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ABSTRACT: A prototype filter design exhibiting Negative Group Delay (NGD) is presented, based on the ratio of two low-pass classical
Bessel filter transfer functions of the same order, but with different 3 dB-bandwidths. The resulting design is a reciprocal-Bessel filter
transfer function, capped at a finite out-of-band gain. The proposed capped reciprocal-Bessel design is based on a similar concept applied
to previously reported capped reciprocal-Butterworth and reciprocal-ChebyshevNGDdesigns, which use ratios of corresponding classical
low-pass filter transfer functions. It is shown that within the in-band frequency range, the synthesized NGD transfer function exhibits
a maximally flat group delay characteristic (Bessel-like property). Due to its near-flat in-band group delay characteristic, the design is
suitable for constant phase shifter applications. For high design orders, it is shown that the achieved NGD-bandwidth product has an upper
asymptotic limit, given by the square root of the out-of-band gain in decibels. When the prototype baseband transfer function is translated
to a non-zero center frequency, it is demonstrated that resonator-based implementations are feasible via Sallen-Key, as well as all-passive
ladder topologies. A combined in-band magnitude/phase distortion metric is evaluated for selected design examples and applied Gaussian
and sinc input waveforms, and it is shown to be proportional to the design order and out-of-band gain. The proposed design’s distortion
metric is also shown to be generally lower than the previously reported capped reciprocal-Butterworth and reciprocal-Chebyshev designs.

1. INTRODUCTION

Negative group delay (NGD) phenomenon is an example
of abnormal wave propagation, in addition to superlumi-

nal [1], negative refractive index [2], simultaneous negative
phase and group velocity [3], and others. NGD is observed
in anomalous dispersion media and circuits which exhibit a
positive phase characteristic slope within a finite frequency
band. Time domain waveforms with their frequency spectrums
mostly contained within a finite NGD band get reshaped by
the medium, such that distinct parts of the output waveform
(peak of a pulse for example) are temporally advanced relative
to the input waveform. Such seemingly counter-intuitive phe-
nomenon does not violate causality, since any non-analytical
part of the waveform (such as “front”, or onset) is still posi-
tively delayed and propagates at a subluminal velocity [4–6].
Utilizing Kramers-Kronig relations between magnitude and

phase characteristics in causal linear media, it was shown
that the magnitude response has a minimum within a fre-
quency band exhibiting NGD [7]. Accordingly, maximum sig-
nal attenuation (SA) is present within an NGD bandwidth of
gain-uncompensated designs. The SA is corrected in gain-
compensated designs, although an out-of-band gain gets intro-
duced as well. Therefore, a relative out-of-band to in-band gain
is observed in both types of NGD designs. Out-of-band gain is
a trade-off quantity accompanying NGD phenomenon, and is
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shown to be proportional to undesired amplification of the out-
put transients associatedwith waveform discontinuities, such as
finite “turn on/off” points in time [8–11]. Further, it was shown
that a prominent transient response can be caused by medium’s
out-of-band gain at any non-analytical points, including discon-
tinuities in waveform derivatives [12].
The NGD-bandwidth product’s trade-off relationship with

the maximum out-of-band gain was functionally quantified for
selected media in [8–10, 13, 14]. For example, in the upper
asymptotic limit the NGD-bandwidth product was shown to
have a square root relationship with the maximum out-of-band
gain given in decibels for a distributed medium with cascaded
identical 1st-order baseband, or identical non-zero center fre-
quency 2nd-order NGD circuits [8]. A similar square root
asymptotic relationship, but with a higher proportionality fac-
tor, was derived for an engineered causal mediumwith a chosen
flat in-band NGD characteristic and its magnitude characteris-
tic obtained via Kramers-Kronig relations [9]. A power of 3/4
asymptotic relationship was shown for a distributed medium
with cascaded identical 2nd-order baseband NGD circuits [10].
A generalization of the trend associated with cascaded identi-
cal N th-order baseband NGD circuits was demonstrated in the
capped reciprocal-Butterworth design presented in [13], with
the NGD-bandwidth product shown to be proportional to the
decibel value of the maximum out-of-band gain raised to the
power of (1 − 1/2N). Further, for a single stage of the N th-
order capped reciprocal-Butterworth design, the upper asymp-
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totic NGD-bandwidth product limit was shown to be a linear
function of the maximum out-of-band gain in decibels [13]. An
N th-order capped reciprocal-ChebyshevNGD filter designwas
introduced in [14], exhibiting a higher NGD-bandwidth prod-
uct relative to the capped reciprocal-Butterworth design for the
same maximum out-of-band gain and the same design order,
but at the expense of somewhat increased amplitude/phase dis-
tortion. The upper asymptotic NGD-bandwidth product limit
was shown to be the same linear function associated with the
capped reciprocal-Butterworth design, increased by an offset
term.
In this paper, a similar NGD transfer function synthesis con-

cept presented in [13, 14] for designs based on classical Butter-
worth and Chebyshev filters is applied to the classical Bessel
filter design. The reciprocal transfer function of a low-pass
Bessel filter is multiplied by another low-pass Bessel filter
transfer function with the same order but with a larger band-
width, resulting in a capped out-of-band gain of the overall
transfer function which makes the design implementation prac-
tically possible. It is shown that such synthesized capped
reciprocal-Bessel transfer function, when translated from base-
band to its higher center frequency equivalent, can be imple-
mented with resonator-based designs in Sallen-Key, and all-
passive ladder topologies.
For a capped reciprocal-Bessel design, it is shown that as the

order approaches infinity the achieved NGD-bandwidth prod-
uct has an upper asymptotic limit that is the same square root
function of out-of-band gain in decibels as that associatedwith a
distributed medium with cascaded identical 1st-order baseband
NGD stages [8, 13], but with a higher proportionality factor.
This proportional factor of the square root asymptotic function
is close to that of the engineered flat in-band NGD characteris-
tic causal medium presented in [9], as expected given the group
delay flatness property of the capped reciprocal-Bessel design
presented here.
An in-band combined magnitude/phase distortion metric dis-

cussed in [15, 16] and modified as in [10, 13, 14] is evalu-
ated for the proposed capped reciprocal-Bessel design and se-
lected input waveforms. The proposed design is shown to ex-
hibit a lower distortion than corresponding capped reciprocal-
Butterworth [13] and capped reciprocal-Chebyshev [14] de-
signs for the same design order and out-of-band gain, due to
its very flat in-band group delay (linear phase) within the 3 dB-
bandwidth. As a tradeoff, the proposed capped reciprocal-
Bessel design exhibits a smaller NGD-bandwidth product than
the other two. The very flat in-band group delay makes the pro-
posed capped reciprocal-Bessel transfer function suitable for
constant phase shifter implementations [17, 18], which are used
in phased array antenna applications.
NGD designs, such as those in [8, 19–38], are commonly

compared based on achieved NGD-bandwidth product and rel-
ative out-of-band gain metrics. NGD designs in this paper and
those in [13, 14] are compared using the samemetrics, as well as
for the in-band magnitude/phase performance metric presented
in [13, 14] to provide a measure of waveform distortion. An
alternative in-band magnitude/phase distortion metric is pre-
sented in [39].

