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ABSTRACT:This study introduces a machine learning (ML)-basedmethod for point-of-care (POC) colorimetric testing of total antioxidant
concentration (TAC) in saliva, an important biomarker for health monitoring. The approach leverages ML to accurately classify color
intensity in the POC test. Saliva samples were collected and imaged at specific intervals during the colorimetric reaction, generating
a dataset representative of various antioxidant levels. Four classifiers (Convolutional Neural Network, Support Vector Machine, K-
Nearest Neighbors, and Single-layer Feed-forward Neural Network) were evaluated on distinct datasets, with Convolutional Neural
Network (CNN) consistently achieving superior performance. To enhance classification accuracy, stacking-based ensemble learning was
applied, combining CNN predictions with a Support Vector Machine (SVM) meta-classifier, achieving up to 92% accuracy. Additionally,
YOLOv4-tiny was utilized for object detection to isolate regions of interest in the images, creating a refined dataset that a CNN model
is then classified with ca. 98% accuracy. This YOLOv4-CNN approach not only improved accuracy but also simplified the model
architecture. The integrated object detection and CNNmodels were deployed on an Android application, enabling real-time TAC analysis
on a smartphone with 98% accuracy and a fast readout time of 2 minutes. This method offers a robust, efficient, and accessible solution
for POC antioxidant testing.

1. INTRODUCTION

Point-of-care (POC) diagnostics has emerged as a transfor-
mative approach in modern healthcare, enabling rapid, ac-

curate, and on-site detection [1]. Unlike traditional labora-
tory techniques, POC diagnostics can bring the testing pro-
cess closer to the patient, improving accessibility and facili-
tating timely clinical decisions. POC testing often integrates
colorimetric assays by combining chemical reactions with vi-
sual/optical detection systems, enabling fast biomarker mea-
surement [2, 3]. These tests have been widely used across var-
ious fields and applications, including blood analysis [4], food
allergen testing [5], urine albumin analysis [6], and pH quan-
tification [7].
Among various biomarkers, salivary total antioxidant con-

centration (TAC) is recognized as a promising noninvasive
tool to monitor oxidative stress levels [8, 9] and body’s over-
all antioxidant defense system, providing critical insights into
health and wellness [10]. TAC is also associated with the
pathophysiology of cardiovascular diseases [11, 12], aging pro-
cess [13, 14], and cancer [15, 16]. Hence, monitoring TAC lev-
els provides valuable insights into health andwellness [17]. Be-
sides its potential in health monitoring [1, 18, 19], TAC is also
used for quality control in the food industry [20–22]. However,
traditional colorimetric tests often depend on visual interpreta-
tion by users, which introduces variability due to differences in
human color perception [23, 24], further complicating the use of
naked-eye or color chart-based methods [3]. Additionally, am-
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bient lighting conditions and camera optics significantly impact
the accuracy of colorimetric analyses, which require advanced
algorithms, such as machine learning (ML), to address all these
issues [7, 25–33].
ML algorithms offer automated decision-making and self-

learning capabilities, enabling more objective and consistent
results in colorimetric testing. Recent advances in smartphone
technology have further promoted the integration of ML mod-
els into mobile platforms [34–37] and other embedded devices
(e.g., STM32 [38] and ARM microcontrollers) [39–41]. This
led to enhanced usability, portable solutions, automated de-
tection, and personalized diagnostics. Moreover, deep learn-
ing, which is a subset of ML, has shown remarkable success in
image-based applications, including object detection and clas-
sification tasks [42]. Its ability to learn hierarchical represen-
tations from data makes it ideal for analyzing complex colori-
metric reactions [43]. However, despite its potential, several
challenges arise, such as computational demands, data require-
ments, and deployment limitations, especially when using deep
learning algorithms for POC devices [44–47]. Therefore, very
often establishing a balance between the computational cost
and the performance of the model is important, especially in
resource-constrained-devices [48].
Several studies have highlighted the use of ML/deep, where

