapezoid taper
used for calculating the values of an for the amplitude-only ta-
per is something between standard rectangular and triangular
taper windows. It has a certain number of unit-amplitude el-
ements at the central region of the trapezoid window, and the
remaining number of elements has a tapered-amplitude at the
two edges of the trapezoid window. Like all other common ta-
pers, this taper function is parametric, and its amplitudes can be
determined in Matlab by

an = trapmf

(
n,

[
1
N

2
−M

N

2
+M N

])
(2)

where n = 1, 2, . . . , N is the element index, and M is the
number of the unit-amplitude elements at the central region of
the trapezoid window. There is another method to generate the
trapezoid function by simply taking the difference between two

triangle windows. In Matlab, the far-field array pattern of the
trapezoid taper can be obtained by taking the Fourier transform
(FT) of (2) as follows

FF o (θ) = fftshift(fft (an, S))× EP (3)

where S is a total number of the Fourier transform points,
and EP is the element pattern of the individual array element.
Fig. 1 shows the trapezoid taper for N = 40 and M = 18 that
has been generated by using (2). For comparison, the standard
rectangular and triangular taper windows have also been plot-
ted. As mentioned, this trapezoid amplitude taper will be used
with the proposed phase-only taper where the phases of sided
elements only need to be optimized to get the required shape of
the array pattern.

FIGURE 1. Typical rectangular, triangular, and trapezoid tapers for
N = 40 andM = 18.

3. THE PHASE-ONLY TRAPEZOID TAPERWITH FIXED
AMPLITUDES
The given trapezoid window (see Fig. 1) has two different re-
gions. The first region is located at the top-center of the taper,
and it has a number of elements with unit-amplitude equal to
M elements, while the second region is the two linear tapers
at the array sides which contains a number of tapered elements
equal toN −M . The element excitation amplitudes across the
whole trapezoid window, an, can be given by

an =


n+N

2

−M
2 +N

2

−N
2 ≤ n ≤ −M

2

1 −M
2 ≤ n ≤ M

2
N
2 −n

N
2 −M

2

M
2 ≤ n ≤ N

2

(4)

We can now define the vector, wn = ane
jpn of prefixed trape-

zoid amplitudes, an for 1 ≤ n ≤ N and varying phases, pn for
1 ≤ i ≤ (N −M) where N −M elements are assumed to be
adjusted in their phases. Therefore, the updated phases can be
written as

∅i = pi +∆i i = 1, 2, . . . , (N −M) (5)

where∆i are the phase adjustments ofN −M elements. Here,
we assume that the phase adjustments are symmetrically even
around the array center. Then, the resulting array pattern can
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FIGURE 2. Performance comparison of the amplitude-only and phase-only trapezoid tapers.

be written as

FF (θ) =
∑M/2

n=1
an cos

[
(2n− 1)

2
kd sin θ

]
︸ ︷︷ ︸

Central Region of Trapezoid Taper

+
∑N/2

i=M/2+1
aie

j∅i cos
[
(2i− 1)

2
kd sin θ

]
︸ ︷︷ ︸

Side Regions of Trapezoid Taper

(6)

As mentioned, the element amplitudes were chosen according
to the trapezoid taper as given in (4) for 1 ≤ n ≤ N . Rearrang-
ing (6), it becomes

FF (θ) = FFo(θ)︸ ︷︷ ︸
Original Trapezoid Pattern

+
∑N/2

i=M/2+1
∆i cos

[
(2i− 1)

2
kd sin θ

]
︸ ︷︷ ︸

Phase-Only Adjustment Pattern

(7)

From (7) it is clear that there are onlyN−M variable phases to
be optimized instead ofN total array variables for pre-specified

sidelobe peaks, beamwidths, and steered nulls. These pre-
specified user-defined constraints (UDCs) can be given by