2. PROTOTYPE NGD FILTER BASED ON CAPPED
RECIPROCAL LOW-PASS BESSEL FILTER TRANSFER
FUNCTION
Example NGD designs based on 1st and 2nd-order baseband
rational transfer functions were presented in [9, 10, 19, 40, 41],
and a design with non-integer power functions was presented
in [42]. An NGD design based on capped reciprocal-
Butterworth filter transfer functions exhibiting a near-flat
in-band magnitude response was reported in [13], while
a capped reciprocal-Chebyshev design exhibiting a higher
NGD-bandwidth product but with a ripple in the in-band
magnitude and group delay responses was reported in [14].
Extending the transfer function synthesis concept pre-

sented for capped reciprocal-Butterworth [13, 43] and capped
reciprocal-Chebyshev [14, 43] designs, a capped reciprocal-
Bessel NGD transfer function can be obtained by taking a ratio
of twoN th-order low-pass Bessel filter transfer functions with
different 3 dB-bandwidths:

H (jω)=Hreciprocal−LP (jω) ·Hcapping−LP (jω)

=
1

HLP−Bessel

(
j ω
ωc1

) ·HLP−Bessel

(
j
ω

ωc2

)
. (1)

For the NGD to exist, according to [7] the magnitude of the
transfer function (1) needs to have aminimum around the center
frequency, which translates into the capping function having a
higher 3 dB-bandwidth than the reciprocal function, ωc2 > ωc1.
The design process is described in a patent application [44].
The magnitude responses of a capped reciprocal-Bessel design
transfer function (1) and its reciprocal and capping parts are
illustrated in Fig. 1(a), showing a finite out-of-band gain, A.
Similarly, Fig. 1(b) illustrates a near-flat NGD in-band response
of (1), which is a signature property of the proposed design.
Transfer function (1) can also be scaled by 1/A to represent its
gain-uncompensated version, which doesn’t affect its group de-
lay characteristic.
The term producing the NGD in (1) is a reciprocal

function of a Bessel low-pass filter transfer function,
1/HLP−Bessel(jω/ωc1), but this term alone would ex-
hibit an infinite out-of-band gain. Therefore, to make the
design feasible an out-of-band gain “capping” is needed and
realized by the multiplying low-pass Bessel transfer function,
HLP−Bessel(jω/ωc2), as depicted in (1). Further, it can be
shown that the bandwidth ratio of the reciprocal and capping
functions needs to be ωc2/ωc1 = A1/N , to yield an out-of-band
gain A of the overall N th-order capped reciprocal-Bessel
transfer function.
The denominator polynomial of the overall transfer function

in (1) emerges from the capping function, which corresponds
to the classical low-pass Bessel filter transfer function. There-
fore, the overall transfer function in (1) has poles in the s = jω
complex Left Half-Plane (LHP) and is inherently stable.
From expression (1), the proposed N th-order capped

reciprocal-Bessel design baseband transfer function is given
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(a) (b)

FIGURE 1. Example 5th-order capped reciprocal-Bessel NGD baseband design, out-of-band gain A = 100 (AdB = 40 dB), N = 5, capping to
reciprocal transfer function 3 dB cut-off frequency ratio ωc2/ωc1 = A(1/N) = 2.512.

by:

HN (jω′) =

a0 + a1 (jω
′) + a2 (jω

′)
2

+ . . .+ aN (jω′)
N

a0 + a1

(
jω′

A1/N

)
+ a2

(
jω′

A1/N

)2
+ . . .+ aN

(
jω′

A1/N

)N
, (2a)

where the numerator and denominator parameters are as inN th-
order low-pass Bessel filter:

ak =
(2N − k)!

2N−kk! (N − k)!
, (2b)

for k = 0, 1, . . . , N , and the normalized frequency ω′ repre-
sents frequency ω scaled by a 3 dB cut-off frequency correction
factor, given by:

ω′ =
ω

Cω−3 dB
. (2c)

The correction factor needs to be numerically estimated for ac-
curate results, with some example values shown in Table 1.
This correction factor can be approximated for large value of
the design order, N , by an expression derived later in this pa-
per:

Cω−3 dB ≈

√
1− 1

/
A2/N

(2N − 1) ln 2
, N ≫ 1. (2d)

TABLE 1. Numerically determined values of the 3 dB cut-off fre-
quency correction factor, Cω−3 dB, for selected capped reciprocal-
Bessel design orders N = 2, 3, 4, 5 and out-of-band gains A =
10, 20, 30, 40 dB.

N = 2 N = 3 N = 4 N = 5

A = 10 dB 1/1.654 1/2.288 1/2.956 1/3.642
A = 20 dB 1/1.43 1/1.938 1/2.469 1/3.007
A = 30 dB 1/1.382 1/1.833 1/2.293 1/2.75
A = 40 dB 1/1.368 1/1.79 1/2.209 1/2.617

As a correction factor numerical example, for out-of-band
gain A = 100 (40 dB), the 3 dB cut-off frequency correction
factors for orders N = 2, 5 yield Cω−3 dB = 0.731, 0.3821,
whereas approximation (2d) yields 0.69 and 0.3673, respec-
tively (5.6% and 3.9% error, respectively).
From expressions (2a)–(2c), example capped reciprocal-

Bessel transfer functions for designs with orders N = 2, 3, 5,
scaled for 3 dB-bandwidth at ωc = 1, and for given out-of-band
gain A = 100 (40 dB), are given by:

H2nd (jω) = A
3 + 3 (jω′) + (jω′)

2

3A+ 3A1/2 (jω′) + (jω′)
2

= 100
ω2 − j2.193ω − 1.26612

ω2 − j21.93ω − 12.6612
, (3a)

H3rd (jω) = 100

(
ω − j · 1.2973
ω − j · 6.0216

)

·
(
ω2 − j · 2.0546ω − 1.41992

ω2 − j · 9.5368ω − 6.59042

)
, (3b)

H5th (jω) = 100

(
ω − j · 1.3935
ω − j · 3.5003

)

·
(
ω2 − j · 1.7766ω − 1.62822

ω2 − j · 4.4626ω − 4.08992

)

·
(
ω2 − j · 2.5617ω − 1.44362

ω2 − j · 6.4346ω − 3.62622

)
. (3c)

The gain-compensated designs from expression (2a) and cor-
respondingly (3a)–(3c) can be divided by the out-of-band gain
A, to get gain-uncompensated versions with the same group de-
lay responses. Resulting magnitude plots are shown in Fig. 2(a)
for several different design orders, and in Fig. 3(a) for several
different relative out-of-band gains (center frequency attenua-
tions). Figs. 2(b) and 3(b) show the corresponding group delay
plots, demonstrating that the center frequency NGD increases
with the design order, as well as with the out of band gain, re-
spectively.
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(a) (b)

FIGURE 2. Proposed capped reciprocal-Bessel baseband transfer function NGD design with out-of-band gain A = 100 (40 dB), and N = 2, 3, 4, 5
order, (a) magnitude and (b) group delay plots.