they encountered some challenges and limitations. Mutlu et
al. (2017) reported the difficult classification of closely spaced
levels of pH using Least Squares SVM classifier (LS-SVM),
due to overlapping color intensities [7]. Furthermore, Kim et
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al. (2016) developed a smartphone-based system for classify-
ing saliva alcohol concentrations. Three classifiers (i.e., Linear
Discriminant Analysis, Artificial Neural Network, and SVM)
were evaluated on four color spaces. Artificial neural net-
work (ANN) models achieved the best accuracy but struggled
to classify intermediate concentration levels, achieving 80%
average accuracy. The authors also faced challenges scaling
the mass deployment for the stand-alone approach [49]. Re-
cent advancements in smartphone-integrated colorimetric as-
says have demonstrated their potential for enhancing accessibil-
ity and accuracy in quantitative and semiquantitative analysis.
Nevertheless, environmental factors such as ambient lighting
and camera optics introduce variability in image quality, po-
tentially affecting colorimetric accuracy. For example, Sajed et
al. (2020) developed a smartphone-based system for estimating
lead ion concentrations, employing ML to improve the preci-
sion of colorimetric measurements extracted from smartphone-
captured images. However, it required additional preprocess-
ing steps and controlled experimental setups to ensure reliable
performance [36]. Additionally, Bhatt et al. (2023) developed a
smartphone-based colorimetric system for quantifying urinary
albumin using ML algorithms. Chemically impregnated dip-
sticks were analyzed through RGB, HSV, and Lab color spaces,
with K-Nearest Neighbor (kNN) achieving the highest accu-
racy of 96% under constant illumination from the smartphone
[35]. However, challenges included dependence on controlled
lighting (Flash ON) and limited dataset diversity. In [26], the
authors incorporated 15 reference color patches in a custom-
designed color chart placed alongside the assay vial to help im-
prove the model classification of thiocyanate concentrations in
saliva. These patches allowed the system to estimate and com-
pensate for variations in lighting and camera processing effects
using a CNN architecture via input-aware Neural Architecture
Search (NAS), achieving an increase of accuracy by about 14%.
Similarly in [50], the authors demonstrated that combining the
sample’s color with a reference color improved prediction ac-
curacy when analyzing colorimetric assays on paper-based de-
vices (PADs), achieving a maximum accuracy of 96.6% for
food dye using ANN model and 90.8% for pesticide assays
using SVM model. Yet, they highlighted the computational
challenges due to high-dimensional features on some ML al-
gorithms such as SVM. Furthermore, Feng et al. (2023) uti-
lized a CNN-based approach with powerful parallel process-
ing for urine glucose detection, achieving an 87.6% correlation
with standard blood glucose tests [51]. Instead, [27] focused on
glucose detection in saliva utilizing different classifiers such as
Linear Discriminant Analysis (LDA), Gradient Boosting Clas-
sifier (GBC), and Random Forest (RF), achieving 98.24% clas-
sification accuracy with Tetramethylbenzidine (TMB) under
various lighting and smartphone conditions. Moreover, Duan et
al. (2023) employed four deep learning algorithms, for enzyme-
linked immunosorbent assays (ELISA), achieving over 97%
accuracy with a GoogLeNet-trained model. However, their
dependence on cloud-based processing created challenges for
real-time, resource-limited applications [27, 52]. Additionally,
Random Weight Neural Networks (RBNs) were proposed to
quantify antioxidant levels in saliva using colorimetric reac-
tions in a vial relying on a centralized server for inference [1].

Besides that, collecting and labeling the dataset can be expen-
sive and time-consuming causing limited adaptability to more
complex biological matrices. In such cases, Deep Neural Net-
works (DNN) may face overfitting when small datasets are in-
volved. In [53], each sample of Cis-Pt required 20-minute reac-
tion time to be collected. On the other hand, in [21], antioxidant
concentration level was detected using a lateral flow device af-
ter 10 minutes of reaction time, whereas in [36] the system re-
quired 30 min reaction time. These challenges and limitations
highlight the need for fast, more robust, and adaptable method-
ologies that can deliver consistent performance.
Addressing some of the main challenges, herein we designed

an in-house colorimetric assay to assess the TAC in human
saliva. The test was fine-tuned to develop a POC-compliant
tool, featuring a rapid time-to-result within a few minutes. Ad-
ditionally, a data augmentation technique was applied to im-
prove the performance of the color classification models in the
absence of object detection methods. We evaluated two ap-
proaches for TAC classification: (1) ensemble learning based
on Stacking, and (2) an alternative approach integrating ob-
ject detection (i.e., YOLOv4-tiny). By capturing an image
just 2 minutes after the test starts, our system uses rapid reac-
tion dynamics for efficient classification, ensuring both speed
and precision. This streamlined architecture reduced compu-
tational complexity while achieving high classification accu-
racy. We designed preprocessing and ML algorithms that cope
with the deployment on a resource-constrained device. We de-
ployed the algorithms (i.e., for the YOLOv4-CNN approach)
on a smartphone achieving real-time, on-device processing, and
inference, overcoming the dependency on cloud infrastructure
found in other applications. The YOLOv4-CNN approach for
TAC classification showed consistent performance when being
deployed on a smartphone, matching the results observed dur-
ing offline testing. These contributions not only enhance clas-
sification accuracy but also demonstrate the feasibility of prac-
tical, efficient ML-driven diagnostic solutions for other POC
applications.
The structure of this paper is as follows. Section 2 details the

methodology. Section 3 presents the experimental setup. Sec-
tion 4 provides the results and discussion, and Section 5 con-
cludes the paper.

2. METHODOLOGY

2.1. Imaging Setup for Consistent Image Quality
In imaging-based applications, consistent lighting conditions
are critical for ensuring reliable image quality, particularly for
machine learning tasks. Variations in ambient light can sig-
nificantly affect image clarity, contrast, and color representa-
tion, leading to inconsistencies in downstream processing. To
address this challenge, we designed a 3D-printed black-closed
box with an aperture for smartphone placement. This design
enables users to capture images under controlled lighting condi-
tions using the smartphone’s flashlight as the sole illumination
source. The box minimizes the effects of external light varia-
tions and provides a neutral, standardized background, ensuring
consistent image clarity and reproducibility.
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2.2. Assessing TAC in Saliva

To assess the total antioxidant capacity (TAC) in human saliva,
we utilized an in-house designed colorimetric assay based on
the well-known competitive reaction of antioxidants with the
TMB/H2O2/HRP redox system [18, 54]. In this system, the en-
zyme horseradish peroxidase (HRP) first catalyzes the genera-
tion of hydroxyl radicals (OH.) via cleavage of hydrogen per-
oxide (H2O2). These hydroxyl radicals then oxidize the chro-
mogenic substrate 3, 3′,5, 5′-tetramethylbenzidine, converting
its colorless reduced form into the blue-colored oxidized prod-
uct [18, 54–56]. The resulting shift of the solution color from
transparent to dark blue depends on the concentration of the
oxidized TMB and occurs in a few minutes.
Antioxidants present in human saliva can neutralize the