UDCs(θ)=

{
20log10(SLLlimit), FNBW ≤ |θ| ≤ 90◦

20log10
FF(θ)

max(FF(θ)) , −FNBW ≤ θ ≤ FNBW

(8)
where SLLlimit is the desired limit on the sidelobe level, and
FNBW is the first null-to-null beamwidth of the main beam.
Now, the N −M variable phases need to be optimized such

that the phase-only adjusted pattern best approximates the de-
sired user-defined constraints pattern such that the difference
between them is minimized in the least mean squared sense as
follows

E (θs) =
∑S

s=1
|FF (θs)−UDC(θs)|2 (9)

where s = 1, 2, . . . , S are the sample points between these
two patterns. The phase-only adjustment method can now be
stated as follows: find the minimum number of variable el-
ement phases, N − M (i.e., the maximum number of zero-
phases at the central region of the trapezoid taper,M) and their
phase adjustments,∆i, for a number of array elements equal to
i = 1, 2, . . . , (N−M), whichminimizes the difference,E(θs),
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FIGURE 3. Element excitation amplitudes and phases and their corresponding patterns for a number of variable elements,N −M = 34 andM = 6.

over the angular range 0 ≤ |θ| ≤ 90◦. This problem may be
formulated mathematically as

∥E (θs)∥∞ = min
∆i

[
max

θ∈(0,90)
|E (θs)|

]
(10)

This is the cost function that has been used with the genetic op-
timization algorithm. The specification parameters of the used
genetic algorithm were: the number of iterations was 1000; the
number of population was set to 50; the number of marriages
was 25; the number of crossovers was 2; a uniform crossover
was chosen; and the selection was tournament. The mutation
probability was set to 0.04 and the tournament eligible set to
10.

4. SIMULATION RESULTS
This section carries out various simulations to demonstrate the
validity of the proposed phase-only trapezoid taper in shap-
ing the array pattern according to the pre-specified user-defined
constraints such as limited sidelobe peak and steered multiple
wide and deep nulls using a partial control of the element exci-
tation phases.
In all examples, a symmetrical uniform linear array with

N = 40 elements and equal inter-element spacing d = λ
2 was

examined.
In the first example, the performance metrics in terms of

peak sidelobe level (PSLL), null depth (ND), directivity (D),

and taper efficiency (TE) of the optimized phase-only trapezoid
window under different numbers of variable elements phases,
N − M (or a certain number of unit-amplitude elements, M ,
in the array center) have been numerically studied. Fig. 2 illus-
trates such results. For comparison purpose, the results of the
method of amplitude-only trapezoid taper that was presented
in [20] are also included. In addition, the method of the fully
phase-only control presented in [6] is also studied. These three
methods were compared under the same conditions of user-
defined constraints where the required PSLLwas set to−30 dB;
half power beamwidth was set to 0.05◦; and two symmetrical
wide nulls with width equal to 10◦ (i.e., 35◦ ≤ |θ| ≤ 45◦) and
centered at θ = ±40◦ were considered. The fully phase-only
control method with prefixed unit-amplitudes fails to provide a
satisfactory performance and meet such constraints. Thus, the
results of optimized amplitude-only and phase-only trapezoid
windows were shown and discussed. It can be seen from these
results that the PSLL and ND are both improveDwith increased
number of variable elements, N − M . In other words, they
are both getting worse with increased number of unit-amplitude
elements, M , until they reach the typical rectangular window
values at M = N = 40. Whereas, the D and TE values are
both degrading when increasing the number of variable ele-
ments,N−M . They are both at their highest values only when
M = N = 40 which corresponds to the typical rectangular ta-
per window as mentioned before.
In the second example, the array patterns of the amplitude-

only trapezoid taper and the proposed phase-only trapezoid ta-
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FIGURE 4. Complexity reduction percentages of the amplitude-only and phase-only trapezoid tapers.