(a) (b)

FIGURE 3. Proposed capped reciprocal-Bessel baseband 5th-order design with out-of-band gains A = 10 dB, 20 dB, 30 dB, 40 dB, (a) magnitude
and (b) group delay plots.

The center frequency group delay value for a classical pro-
totype low-pass Bessel filter transfer function without 3 dB-
bandwidth scaling is equal to 1. Therefore, with accounting for
frequency scaling in (2a) and (2c), the capped reciprocal-Bessel
design center frequency NGD corrected for 3 dB-bandwidth at
ωc = 1 is given by:

τ (0) = − 1

Cω−3 dB

(
1− 1

A1/N

)
. (4)

In Fig. 2(b) examples with A = 100 (40 dB), expression
(4) yields center frequency NGD values, NGD = −τ(0) =
1.2312 s, 1.4044 s, 1.5105 s, 1.5752 s forN = 2, 3, 4, 5, respec-
tively. Since the corrected 3 dB-bandwidth cut-off frequency
is ωc = 1, corresponding NGD-bandwidth product values are
NGD ·∆f =NGD ·ωc/π = 0.3919, 0.4470, 0.4808, 0.5014,
for N = 2, 3, 4, 5, respectively. As a comparison, for the
same A = 100 (40 dB) out-of-band gain, capped reciprocal-
Butterworth design [13] yields larger values of NGD ·∆f =
0.4052, 0.4995, 0.5688, 0.6200, for N = 2, 3, 4, 5, respec-
tively, but at the expense of a large in-band group delay varia-
tion.

A similar NGD filter synthesis concept of using a classic low-
pass filter reciprocal transfer function and capping it at a finite
out-of-band gain by another low-pass transfer function with a
wider bandwidth can also be applied to low-pass Pascal filters
presented in [45]. Section 8 provides examples and compares
capped reciprocal-Pascal, capped reciprocal-Butterworth [13]
and capped reciprocal-Chebyshev [14] designs with the pro-
posed capped reciprocal-Bessel design.

3. BASEBAND NGD FILTER TRANSFORMATION TO
BAND-STOP-FILTER (BSF)
The baseband form of the proposed capped reciprocal-Bessel
transfer function given by (2a) can be transformed into its non-
zero center frequency, BSF equivalent. The general frequency
variable substitution that achieves a transfer function transfor-
mation from baseband to its equivalent centered around ω0, is
given by [13]:

ω → 1

2

(
ω − ω2

0

ω

)
. (5)
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(a) (b)

FIGURE 4. Example 3rd-order capped reciprocal-Bessel transfer function (a) magnitude and (b) group delay responses transformed to ω0 = 10ωc =
10 center frequency and compared with corresponding ideally translated baseband responses, as well as with group delays of capped reciprocal-
Butterworth and capped reciprocal-Chebyshev (with a 0.5 dB in-band ripple) designs.

Applying transformation (5) to factorized 2nd-order baseband
rational function(s) such as those appearing in (3a)–(3c), and
captured in its general form (6a), yields an ω0-centered BSF
form given by (6b):

HBB2 (jω) =

(
ω2 − j∆ω1ω − ω2

01

ω2 − j∆ω2ω − ω2
02

)
, (6a)

HBSF2 (jω) =

(
ω2 − j∆ω1pω − ω2

01p

ω2 − j∆ω2pω − ω2
02p

)

·

(
ω2 − j∆ω3pω − ω2

03p

ω2 − j∆ω4pω − ω2
04p

)
. (6b)

The factorized form of a BSF transfer function, as shown in
(6b), is preferred to its expanded form since it is more suitable
for subsequent circuit design [10, 13]. Expressions reported in
[10] can be used to calculate the eight frequency parameters in
(6b) from the four parameters in the baseband expression (6a).
Several selected relationships between parameters in (6b) are
given by [10, 13]:

ω03p =
ω2
0

ω01p
, ∆ω3p =

ω2
0

ω2
01p

∆ω1p =
ω03p

ω01p
∆ω1p, (7)

showing that the BSF center frequency, ω0, is the geometric
mean of the transfer function numerator parameters ω01p and
ω03p. Further, the quality factors of the two 2nd-order numer-
ator functions are the same, ω01p/∆ω1p = ω03p/∆ω3p. Similar
relationships apply to denominator parameters in (6b), as dis-
cussed in [10, 13].
Applying transformation (5) to factorized 1st-order baseband

rational function(s) such as those appearing in (3b)–(3c) and
captured in its general form (8a) yields an ω0-centered BSF
form given by (8b):

HBB1 (jω) =

(
ω − j∆ω5

ω − j∆ω6

)
, (8a)

HBSF1 (jω) =
ω2 − j∆ω5pω − ω2

0

ω2 − j∆ω6pω − ω2
0

, (8b)

where∆ω5p = 2∆ω5 and ∆ω6p = 2∆ω6.
As an example, a 3rd-order capped reciprocal-Bessel base-

band transfer function given by (3b) is considered, with anA =
100 (40 dB) out-of-band gain. The gain-uncompensated ver-
sion (divided by A) of this baseband transfer function yields:

HBB3 (jω) =

(
ω − j · 1.2973
ω − j · 6.0216

)

·
(
ω2 − j · 2.0546ω − 1.41992

ω2 − j · 9.5368ω − 6.59042

)
. (9)

Employing frequency transformation (5), the BSF equivalent
of this function centered around chosen ω0 = 10ωc = 10, after
factorization into 2nd-order rational functions yields:

HBSF3 (jω) =
ω2 − j2.5946ω − 102

ω2 − j12.0432ω − 102

·
(

ω2 − j2.2561ω − 11.03382

ω2 − j13.8211ω − 16.22142

)

·
(
ω2 − j1.8531ω − 9.06312

ω2 − j5.2525ω − 6.16472

)
. (10)