HRP-generated hydroxyl radicals, effectively competing with
this catalytic oxidation of TMB and preventing the solution’s
blue color development [18]. In our semiquantitative assay,
the colorimetric detection harnessed this inverse correlation be-
tween antioxidant levels in saliva samples and the blue inten-
sity of the test solution, ranging from transparent to a darker
blue color as the antioxidant concentration decreases. The as-
say was fine-tuned to develop a POC-compliant tool, featur-
ing a rapid time-to-result within a few minutes and a dynamic
range of approximately 0.1–1.0 absorbance units, thus allow-
ing visual colorimetric readout. The method was then validated
with a standard ABTS-based commercial kit, assessing the cor-
relation between the antioxidant concentrations in human saliva
samples and the absorbance kinetics of our colorimetric reac-
tions.
In our POC test, five antioxidant levels were classified. The

middle level represented the physiological range of antioxi-
dants in saliva, while the lower and higher levels indicated non-
physiological ranges.
Accordingly, we performed a digital image analysis to study

the kinetic of the solution color development correlated to each
antioxidant level. Five samples, corresponding to the five dif-
ferent antioxidant classes, were tested. During such analysis,
each sample was placed on a white card inside a black box,
and images were captured with a smartphone every 30 seconds
for 5 minutes. Later, a small region of interest (ROI) located
within the tube was selected manually and cropped from each
image, to measure the average color intensity. Fig. 1 shows
the average color intensity over time for each antioxidant class.
The kinetic curves confirmed that the common trend observed,
with a decrease in signal over time, depended on the antiox-
idant level: lower antioxidant concentrations (class 0 and 1)
exhibited a rapid decrease in the average color intensity over
time, due to the shift of the color solution from transparent
to blue, unlike higher concentrations (class 3 and 4), which
showed a slower reaction kinetic. Moreover, all the kinetic
curves tended to achieve a similar average color intensity af-
ter 4–5 minutes. Therefore, the timeframe between 1 and 2.5
minutes appeared as the best interval to distinguish among dif-
ferent antioxidant levels. This time-resolved analysis was par-
ticularly important for understanding the kinetic of the reactions
and finding the perfect window to maximize the discrimination
efficiency among the 5 antioxidant levels, since they reached

FIGURE 1. Average color intensity over time showing the kinetic be-
haviors for different classes of TAC.

FIGURE 2. Representative images of vial samples corresponding to the
5 classes, illustrating the distinct color intensities observed at time =
2min.

similar end-point color intensities while following different ki-
netic paths.
The naked-eye readout of the 5 test tubes at 2 minutes con-

firmed the kinetic study results, with a solution color gradient
from blue to transparent as the antioxidant level increases, as
shown in Fig. 2.

2.3. Data Collection and Preprocessing
Saliva samples were collected multiple times from several
healthy donors over a few months. During the data collec-
tion, the colorimetric test was applied, and each reaction was
divided into two parts: one part was employed for image col-
lection using a smartphone (i.e., Xiaomi 11 lite), whereas the
other half was used to measure the absorbance value at 2 min-
utes with a UV-vis spectrophotometer. For each test reaction,
four images were captured using the smartphone at the follow-
ing timestamps: ttest = 60 sec, ttest = 90 sec, ttest = 120 sec,
and ttest = 150 sec.
As a result, we constructed 4 datasets, namely 1_00, 1_30,

2_00, and 2_30 (corresponding to the specific timestamp at 60,
90, 120, and 150 sec, respectively). The absorbance value at
120 seconds was used as the sample label. Table 1 lists the
dataset for the 5 assay classes, associated with a specific ab-
sorbance range and antioxidant level. A total of 285 tests were
conducted, providing a balanced dataset.
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TABLE 1. Dataset representation in terms of absorbance range, antiox-
idant levels across different classes, and number of samples in each
class.

Absorbance
range (a.u.)

Antioxidant
level

Nb. of
samples

Class 0 > 0.90 Very low (57)
Class 1 0.70–0.90 Low (57)
Class 2 0.50–0.70 Average (57)
Class 3 0.30–0.50 High (57)
Class 4 < 0.30 Very high (57)

2.4. Data Augmentation
Creating a dataset is a major challenge, particularly due to the
process of preparing, collecting, and labeling each test sample
which can be time-consuming and expensive. In our test, the
reaction vial should be placed within a designated white area
marked by dotted lines (Fig. 3). However, human errors, time
constraints, and lack of precision often cause the vials to fall
outside the specified location. In our application, we needed
to extract a small image of the vial to reduce the computa-
tional load. However, cropping an image at fixed coordinates
increases the risk of capturing only a small part of the reaction
solutionwithin the vial, potentially affecting themodel decision
later. Additionally, the size of the dataset was insufficient for
training an ML model to solve a 5-class classification problem
with a high accuracy. Therefore, we tried to address these chal-
lenges by applying data augmentation as shown in Fig. 3. First,
a cropped image of size 150 × 150 Pixels is divided into four
equal square crops, each of size 75 × 75. Then, a fifth crop is
applied by extracting an image of the same size from the central
region. Thus, each image sample is augmented into five distinct
images, effectively expanding the dataset to improve model
training. This augmentation approach should allow the models
to accurately classify images even when only a small portion
of the vial is presented within the fixed crop. We applied the
same approach for each of the 4 datasets, increasing the number
of samples from 285 to 1425 images. The augmented datasets
were named 1_00_Aug, 1_30_Aug, 2_00_Aug, and 2_30_Aug
as reported in Table 2.