FIGURE 5. Complex amplitude and phase Trapezoid taper and its corresponding array pattern for a number of variable amplitude-phase elements,
N −M = 20 andM = 20.

per with fixed amplitudes for N − M = 34 and M = 6 ele-
ments on both sides of the array center are illustrated. Fig. 3
illustrates the optimized phase-only trapezoid pattern and com-
pares it to the optimized amplitude-only trapezoid taper with
zero phases that was presented in [20]. The user-defined con-
straints are highlighted in this figure by the dashed red-line
where the limited sidelobe level is assumed to not exceed
SLLlimit = −30 dB, and two wide and deep nulls centered
at θ = ±40◦ are considered. This figure also shows their cor-
responding taper functions. The PSLL, wide and deep nulls,
and main beamwidths were successfully kept within the user-
defined constraints in both methods.
In the third example, the array feeding complexity in terms

of number of nonunit-amplitude and nonzero-phase,N−M , in
the taper region of the trapezoid window is studied. The com-
plexity reduction (CR) is calculated as

CR=


Total number of array elements−
Total number of variable elements

Total number of array elements

×100%

(11)

This equation is applied to the optimized amplitude-only trape-
zoid taper and optimized phase-only trapezoid taper under var-
ious numbers of N − M as shown in Fig. 4. It can be seen
that the CR% of the phase-only trapezoid taper is much lower
than that of the amplitude-only trapezoid taper. This means that
the phase-only method needs more variable elements than the
amplitude-only method to achieve the same performance. For
N −M = 22, the CR of the phase-only method becomes zero,
while that of the amplitude-only method is 45%. This verifies
the effectiveness of the amplitude-only method compared to the
phase-only method.
In the next example, the array pattern and its corresponding

optimized amplitude and phase of the trapezoid window (i.e.,
complex element excitation) for N − M = 20 and M = 20
are illustrated in Fig. 5 where the number of variable amplitude
and phase elements was 20 while the number of unit-amplitude
and zero-phase elements was also 20. In this case, there are
20 non-unit amplitudes and 20 non-zero phases, and thus, the
total number of variable elements is 40. By applying (8) and
calculating the CR%, CR=%. This means that there is no any
reduction in the array complexity of the feeding network. Nev-
ertheless, the PSLL was maintained below −30 dB, and four

249 www.jpier.org



Mohammed

FIGURE 6. Results of two-dimensional phase-only taper with prefixed trapezoid amplitudes.

wide-deep nulls around the centers at θ = ±40◦ and θ = ±65◦

with depths more than −60 dB were successfully validated.
Finally, the proposed phase-only trapezoid taper that was

previously applied to the one-dimensional linear array is ex-
tended to the two-dimensional planar array with a total number
of uniformly inter-element spacing elements equal to 40× 40.
The number of elements of the optimized phase-only trapezoid
taper is (N−M)×(N−M) = 20×20, and the number of unit-
amplitudes and zero-phases is equal toM×M = 20×20. The
user-defined constraints were two wide-deep nulls around the
centers θ = ±40◦ and limited SLL = −30 dB. The results of
this case are illustrated in Fig. 6. Although the pattern was well
shaped, the peak of the first SLL located just beside the main
beam was at−18 dB. This is mainly due to the availability of a
small number of the variable phases or degrees of freedom.

5. CONCLUSIONS
The performances of the amplitude-only trapezoid taper with
zero phases and the phase-only taper with pre-fixed trapezoid
amplitudes have been assessed and compared. In some ap-
plications, there is a difficulty to apply amplitude-only meth-
ods, thus, the phase-only methods can be an alternative way to
accomplish the required pattern shaping. From the results, it
has been shown that the amplitude-only method with sufficient
number of sided variableamplitude elements could perform bet-
ter than the phase-only method even with relatively large num-

ber of sided variablephases. This is mainly because the sided
element excitation amplitudes have greater impact on the array
pattern formulation than the phases. The peak SLL, null depths,
directivity, taper efficiency, and the complexity reduction of
the amplitude-only method were slightly better than that of the
phase-only method. It is worth to mention that the fully phase-
only method with prefixed rectangular taper failed to meet the
required user-defined constraints. Thus, the proposed phase-
only method with prefixed trapezoid amplitudes outperforms
many other existing phase-only methods. Moreover, the pro-
posed phase-only taper has been applied to linear and planar
antenna arrays to confirm its effectiveness and generality.
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