The magnitude and group delay characteristics of ω0-centered
BSF transfer function (10) are shown in Figs. 4(a) and (b) plots,
respectively.
A center frequency NGD of 1.4041 s is achieved by transfer

function (10), or an NGD-bandwidth product of NGD ·∆f =
0.447 (virtually the same as its baseband equivalent). A rela-
tively close in-band match is observed between the frequency
characteristics associated with (10) and the corresponding ide-
ally shifted baseband ones (expression (9) with ω → ω −
ω0). The near-flat baseband group delay characteristic has
some slope in its ω0-centered BSF equivalent, as evident from
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Fig. 4(b). More deviation in the ω0-centered group delay char-
acteristic than magnitude characteristic is a consequence of a
first derivative applied to the non-linear transformation (5) that
accompanies group delay calculation. However, the in-band
variation in the ω0-centered group delay characteristic of the
capped reciprocal-Bessel design presented in this paper is still
lower than the corresponding capped reciprocal-Butterworth
design from [13], and the capped reciprocal-Chebyshev 0.5 dB-
ripple design from [14], as shown in Fig. 4(b). The very flat in-
band group delay makes the proposed capped reciprocal-Bessel
transfer function suitable for constant phase shifter implemen-
tations [17, 18], which are used in phased array antenna appli-
cations.

4. EXACT IMPLEMENTATION WITH SALLEN-KEY
TOPOLOGY
An overall 6th-order BSF transfer function such as the one
given by (10), obtained by upshifting a 3rd-order baseband
capped reciprocal-Bessel transfer function to a non-zero center
frequency ω0, can be implemented by a Sallen-Key topology
depicted in the Fig. 5 schematic. Similar to capped reciprocal-
Butterworth and reciprocal-Chebyshev designs detailed in [13]
and [14], respectively, higher order designs can be achieved
with cascaded versions of the topology in Fig. 5. Transfer func-
tion of the topology in Fig. 5, and the input impedance of the
design are given by, respectively [13]:

H (jω)=
Vout

Vin

=
RG ·RF

RG ·RF +Z1 · Z2+RF ·(Z1+Z2)

Z0

Z0+Z3
, (11)

Zin =
RG ·RF + Z1 · Z2 +RF · (Z1 + Z2)

RF + Z2
, (12)

whereZ0 denotes the system impedance. As an implementation
example, transfer function (11) associated with the Sallen-Key
topology in Fig. 5 is equated to a particular capped reciprocal-
Bessel transfer function given by (10), with its eight frequency
parameters summarized as:

ω01p = 11.0338ωc, ∆ω1p = 2.2561ωc,

ω03p = 9.0631ωc, ∆ω3p = 1.8531ωc, (13a)
ω02p = 16.2214ωc, ∆ω2p = 13.8211ωc,

FIGURE 5. Sallen-Key topology that can be used to achieve an exact
3rd-order capped reciprocal-Bessel baseband NGD transfer function
translated to a higher center frequency ω0 (BSF).

ω04p = 6.1647ωc, ∆ω4p = 5.2525ωc, (13b)
ω0 = 10ωc, ∆ω5p = 2.5946ωc,

∆ω6p = 12.0432ωc. (13c)

Assuming a bandwidth of ∆f = 2fc = 100MHz in the nor-
malized expression (10), the center frequency becomes f0 =
10fc = 500MHz. Further selecting the input impedance at
center frequency to yield Zin ≈ 10Z0 = 500Ω, Fig. 6 compo-
nent values can be calculated by expanding (11) and equating
it to (10), as [10, 13]:

R1 ≈ Zin = 500Ω, C1 =
1

∆ω1pR1
= 2.822 pF,

L1 =
1

ω2
01pC1

= 29.493 nH, (14a)

R2 = R1 = 500Ω, C2 =
1

∆ω3pR2
= 3.435 pF,

L2 =
1

ω2
03pC2

= 35.907 nH, (14b)

RG =
1/C1 + 1/C2

∆ω2p +∆ω4p −∆ω1p −∆ω3p
= 137.3Ω, (14c)

RF =
1

(ω2
02p + ω2

04p +∆ω2p∆ω4p − ω2
01p

−ω2
03p −∆ω1p∆ω3p)RGC1C2 − 2

R1

= 56.298Ω, (14d)
R3 = Z0 (∆ω6p/∆ω5p − 1) = 182.08Ω,

C3 =
1

∆ω5pR3
= 6.738 pF,

L3 =
1

ω2
0C3

= 15.038 nH. (14e)

In the Fig. 5 topology, tuned frequencies of the two resonators
at the op-amp input in this example are f01p = 11.0338fc =
551.69MHz, and f03p = 9.0631fc = 453.16MHz, and their
bandwidth are ∆f1p = 2.2561fc = 112.81MHz and ∆f3p =
1.8531fc = 92.66MHz, respectively, as given by (13a). The
subsequent component values are calculated by (14a) and (14b).
The resonator at the op-amp output is tuned at the design cen-
ter frequency, which in this example is f0 = 500MHz, and
its bandwidth is ∆f5p = 2.5946fc = 129.73MHz, as given
by (13c). The subsequent component values are calculated by
(14e).
The Fig. 5 topology transfer function magnitude and group

delay responses in this example are shown in Fig. 6, for an ideal
(or buffered) source design, as well as a design with a shunt re-
sistorRm = 55.55Ω used for an approximate center-frequency
impedance matching to a 50Ω-source [13].
The center frequency NGD values for the ideal-source and

resistor-matched designs are 4.47 ns and 4.35 ns, and the 3 dB-
bandwidths are 100MHz and 100.4MHz, yielding the corre-
sponding NGD-bandwidth products of 0.447 and 0.437, respec-
tively.
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(a) (b)

FIGURE 6. (a) Transmission coefficient and (b) group delay of the ideal source (buffered) driven Sallen-Key design, and of the shunt resistor matched
design driven by a 50Ω source, for the BSF capped reciprocal-Bessel transfer function.

The Sallen-Key topology implementation of the capped
reciprocal-Bessel design presented in this paper is mostly in-
tended as a proof-of-concept, similar to reciprocal-Butterworth
and reciprocal-Chebyshev designs in [13] and [14], respec-
tively. Further, the impact of component value variation on
the transfer function characteristics in this design is somewhat
smaller than the other two designs, when the sensitivity
analysis described in [13] is applied. The sensitivity results are
close to those presented for the passive topology discussed in
the next section.