FIGURE 3. Data augmentation process for a single input image.

2.5. Feature Extraction
To create an effective representation of the image data and reduce
its dimensionality, we extracted specific statistical features from each
sample image. Before that, all images were converted to the HSV
color space as part of the preprocessing of the dataset. These features
included themean (xmean), standard deviation (xstd), and variance (xvar)

TABLE 2. Augmented dataset.

Dataset
Name

Nb. of
classes

Nb. of samples
for each class

Total Nb.
of samples

1_00_Aug

(5) (285) (1425)
1_30_Aug
2_00_Aug
2_30_Aug

FIGURE 4. Feature extraction.

of the color channels, and the skewness (xskew) and kurtosis (xkur) of
the blue channel only. Consequently, each image X was transformed
into a one-dimensional array x ∈ R11×1, representing one sample in
the dataset as sketched in Fig. 4. Therefore, the new datasets, cre-
ated from extracting the features of the datasets presented in Table 2,
will be named as 1_00_Feat, 1_30_Feat, 2_00_Feat, and 2_30_Feat,
respectively.

2.6. Classifiers
To classify the solution’s color intensity, we employed four machine
learning algorithms: a Support Vector Machine (SVM), a Single-
layer Feed-Forward Neural Network (SLFNN), a K-Nearest Neigh-
bors (KNN), and a Convolution Neural Network (CNN).
The SVM, SLFNN, and KNN were trained using the datasets after

the feature extraction. These classifiers are the state-of-the-art tools
used for classification problems. They can provide high performance
when being trained on handcrafted features (i.e., statistical parameters)
[41]. On the other hand, the CNN was trained directly on the data-
augmented datasets (Table 2). These algorithms were employed to
solve a 5-class color intensity classification problem for TAC. In the
following, the algorithms are briefly described.

2.6.1. Support Vector Machine

The Support Vector Machine (SVM) classifier is a supervised ML al-
gorithm that computes the hyperplane that maximizes the margin to
the nearest samples of the two classes (i.e., the support vectors). SVM
is capable of capturing complex relationships between data points. We
have implemented only the linear kernel due to its efficiency in terms
of memory and computation [57]. The inference of one input datum
z follows the One-vs-One (OvO) strategy that splits the multi-class
classification into one binary classification problem per each pair of
antioxidant levels, solving (1):

y = sign(w · z+ b) (1)

where w and b are the support vector and bias, respectively. The even-
tual label of z is assigned according to the majority of votes among the
predicted classes.
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2.6.2. Single-Layer Feed-Forward Neural Network

Single-layer Feed-Forward Neural Networks (SLFNNs) are fully
connected networks trained through backpropagation. These models
mimic the structure of the human brain’s neural network such that all
neurons in one layer are connected to the neurons in the next layer.
The prediction function of an SLFNN is:

f(z) = softmax
(∑Neu

i=1 βi,jϕ(z · wi + bi) +Bi,j with j = 1, . . . , 5
)
(2)

where z is the tested datum; Neu is the number of hidden neurons;
βi,j and Bi,j are the weights and biases between the hidden and out-
put layer, respectively; and ϕ is the ReLU activation function. bi and
w are the biases and weights between the input and hidden layers, re-
spectively, and softmax is the Softmax function to predict the label.
The output layer contains 5 neurons, equal to the number of antioxi-
dant concentration classes, indexed by j in the equation.

2.6.3. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) is a simple supervisedML algorithm
that is assigned to a given input sample z a class, based on the major-
ity class among itsK > 1 nearest neighbors in the previously labeled
points. The neighbors are determined using a distance metric between
the input sample and the points in the training dataset. Its efficiency
and performance depend on the number of neighbors (k), distancemet-
ric, and training data size. The training phase produces a very simple
model (K parameter), but the inference phase requires exploring the
whole training set.

2.6.4. Convolutional Neural Network

A Convolutional Neural Network (CNN) is one of the most popular
deep neural networks used in a multitude of applications. CNN is
composed of different building blocks such as convolutional, pool-
ing, and fully connected layers. Unlike the SVM, SLFNN, and KNN
which use hand-crafted features, CNNs can combine feature extrac-
tion and classification into a single learning body. Moreover, CNNs
proved their effectiveness when being applied to image data decoding
[58]. In this work, the input of the CNN is the image collected in the
datasets presented in Table 2. The CNN consists of several functional
blocks composed of one 2-D convolutional layer with ReLU activa-
tion, a dropout layer, and an average pooling layer. The blocks are
stacked sequentially based on the number of convolutions chosen by
the designer. Here, the number of blocks was set through the filter
parameter listed below. At the bottom of the functional blocks, a dense
layer with 10 neurons and ReLU activation is stacked, followed by a
dense layer with a softmax activation function to perform classifica-
tion. The 10-neuron dense layer receives the features extracted by the
functional blocks and is flattened through a Flatten layer.