5. APPROXIMATE IMPLEMENTATIONWITH PASSIVE
LADDER CIRCUIT TOPOLOGY
The previous section demonstrates that a Sallen-Key topology
can implement the exact BSF capped reciprocal-Bessel design
transfer function, such as the one given by (10). However,
since the op-amps are not in the function of amplification in
this topology, the overall design has a center frequency attenu-
ation, as evident from Fig. 6(a).
As an alternative, an all-passive resonator-based ladder

topology can be employed to achieve a relatively good match
to the exact BSF transfer function. An example of such ladder
topology is as a π-circuit illustrated in Fig. 7, which was
discussed in detail for capped reciprocal-Butterworth NGD

FIGURE 7. Three-resonator π-circuit ladder topology that can achieve
an approximate 3rd-order baseband capped reciprocal-Bessel NGD
transfer function translated to a higher center frequency ω0 (BSF).

design [13]. A T-circuit equivalent of this resonator-based
topology is also discussed in [13].
Transfer function of the Fig. 7 resonator-based π-circuit

topology, for a given Z0 source and load impedance, is given
by [13]:

H (jω) =
Vout

Vin
=

2

(1 + Z2/Z0 + Z2/Z3)
· (1 + Z0/Z1) + (1 + Z0/Z3)

. (15)

To solve for the Fig. 7 π-circuit topology component values,
transfer function (15) is first expanded with frequency-
dependent impedance expressions, then factorized into three
2nd-order rational functions and equated to the capped
reciprocal-Bessel BSF transfer function (10). The numerators
of the two transfer functions can be exactly matched [13], such
that expressions (13a)–(13c) values in this example are given
by:

ω01p = ω01π = 11.0338ωc,

∆ω1p = ∆ω1π = 2.2561ωc,

ω03p = ω03π = 9.0631ωc,

∆ω3p = ∆ω3π = 1.8531ωc,

ω05p = ω05π = ω0 = 10ωc,

∆ω5p = ∆ω5π = 2.5946ωc. (16)

The analysis for the π-circuit Fig. 7 topology component
calculation is presented in detailed for a capped reciprocal-
Butterworth design [13], and it also applies here. The analysis
in [13] shows that in order to obtain the required center
frequency transfer function value to be a real number and equal
to the specified attenuation, H(jω0) = 1/A, shunt impedance
values Z1 and Z3 at ω0 need to be complex conjugates
(R1 = R3,X1 = −X3). Further, the middle resonator resistor
R2 in Fig. 7, as a function of shunt resonators parameters and
the specified center frequency attenuation, is given by [13]:

R2 = 2
(A− 1)

(
R2

1 +X2
1

)
− Z0R1

(R2
1 +X2

1 )
/
Z0 − 2R1 + Z0

. (17)
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FIGURE 8. (a) Transfer function magnitude and (b) group delay responses of the exact capped reciprocal-Bessel 3rd-order design upshifted to a
higher center frequency, and of the π-circuit all-passive design.

Given the described relationships between resonators compo-
nent values and parameters, the only degree of freedom of this
design is the shunt resonators’ resistance value, R1. An opti-
mization based on an in-band match of transfer functions (10)
and (15) can be used to determine R1, and therefore all other
component values of the π-circuit topology as well [13].
Since the prominent characteristic of any type of a Bessel

filter is its in-band near-flat group delay response, the center
frequency group delay curvature (2nd derivative) matching of
transfer functions (10) and (15) is used to determine the op-
timal value R1 = 10.4887Ω in this example. The π-circuit
transfer function (15) denominator parameters optimized for in-
band group delay curvature, compared to the exact ones in (10),
are:

ω02π = 16.4246ωc, ∆ω2π = 13.6876ωc,

ω04π = 6.0884ωc, ∆ω4π = 5.0739ωc, (18a)
ω02p = 16.2214ωc, ∆ω2p = 13.8211ωc,

ω04p = 6.1647ωc, ∆ω4p = 5.2525ωc, (18b)
∆ω6π = 11.8694ωc, ∆ω6p = 12.0432ωc,

ω06π = ω06p = ω0 = 10ωc. (18c)

The design center frequency reactance magnitudes of shunt
branches in Fig. 7 can be obtained from the optimized R1

and the frequency parameters given by (16), yielding X1 =
(1/(ω0C1) − ω0L1) = 10.1091Ω in this example. Substitut-
ing the optimizedR1 andX1 values into expression (17), along
with Z0 = 50Ω system impedance and A = 100 (40 dB) out-
of-band gain, yields R2 = 544.6338Ω. All Fig. 7 component
values in this example, obtained from the described optimiza-
tion and expressions (16), are:

R1 = 10.4887Ω, L1 =
1

∆ω1pR1
= 14.799 nH,

C1 =
1

ω2
01pL1

= 5.624 pF, (19a)

R3 = 10.4887Ω, L3 =
1

∆ω3pR3
= 18.016 nH,

C3 =
1

ω2
03pL3

= 6.847 pF, (19b)

R2 = 544.6338Ω, C2 =
1

2ωcR2
= 2.253 pF,

L2 =
1

ω2
0C2

= 44.981 nH. (19c)

Transfer function magnitude and group delay responses
of the Fig. 7 topology are shown in Fig. 8, for this example.
The center frequency NGD values are 4.47 ns and 4.48 ns,
for the ideal capped reciprocal-Bessel transfer function and
the π-circuit design, respectively. Higher order passive
ladder topology capped reciprocal-Bessel designs can be
implemented by following the method described for capped
reciprocal-Butterworth designs in [13].
The impact of component value variation on the transfer

function characteristics in this π-circuit design is higher than
the corresponding same-order classical Bessel bandpass fil-
ter. Applying the same sensitivity analysis detailed in [13],
the worst-case 1% variation in the π-circuit component values
yields a maximum center frequency NGD deviation of 9.3% for
the capped reciprocal-Bessel design, which is less than 14.8%
and 15.2% for the corresponding Butterworth and 0.5 dB-ripple
Chebyshev designs, respectively. The π-circuit design pre-
sented here and those in [13, 14] are mostly intended as a proof-
of-concept and are based on transfer function simulation in-
volving ideal lumped components. To overcome challenges as-
sociated with the tuning of lumped inductance and capacitance
components, microwave distributed element designs such as
those presented in [25, 26] can be employed as a tunable equiv-
alent to the π-circuit design.