2.7. Ensemble Learning and Stacking
Ensemble learning is a machine learning paradigm that combines pre-
dictions from multiple models to achieve superior performance com-
pared to individual models alone. The primary objective of ensemble
methods is to utilize the unique strengths and complementary weak-
nesses of various models to increase robustness, reduce generaliza-
tion error, and improve predictive accuracy. Common ensemble tech-
niques include bagging, boosting, and stacking, each of which en-
hances model performance through distinct strategies. In this work,

we used Stacking also called stacked generalization, which is an en-
semble learning technique where predictions from multiple base mod-
els are used as input features for a higher-level model, often referred
to as a meta-learner. In this approach, base models are trained inde-
pendently on different datasets derived from the same experimental
trial, and their outputs — typically probability predictions for each
class — serve as new features for the meta-learner. The meta-learner
then learns to interpret these outputs to make a final prediction. This
method effectively integrates diverse predictive perspectives, leading
to improved accuracy as the meta-learner can exploit patterns in the
predictions of the base models that might not be apparent from any
single model alone.
In this study, we employed stacking by first training four CNNs on

different datasets for a 5-class classification task. The probability pre-
dictions from these CNN models were then used as input features to
train a Support Vector Machine (SVM) meta-learner. This ensemble
approach was designed to utilize the discriminative power of CNNs
in feature extraction and classification. At the same time, the SVM
used the combined feature space to refine and enhance predictive ac-
curacy. Stacking, therefore, was selected as an optimal technique for
integrating predictions from complementary models, thus addressing
the limitations of individual CNNs and yielding a more robust and pre-
cise final classification.

2.8. Object Detection
Furthermore, we implemented the YOLOv4-tiny (You Only Look
Once, Version 4) object detection model to precisely locate and detect
regions of interest within the collected dataset. YOLOv4 is a state-
of-the-art deep learning model known for its high-speed, real-time ob-
ject detection capabilities and accuracy in identifying multiple objects
within an image. Unlike traditional approaches that rely on fixed crop-
ping to isolate regions for classification, YOLOv4 processes the entire
image in a single pass, allowing for the precise detection of specific
regions — such as in our case the reaction solution within a vial or the
absence of the vial itself — in a single forward operation. By training
the smaller variant YOLOv4, namely YOLOv4-tiny, on our dataset,
we aimed to extract regions of interest dynamically and accurately,
thereby analyzing if we can enhance the accuracy of a single model
without the need for ensemble methods. The adoption of YOLOv4-
tiny was intended to optimize detection precision and provide a dy-
namic focus on regions critical for classification.

3. EXPERIMENTAL SETUPS

3.1. Algorithms Hyper-Parameters
The training procedure involved model selection, i.e., tuning the clas-
sifier architecture hyper-parameters. Such a procedure explored a grid
of candidates for each algorithm. The best candidates were selected by
evaluating the accuracy of the validation set during the training phase.
The hyper-parameter for the SVM was the regularizer λ that has

been chosen as the norm L2 in the range λ = [10i, with i =
−4,−3, . . . , 4] during the training procedure.
The hyper-parameters for the KNN were:

• number of neighbors, k = {3, 5, 7, 9};
• weighting strategy, weights = {uniform, distance};
• distance metric, metric = {euclidean,manhattan}.

The hyper-parameters, including the value of k weighting strategy and
the choice of distance metric were optimized through cross-validation
to maximize classification accuracy. The hyper-parameters for the
SLFNN were:
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• hidden neurons Neu = [10 ∗ i, with i = 1, 2, . . . , 10];
• L2 regularizer λ = [10i, with i = −4,−3, . . . , 4].

The hyper-parameters for the CNN were:

• number of convolutional layers from 2 to 4 (the filter candi-
dates were: (5, 5), (8, 8), (12, 12), (12, 24), (5, 8, 16), (5, 5, 5),
(8, 8, 8));

• kernel sizeKs = {6, 8, 12, 16};
• dropout percentage 20%.

The filters represented the number of kernels applied to the input fea-
tures in each functional block. For example, setting f = (5, 8, 16)
implied the use of three functional blocks, the application of 4 kernels
to the input tensor, dropout, average pooling, and doubling in the num-
ber of kernels at each next functional block. For each of the training
algorithms, a combination of these parameters was evaluated during
training, and the model with the highest validation accuracy was se-
lected for testing.
The hyper-parameters for the YOLOv4-tiny model were configured

to optimize object detection performance. These parameters included:

• Batch size and subdivisions: Set to 64 and 16, respectively, to
balance training efficiency and GPU memory usage.

• Input resolution: The width and height were both set to 416
pixels, a common setting that balances detection accuracy and
computational efficiency.

• Learning rate: Initialized at 0.001 with a burn-in period of
1000 iterations, allowing the model to stabilize before adjusting
weights.

• Maximum iterations: Configured to 6000, providing sufficient
training epochs given the dataset size and model convergence
rate.

• Classes and labels: Defined for two object classes, “Reaction
solution” and “No vial”.

The model was trained using Darknet on Google Colab, utilizing
GPU acceleration. Validation metrics, including mean Average Pre-
cision (mAP), were monitored throughout the training to assess and
refine model performance.

3.2. Training Strategy
As part of the preprocessing pipeline, all images were converted from
RGB color space to HSV color space. This transformation was applied
due to HSV’s improved capability to capture color intensity features,
which was observed to enhance model performance compared to using
RGB color space directly. Before training, the datasets were also nor-
malized to ensure that all input features were on a comparable scale,
which is essential for improving model convergence and performance.
AMinMaxScaler was applied to the reshaped training data, scaling the
values between 0 and 1. This normalization step helps in the stabiliza-
tion of the training process and makes it easier for the models to learn
efficiently by reducing the impact of varying feature magnitudes.