6. NGD-BANDWIDTH PRODUCT ASYMPTOTIC LIMIT
OF AN NTH-ORDER CAPPED RECIPROCAL-BESSEL
DESIGN
Similar to the capped reciprocal-Butterworth [13] and capped
reciprocal-Chebyshev [14] designs, the NGD-bandwidth prod-
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(a) (b)

FIGURE 9. Asymptotic NGD-bandwidth product as a function of out-of-band gain for large order baseband (a) capped reciprocal-Bessel designs,
and (b) comparison between capped reciprocal-Bessel, Butterworth and Chebyshev designs. Note that Chebyshev designs have an NGD-bandwidth
approximately equivalent to that of a Butterworth design with an added constant offset linearly proportional to design order (a ·N + b).

uct upper asymptotic limit of a large-order capped reciprocal-
Bessel design can be found as a function of the trade-off quan-
tity, out-of-band gain.
From expression (2a), the square of the N th-order baseband

capped reciprocal-Bessel transfer function magnitude response
can be approximated for a large order N by:

|HN (jω)|2 =

a20 +
(
2a2a0 − a21

)
(jω)

2

+ . . .+ (jω)
2N

a20 +
(
2a2a0 − a21

) (
jω

A1/N

)2
+ . . .+

(
jω

A1/N

)2N
≈

exp
(

a2
1−2a2a0

a2
0

ω2
)

exp
(

a2
1−2a2a0

a2
0

ω2

A2/N

) , N ≫ 1. (20)

From (2b) it can be shown that a1 = a0, and a2 = a0 · (N −
1)/(2N − 1), which when being substituted into (20) yields:

|HN (jω)|≈exp
(
1

2

ω2

(2N−1)

(
1− 1

A2/N

))
, N≫1. (21)

The 3 dB-cutoff approximation for large design order N is ob-
tained by equating (21) to

√
2 and solving for frequency, which

yields:

ωc−3 dB ≈
√
ln 2

(2N − 1)

1− 1
/
A2/N

, N ≫ 1. (22)

The NGD-bandwidth product is then obtained as:

NGD ·∆f = −τ (0)
ωc

π

=
1

π

(
1− 1

A1/N

)√
(2N − 1) ln 2
1− 1

/
A2/N

. (23)

NGD-bandwidth product as the orderN approaches infinity, as
a function of finite out-of-band gain, becomes:

lim
N→∞

(NGD ·∆f)=

√
ln 2
π

lim
N→∞

(
eln(A)/N − 1√
e2 ln(A)/N−1

·
√
2N−1

)
=

√
ln 2
π

√
ln (A), (24)

or, as a function of the out-of-band gain given in decibels,
AdB = 20 · log(A), NGD-bandwidth becomes a square root
asymptotic function, as also depicted in Fig. 9(a):

NGD ·∆f ≈ 1

π

√
ln 2 · ln 10

20

√
AdB ≈ 0.0899 ·

√
AdB (25)

Expression (25) is the same square root function as the NGD-
bandwidth product for cascaded identical 1st-order transfer
functions discussed in [8, 13], but with the scaling parameter
increased by a factor of

√
2. Similarly, expression (25) limit is

close to the corresponding one for an engineered causalmedium
reported in [9] (scaling of 0.0890 vs 0.0899), which is expected
since the engineered medium assumed a perfectly flat NGD
within the bandwidth, with a step transition to a positive group
delay in the out-of-band which then decays as 1/ω2 at higher
frequencies. This group delay characteristic shape of the en-
gineered medium in [9] resembles the shape of the design pre-
sented in this paper as the design order approaches infinity, as
observed in the trend of curves in Fig. 2(b). However, the de-
sign presented in this paper is based on rational transfer func-
tions of any given order, that are more suitable for circuit im-
plementations than the engineered medium transfer function in
[9].
Asymptotic NGD-bandwidth functions of capped reciprocal-

Bessel, Butterworth and Chebyshev designs are depicted in
Fig. 9(b). The capped reciprocal-Butterworth design exhibits
a linear asymptotic function of the out-of-band gain given in
decibels [13], while capped reciprocal-Chebyshev odd-order
designs exhibit approximately the same asymptotic linear func-
tion with an additional offset which is approximately a linear
function of the design order, as discussed in [14].
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(c)

FIGURE 10. 5th-order, 40 dB out-of-band gain capped reciprocal-Bessel, Butterworth, Chebyshev (0.5 dB ripple), and Pascal baseband design’s (a)
magnitude, (b) group delay, and (c) time domain responses to a Gaussian pulse turned-on/off at 3.5σt.

7. RELATIONSHIP BETWEEN TIME DOMAIN AND
FREQUENCY DOMAIN NGD METRICS
As discussed in [13], the frequency domain out-of-band gain
in NGD designs is proportional to the time domain transient
magnitude amplification at points of discontinuity in the wave-
form. In this section, a Gaussian pulse waveform with finite
turn-on/off times is applied to capped reciprocal-Bessel, Butter-
worth, Chebyshev, and Pascal NGD baseband designs. All four
example designs are 5th-order, gain-compensated at the center
frequency and have an out-of-band gain of A = 100 (40 dB),
while the capped reciprocal-Chebyshev design also has a 0.5 dB
in-bandmagnitude ripple, as captured in Fig. 10(a). The capped
reciprocal-Pascal magnitude characteristic is similar to the cor-
responding Butterworth one, with a slightly steeper transition
to the out-band, as expected from their low-pass versions [45].
As shown in Fig. 10(b), the capped reciprocal-Bessel, Butter-
worth, Pascal, and Chebyshev designs have center frequency
NGD values of 1.575 s, 1.948 s, 2.052 s, and 2.584 s, respec-
tively. The frequency spectrum of the chosen input Gaussian
pulse has a standard deviation equal to a third of the medium
3 dB cut-off frequency, σω = ωc/3 = 1/3, and its turn-on/off
time instances are at 3.5σt (σt = 1/σω) away from the peak.
The corresponding time domain pulse-peak advancement

values in Fig. 10(c) are comparable at 1.575 s, 2.146 s, 2.234 s,
and 2.565 s, respectively. Fig. 10(c) also shows that transient
amplitudes are practically the same for the three designs, as ex-

pected due to their equal out-of-band gains [13]. Fig. 10(b)
shows that out of the four designs the capped reciprocal-Bessel
design has the largest bandwidth where group delay is nega-
tive, i.e., τ(ω) < 0. For all four designs, τ(ω) < 0 bandwidths
approximately correspond to half of the maximum out-of-band
gain decibel value, i.e.,AdB/2 = 20 dB in the chosen examples,
as evident from Figs. 10(a) and 10(b).

FIGURE 11. NGD-bandwidth product (using 3 dB-bandwidth) as a
function of out-of-band gain for 5th-order capped reciprocal-Bessel,
Butterworth and Chebyshev designs determined using frequency do-
main NGD and time domain NGD for an applied Gaussian pulse.
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(a) (b)

FIGURE 12. (a) Input Gaussian pulse with a frequency spectrum cut-off at ωc = 1, and the corresponding output waveform for a 5th-order capped
reciprocal-Bessel gain-compensated design. (b) The same comparison but with the output waveform shifted by∆tpk and normalized by |y(t)|max.