3.2.1. Single Learning

To evaluate the performance of the algorithms on color intensity clas-
sification for our colorimetric antioxidant test, the SVM, KNN, and
SLFNNwere trained on each of the datasets containing the handcrafted
features (i.e., 1_00_Feat, 1_30_Feat, 2_00_Feat, and 2_30_Feat),
which were extracted after data augmentation as described in Sec-
tion 2.5. CNN models were trained directly on each of the Aug-
mented datasets shown in Table 2. Each dataset was randomly split

into training, validation, and testing sets to ensure an unbiased evalu-
ation. Specifically, each dataset contained 1425 samples, divided as
follows: 70% of the data was allocated for training (200 image sam-
ples per class) and the remaining 30% for testing (85 image samples
per class). This split allowed us to train robust models while retaining
a substantial test set for performance assessment.

3.2.2. Ensemble Learning

To evaluate the performance of our ensemble learning approach (men-
tioned in Section 2.7), we trained and validated the CNN models on
augmented data, splitting each dataset into three distinct groups to fa-
cilitate the training and testing of themeta-learner (SVM). The datasets
were randomly divided as follows: 53.68% for training the CNNmod-
els, 28.77% for testing the CNN models (with their prediction proba-
bilities subsequently used to train the SVM meta-classifier), and the
remaining 17.55% reserved for testing the SVM. In this final group,
images were first passed through the CNN models, and the resulting
prediction probabilities were then utilized as input features to evaluate
the SVM model’s performance.
We investigated two configurations for the ensemble learning pro-

cess. In the first configuration, we selected only two CNNs trained on
the 1_30_Aug and 2_00_Aug datasets. The prediction probabilities
from these two models were used as input features for the SVM meta-
classifier, resulting in a 10-dimensional input array (5 classes× 2mod-
els). This approach allowed us to examine the effect of a streamlined
ensemble that focused on models trained on datasets corresponding
to different critical time points (90 and 120 seconds), which showed
strong performance in preliminary analysis. Fig. 5 illustrates this con-
figuration.

FIGURE 5. Ensemble learning with two CNN base models feeding pre-
diction probabilities into an SVM meta-classifier.

In the second configuration, we increased the number of base mod-
els by using the prediction probabilities from all four CNN models
trained on the augmented datasets (1_00_Aug, 1_30_Aug, 2_00_Aug,
and 2_30_Aug) as input features for the SVM meta-classifier. Given
that each CNN model outputs a probability distribution over five
classes, the combined input feature for the SVM consisted of a 20-
dimensional array (5 classes × 4 models), capturing the predictive
perspectives of each CNN model across the four datasets. By using
these configurations, we aimed to determine whether combining pre-
dictions from all four models can provide a substantial advantage over
a more selective two-model ensemble.

3.2.3. Learning With Object Detection

To train the object detection model, we utilized a dataset of 500 images
containing vials with solutions of varying color intensities and images
without vials. For annotation, we exploited the open-source Python
tool LabelImg [59], which facilitates the creation of bounding boxes
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TABLE 3. Summary of training strategies for single learning, ensemble learning, and learning with object detection approaches, including the learning
algorithms, datasets, number of samples, and number of trained models.

Learning approaches
Learning
Algorithms

Train samples
(per class)

Test samples
(per class)

Used
datasets

N. of trained
models

Single
Learning

SVM 200 85
All feature

extracted datasets
4

SLFN 200 85
All feature

extracted datasets
4

KNN 200 85
All feature

extracted dataset
4

CNN 200 85
Data augmented
datasets: Table 2

4

Ensemble
Learning

1st
config.

CNN 153 82
1_30_Aug
2_00_Aug

2

SVM 82 50
The pred.

prob. of the 2
CNN models

1

2nd
config.

CNN 153 82

1_00_Aug
1_30_Aug
2_00_Aug
2_30_Aug

4

SVM 82 50
The pred.

prob. of the 4
CNN models

1

Learning with
Object detection

CNN 39 16 2_00_yolo 1

to label objects in images. Using this tool, the regions containing the
reaction solution in images with vials were labeled as “Reaction so-
lution”, while images without vials were labeled as “No vial”. The
tool generated annotation files containing the object labels and coor-
dinates, which were later used along with the original images to train
the YOLOv4-tiny model.
After training, a 16-bit quantization was applied to the YOLOv4-

tiny model to reduce its size, optimizing it for more efficient deploy-
ment. Following this, the original dataset named 2_00, as described
in Section 2.3, was processed using the YOLOv4-tiny model. Post-
processing steps were then applied to extract and refine the detected
objects (i.e., the reaction solution), by resizing the extracted image to
a size of 110x70 pixels. The resulting processed dataset, containing
cropped images of the detected solutions, was named 2_00_yolo.
To evaluate the impact of object detection on classification perfor-

mance, a single CNN model was trained on the 2_00_yolo dataset.
This model was trained without applying data augmentation. The
training strategy was similar to the one described in Section 3.2.1
for the CNN model. The dataset contained a total of 285 samples,
randomly divided as follows: 68.4% for training (39 image samples
per class) and the remaining 31.6% for testing (18 image samples per
class). This setup should enable us to assess whether the YOLOv4-
CNN approach can improve the classification accuracy of the TAC
level, compared to the ensemble methods, by focusing the model’s at-
tention on the most important part of the image.