Figure 11 shows NGD-bandwidth product (using 3 dB-
bandwidth) as a function of the out-of-band gain for 5th-order
capped reciprocal-Bessel, Butterworth, and Chebyshev de-
signs. Fig. 11 shows the plots based on both the center
frequency NGD and time domain NGD values corresponding
to time-advancement of a Gaussian pulse peak. It is evident
that for the capped reciprocal-Bessel design the frequency
and time domain NGD values are practically equal due to a
near-flat group delay within the 3 dB-bandwidth. On the other
hand, Fig. 11 shows that for the capped reciprocal-Butterworth
design the observed time domain NGD (Gaussian pulse
peak advancement) is higher than the corresponding center
frequency NGD. This phenomenon is attributed to the capped
reciprocal-Butterworth design group delay response increasing
in magnitude away from the center frequency towards the band
edges, as shown in Fig. 10(b). Conversely, Fig. 11 shows that
for the capped reciprocal-Chebyshev design the observed time
domain NGD is somewhat lower than the corresponding center
frequency NGD.

8. IN-BAND COMBINED MAGNITUDE/PHASE RE-
SPONSE DISTORTION METRIC
Various Figure of Merit (FOM) metrics can be used to assess
and compare performances of different NGD designs. The
FOM reported in [10, 13, 14] is given as a ratio of the achieved
center frequency NGD-bandwidth product, and the trade-off
quantity, out-of-band gain:

FOM =
NGD ·BW

AdB
. (26)

As demonstrated in Section 7, and discussed in [8–10, 13, 14],
an undesired property of the out-of-band gain is amplification
of transients associated with discontinuous waveforms, such as
those with finite turn-on/off times. For NGD application with
no concerns about transients, the performance focus may be
on the gain-compensation of the center frequency attenuation.
In that case 1/AdB term in expression (26) can be replaced by

the NGD design’s center frequency magnitude response value,
|H(jω0)|.
Like any other medium, NGD designs introduce distortion

to propagated waveforms, caused by variations in the magni-
tude and group delay responses (phase non-linearity) within the
frequency in-band (typically defined by 3 dB-bandwidth). The
combined magnitude/phase in-band distortion affects not only
continuouswaveforms, but also the “steady-state” part of wave-
forms that contain transients [13].
The observed output waveform distortion is a function of not

only the medium’s transfer function (in-band magnitude/phase
distortion), but also the input waveform’s frequency spectrum.
A distortion metric proposed in [13, 14] for an NGD baseband
design with a transfer function H(jω) and a 3 dB-bandwidth
cut-off ωc, an input waveform with frequency spectrum F (jω),
output waveform peak advancement∆tpk, and the input/output
pulse peak values fmax/ymax, is given by:

Din-band=

√√√√√
∫ ωc

0
|F (jω)−e−jω∆tpkF (jω)H(jω)

·fmax/ymax|2dω∫ ωc

0
|F (jω)|2 dω

. (27)

As an example, the distortionmetric expression (27) is calcu-
lated for an input Gaussian pulse with 6 standard deviations of
its frequency spectrum fitting within the NGD medium’s 3 dB-
bandwidth. This waveform is applied to a 5th-order capped
reciprocal-Bessel design with A = 40 dB out-of-band gain,
and input/output waveforms are captured in Fig. 12. The calcu-
lated distortion metric is Din-band-Gaussian = 0.0319. As a refer-
ence, application of the same waveform to a classical 1st-order
low-pass filter with a matching 3 dB-bandwidth yields a higher
value of the distortion metric,Dlow-pass-Gaussian = 0.0411.

For selected 5th-order capped reciprocal-Bessel and capped
reciprocal-Butterworth designs, NGD-bandwidth product as a
function of out-of-band gain is shown in Figs. 13(a) and (b),
using time domain observed NGD (pulse peak advancement)
for Gaussian and sinc input waveforms, respectively. Solid
curves in Figs. 13(a) and (b) correspond to 3 dB-bandwidths
when calculating the product, while dashed and dotted curves
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FIGURE 13. NGD-bandwidth product (using time domain NGD) for (a) Gaussian and (b) sinc input waveforms applied to selected 5th-order designs
with 3 dB-bandwidth (solid curves) vs. bandwidth yielding the same distortion metric as a 1st-order low-pass filter (DLP = 0.0411, 0.1093 for
Gaussian and sinc pulses, respectively).

(a) (b)

FIGURE 14. Distortion metric values for (a) Gaussian and (b) sinc input waveforms applied to selected capped reciprocal-Bessel and capped
reciprocal-Butterworth designs with 3 dB-bandwidth.

correspond to bandwidths needed to equal the distortion metric
values of the chosen reference 1st-order low-pass filter (D =
0.0411 for a Gaussian pulse and D = 0.1093 for a sinc wave-
form).
For both considered designs, the distortionmetric for a Gaus-

sian pulse is lower than a sinc pulse due to its frequency spec-
trum tapering off towards the band edges and therefore reducing
the effects of the medium’s amplitude/phase variations. Thus,
as indicated in Fig. 13(a), the bandwidth can be increased past
the 3 dB cut-off for a Gaussian pulse input to adhere to the refer-
ence distortion value, resulting in higher NGD-bandwidth prod-
uct (dashed and dotted) curves. Conversely, for a sinc pulse
input, which has a flat in-band frequency spectrum and there-
fore doesn’t reduce the effects of themedium’s amplitude/phase
variations, the bandwidth of the capped reciprocal-Butterworth
design needs to be reduced below the 3 dB cut-off to adhere
to the reference distortion value, as evident from a lower NGD-
bandwidth (dashed) curve in Fig. 13(b). The capped reciprocal-
Bessel design is not affected as much due to medium’s lower
in-band amplitude/phase variations, as evident from its still
slightly higher NGD-bandwidth (dotted) curve in Fig. 13(b).

For capped reciprocal-Bessel and capped reciprocal-
Butterworth designs of selected orders and a fixed 3 dB-
bandwidth, the in-band distortion metric values obtained
from (27) are shown in Figs. 14(a) and (b), for Gaussian and
sinc waveforms, respectively. For a Gaussian pulse input,
Fig. 14(a) shows that it takes a 9th-order (or higher) capped
reciprocal-Butterworth design to start reaching the reference
distortion value of a 1st-order low-pass filter,DGauss = 0.0411.
On the other hand, Fig. 14(b) shows that for a sinc input it
takes only a 3rd-order capped reciprocal-Butterworth design to
start reaching the reference distortion value, Dsinc = 0.1093.
For both input waveforms, dashed curves in Figs. 14(a) and
(b) demonstrate that the considered capped reciprocal-Bessel
designs stay below the respective reference distortion values
due to the discussed medium’s low amplitude/phase variations.
Further, the distortion metric values are virtually constant for

capped reciprocal-Bessel designs of different orders and out-of-
band gains, as evident from Figs. 14(a) and 14(b). This is a re-
sult of the amplitude and group delay in-band characteristics of
the capped reciprocal-Bessel designs not changing much with
the design order or out-of-band gain, as evident from Figs. 2
and 3.