The training strategies for single learning, ensemble learning, and
learning with object detection are summarized in Table 3, highlight-
ing the learning algorithms used, datasets, sample splitting, and the
number of trained models for each approach.

4. RESULTS AND DISCUSSION
The results of this study provide insights into the performance and
suitability of different machine learning models for classifying color
intensity levels in the colorimetric antioxidant test. Various models,
including SVM, SLFNN, KNN, and CNN, along with three different
learning approaches, were evaluated on multiple datasets represent-
ing distinct time intervals and total antioxidant concentration levels.
This section presents and analyzes the classification accuracy of these
models, examining trends across datasets and exploring the impact of
ensemble and object detection methods to enhance classification pre-
cision.
Table 4 presents the classification accuracies of CNN, SVM,

KNN, and SLFNN across four datasets. For dataset 1_00_Aug, CNN
achieved the highest accuracy at 73.26%, outperforming SVM, KNN,
and SLFNN, which showed comparatively lower accuracies. In
dataset 1_30_Aug, CNN maintained strong performance at 75.28%,
while SVM and SLFNN reached 67.36% and 65.45%, respectively,
making them possible alternatives. The dataset 2_00_Aug yielded
the highest overall accuracies, with CNN reaching 77.76% and SVM
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TABLE 4. Models accuracy.

Datasets CNN SVM KNN SLFNN
1_00_Aug 73.26 60.05 47.27 54.54
1_30_Aug 75.28 67.36 59.02 65.45
2_00_Aug 77.76 76.54 70.09 76.36
2_30_Aug 64.74 58.18 58.18 61.81

and SLFNN close behind, indicating it as the most favorable dataset
for classification. In dataset 2_30_Aug, all models showed reduced
performance, suggesting unique challenges with this dataset. Overall,
CNN consistently outperformed other models, highlighting its robust
classification ability across the different datasets.
Upon examining the confusion matrices of the CNNmodels trained

on the four augmented datasets, as shown in Fig. 6, distinct classifi-
cation trends were observed across different time intervals. For the
dataset collected at 60 seconds (1_00_Aug), the CNN model showed
higher accuracy in classifying the lower antioxidant concentration
classes (0,1). This suggests that, at this early time point, the vi-
sual differences among lower concentration samples were more dis-
tinguishable, aiding classification accuracy for those classes. At 90-
seconds (1_30_Aug), the CNN model displayed improved perfor-
mance in identifying the middle concentration classes (2,3). This shift
implies that, as time progresses, the reaction stabilizes in a way that
makes middle concentrations more distinct, thus enhancing classifi-
cation accuracy for these classes. For the 120-second (2_00_Aug)
dataset, the CNN achieved the highest accuracy among all datasets,
reaching 77.76% accuracy. This dataset appears to provide the most
balanced information across all classes, allowing for consistent clas-
sification performance across lower, middle, and higher antioxidant
concentrations. In contrast, for the 150-second (2_30_Aug) dataset,
the CNN model showed better accuracy in classifying higher antioxi-
dant concentration classes (3,4). This could be due to a more promi-

FIGURE 6. Confusion matrices for CNN models across four datasets,
illustrating classification performance variations across different time
intervals and antioxidant concentration levels.

nent reaction effect at this time point, making higher concentrations
distinct while reducing contrast in lower concentration classes. How-
ever, overall accuracy was lower for this dataset (64.74%), suggesting
that in the late stage of the reaction, it is challenging to classify accu-
rately.
Given these observations from Fig. 6, it was evident that the indi-

vidual CNN models were each better suited to specific concentration
ranges, depending on the dataset. To address this limitation and im-
prove overall predictive accuracy, we implemented an ensemble learn-
ing strategy testing two configurations (see Section 2.7). In the first
configuration, the SVM meta-classifier achieved a classification ac-
curacy of 90%, providing a significant improvement of approximately
12% over the best individual CNN model (77.76%). The second con-
figuration (all 4 models combined together) further increased the ac-
curacy to 92%; however, the additional improvement was insufficient
considering the increased complexity of stacking four CNN models.
This suggests that the selective use of fewer but well-performing base
models (as in the first configuration) can achieve comparable results
with reduced complexity. The confusion matrices for the SVM meta-
classifiers of these two configurations are shown in Fig. 7, demonstrat-
ing that the accuracy across all classes was consistently high, without
significant disparities between class performances. Moreover, other
configurations were also tested but showed either lower or almost sim-
ilar accuracies but were not reported here.

(a) (b)

FIGURE 7. Confusion matrices for the two stacking ensemble config-
urations: (a) the first configuration achieving 90% accuracy; and (b)
the second configuration combining all four CNN models, achieving
92% accuracy.