102 www.jpier.org



Progress In Electromagnetics Research B, Vol. 110, 91-105, 2025

TABLE 2. NGD performance metrics for selected N th-order capped reciprocal-Bessel baseband designs with 3 dB-bandwidth, compared to capped
reciprocal-Butterworth, Chebyshev, and Pascal designs.

Design order/
filter type

Out-of-band
gain, A [dB]

NGD-BW
product,

−τ(0) ·∆f3 dB

FOM
[1/dB]

∆tpk ·∆f3 dB

(Gaussian)

Distortion:
Din-band

(Gaussian)
Dref = 0.0411

∆tpk ·∆f3 dB

(sinc)

Distortion:
Din-band

(sinc)
Dref = 0.1093

3rd-order,
Bessel

40 0.4470 0.0112 0.4464 0.76×Dref 0.4440 0.97×Dref

3rd-order,
Butterworth

40 0.4995 0.0125 0.5416 0.55×Dref 0.5800 1.03×Dref

3rd-order,
Pascal

40 0.5220 0.0130 0.5632 0.58×Dref 0.6136 1.11×Dref

3rd-order,
Cheb 0.5 dB

40 0.6192 0.0155 0.6016 0.63×Dref 0.6648 1.31×Dref

5th-order,
Bessel

40 0.5014 0.0125 0.5016 0.78×Dref 0.5016 0.97×Dref

5th-order,
Butterworth

40 0.6200 0.0155 0.6736 0.69×Dref 0.7440 1.31×Dref

5th-order,
Pascal

40 0.6531 0.0163 0.7112 0.75×Dref 0.7960 1.54×Dref

5th-order,
Cheb 0.5 dB

40 0.8226 0.0206 0.7920 1.01×Dref 0.9008 2.06×Dref

7th-order,
Bessel

40 0.5226 0.0131 0.5224 0.79×Dref 0.5224 0.97×Dref

7th-order,
Butterworth

40 0.6896 0.0172 0.7528 0.81×Dref 0.8448 1.63×Dref

7th-order,
Pascal

40 0.7188 0.0180 0.7888 0.90×Dref 0.8976 1.96×Dref

7th-order,
Cheb 0.5 dB

40 0.9404 0.0235 0.8928 1.32×Dref 1.0352 2.76×Dref

Table 2 summarizes a performance comparison of the
proposed capped reciprocal-Bessel design against the
capped reciprocal-Butterworth design from [13], the capped
reciprocal-Chebyshev (in this case with a 0.5 dB in-band rip-
ple) design from [14], and the capped reciprocal-Pascal design,
for selected design orders and out-of-band gain. The table
shows the achieved center frequency NGD-bandwidth product
(using 3 dB-bandwidth) and the resulting Figure-of-Merit
(FOM) accounting for the trade-off out-of-band gain. Further,
the table shows time domain NGD (for Gaussian and sinc
pulses), and the associated distortion metric values relative
to the reference 1st-order low-pass filter distortion for the
same waveforms. For a given waveform, Table 2 shows that
the distortion metric values are virtually constant for capped
reciprocal-Bessel designs, while the values increase signifi-
cantly with the design order for capped reciprocal-Butterworth,
Pascal, and Chebyshev designs, and eventually surpass the
capped reciprocal-Bessel design values (at 3rd-order for a sinc,
and 7th-order for a Gaussian pulse). On the other hand, the
capped reciprocal-Chebyshev, Butterworth, and Pascal designs
achieve a higher NGD-bandwidth product than the capped
reciprocal-Bessel design.

As discussed in [10, 13, 14], in many publications the wider
τ(ω) < 0 bandwidth where the group delay is negative is used
in metrics instead of the 3 dB-bandwidth, resulting in a seem-
ingly better performance. This comes at the expense of a higher
distortion for wideband input waveforms, for any NGD design
with an out-of-band gain higher than approximately 6 dB, and
therefore more than 3 dB variation within the τ(ω) < 0 band-
width.
An alternative distortion metric to the one given by (27) is

based on input/output waveform cross-correlation [32, 36], and
it approximately yields values that are a square root of 1−D2.
Another NGD medium distortion metric which considers both
amplitude and group delay variation (phase non-linearity) is
presented in [39], with the main difference to expression (27)
being that it does not factor the specific applied waveform into
the distortion.
Aiming to keep an NGD design’s distortion metric such as

(27) low, assume that input/output waveform fidelity is desired.
Alternatively, when magnitude/phase (group delay) equaliza-
tion is the objective of an NGD application, the distortion met-
ric of the cascaded design including both the equalizing and
preceding stage(s) can be evaluated to assess the performance.

103 www.jpier.org



Kandic and Bridges

9. CONCLUSION
The prototype baseband NGD filter introduced in this pa-
per is based on a reciprocal transfer function of a classi-
cal Bessel low-pass filter, multiplied by a “capping” classi-
cal Bessel filter transfer function of the same order but with a
larger bandwidth (capped reciprocal-Bessel design). Similar to
the capped reciprocal-Butterworth [13] and capped reciprocal-
Chebyshev [14] designs which are based on two transfer func-
tion ratios of their respective classical low-pass filters, it was
shown that the presented baseband capped reciprocal-Bessel
design can be translated to a finite-attenuation band-stop filter
(BSF) centered at a non-zero center frequency. It was further
shown that the resulting capped reciprocal-Bessel BSF design
can be implemented via resonator-based Sallen-Key topology,
or all-passive ladder topologies, similar to designs in [13, 14].
The prototype capped reciprocal-Bessel design was shown to

achieve an NGD-bandwidth product that in the upper asymp-
totic limit (design order approaches infinity) is the same square
root function of the out-of-band gain in decibels associated
with the distributed medium with cascaded identical 1st-order
baseband NGD stages [8, 13], but with a higher proportional-
ity factor. This proportional factor of the square root asymp-
totic function is close to that one of the engineered flat in-
band NGD characteristic causal medium presented in [9], as
expected given the group delay flatness property of the capped
reciprocal-Bessel design presented here.
The very flat in-band group delay also makes the proposed

capped reciprocal-Bessel transfer function suitable for con-
stant phase shifter implementations [17, 18], which are used in
phased array antenna applications.
The performance of the proposed capped reciprocal-Bessel

design is also evaluated for an in-band combined magni-
tude/phase distortion metric discussed in [10, 13, 14], for
applied Gaussian and sinc waveforms. It was shown for higher
order designs that the distortion metric for the proposed design
is virtually constant and generally lower than the distortionmet-
ric of the corresponding capped reciprocal-Butterworth [13],
capped reciprocal-Chebyshev [14], and capped-reciprocal Pas-
cal designs, when 3 dB-bandwidth designs are considered. On
the other hand, the capped reciprocal-Chebyshev, Butterworth,
and Pascal designs achieve a higher NGD-bandwidth product.
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