The improved accuracy in both ensemble configurations demon-
strated the effectiveness of stacking in utilizing the complementary
strengths of models trained on different datasets. By combining mod-
els specialized in detecting specific concentration ranges, wewere able
to create a more robust classifier capable of handling the full range of
total antioxidant concentrations. These findings suggest that stacking,
particularly with a diverse selection of time-specific models, can sig-
nificantly enhance classification performance. It also shows the trade-
off between complexity and performance, as the selective use of fewer
models still provided a significant accuracy compared to the complex
stacking of 4 CNNmodels. The results also emphasize the potential of
ensemble learning for complex classification tasks, where individual
models struggle to capture all details in the data.
We then explored the potential of YOLOv4-tiny to further improve

our detection accuracy. After training the YOLOv4-tiny model, we
evaluated its performance using different test images. The model con-
sistently detected the objects in all the images with high confidence,
accurately identifying and localizing the regions of interest (ROI) (i.e.,
the ‘Reaction solution’ and ‘No vial’). The output from the model was
used to draw a bounding box around the detected objects, as shown in
Fig. 8. Recognizing that our initial stacking model with four CNNs
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FIGURE 8. Detection results from the YOLOv4–tiny model for both
objects: ‘No vial’ and ‘Reaction solution’, having different vial posi-
tions.

followed by an SVM meta-classifier (five models in total) achieved
promising results, we hypothesized that using only an object detection
model followed by a CNNmodel could significantly improve accuracy
and efficiency. The results were very interesting, and the CNN model
achieved an impressive classification accuracy of 97.78% solving the
five-class classification task. This approach, consisting of only two
models, a YOLOv4-tiny model followed by a CNN, outperformed the
original ensemble of four CNNs plus an SVM meta-classifier, which
required a more complex stacking configuration. Hence, by reduc-
ing the number of models to just two blocks, we observed not only an
increase in the accuracy but also a simplification of the overall model
structure. The confusionmatrix for this CNNmodel is shown in Fig. 9,
highlighting its excellent classification performance over the whole
TAC concentration range.

FIGURE 9. Confusion matrix for the CNN model trained on the
2_00_YOLO dataset, achieving 97.78% accuracy in the five-class
classification task.

This significant improvement underscores the efficacy of integrat-
ing object detection with classification for tasks requiring precise lo-
calization. The ability of YOLOv4-tiny to detect precisely the rele-
vant region allowed the CNN to focus exclusively on the critical area,
thereby improving classification accuracy and eliminating the need for
additional model layers. These results demonstrate that, in applica-
tions where regions of interest can be accurately localized, employing
object detection in conjunction with classification can yield a stream-
lined, high-performance model. This approach also reduces the com-
putational load, as it bypasses the need for stacking multiple models
and instead uses a targeted pre-processing step to enhance classifica-
tion accuracy. Moreover, the quantization step enabled the model to

maintain its detection capabilities while significantly decreasing mem-
ory requirements, decreasing the size of the model from approximately
22.47MB to 11.28MB,making it suitable for real-time applications on
resource-constrained devices.
Ultimately, the YOLOv4-tiny and CNN models were converted to

TensorFlow Lite format (.tflite) for efficient real-time deployment of
the YOLOv4-CNN approach on Android devices, utilizing Kotlin and
TensorFlow Lite’s native support. The phone application was pro-
grammed to capture the reaction image at t = 2 minutes, apply post-
processing through the YOLOv4-tiny model to localize the ROI, and
extract the detected region. The extracted ROI was then resized to
a standardized size (e.g., 110 × 70 pixels) and normalized using the
MinMax scaler. The scaler parameters were precomputed and saved
in Python, allowing for consistent normalization during deployment.
Finally, the processed ROI was passed to the CNN for classification.
As a result, real-time processing was achieved on the phone, ensuring
low latency and high accuracy. This integration not only validated the
feasibility of deploying our architecture for mobile environments but
also paved the way for its use in other practical point-of-care applica-
tions requiring real-time processing and decision-making.

5. CONCLUSION
In this work, we have developed a novel approach for smartphone-
based testing antioxidant concentration in saliva, utilizing smartphone-
based machine learning and object detection techniques to achieve ac-
curate and efficient classification. Given the importance of TAC levels
as a biomarker for health, this method addresses a critical need for ac-
cessible, real-time health monitoring. By capturing images of the reac-
tion vials at different intervals and building a comprehensive dataset,
we trained and evaluated multiple classifiers — CNN, SVM, KNN,
and SLFNN — on color intensity classification, with CNN models
consistently achieving the highest performance.
To further enhance classification accuracy, we implemented an en-

semble learning approach through stacking, combining the outputs of
four CNN models with an SVM meta-classifier, resulting in a clas-
sification accuracy of 92%. However, the integration of object de-
tection with YOLOv4-tiny enabled the extraction of precise regions
of interest within the images, allowing a CNN model trained on this
refined dataset to achieve an impressive 97.78% accuracy using one
image that is extracted 2 minutes after the antioxidant test starts. This
YOLOv4-CNN approach simplified the model architecture, provided
a very fast test readout (i.e., 2min), reduced computational require-
ments, and maintained high accuracy, demonstrating the viability of
object detection as an alternative to ensemble methods for region-
based classification tasks.
The successful deployment of the YOLOv4-tiny and CNN models

on an Android application further highlights the practical applicability
of this system, enabling real-time analysis on a smartphone platform.
This advancement provides a robust and efficient solution for POC
antioxidant testing, with the potential for broader applications in other
biomarker-based health assessments. Future work may focus on gen-
eralizing this approach to accommodate diverse clinical assays, such
as those for glucose, proteins, or pH levels, by utilizing the frame-
work’s modularity and retraining models on assay-specific datasets.
Additionally, we aim to enhance the robustness of the system by ad-
dressing variability introduced by differences in device optics, ensur-
ing consistent image quality and reliable performance across a range of
hardware setups and extending the system to cover different biological
fluids (e.g., sweat, urine) or food matrices. Finally, continued efforts
will aim to further optimize models’ performance on mobile devices
to enhance accessibility and diagnostic reliability, making it a scalable
solution for real-world healthcare applications.
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