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ABSTRACT: To solve the problem of low accuracy and real-time performance of direction of arrival (DOA) estimation in an impulsive
noise environment, this paper proposes a single-snapshot DOA estimation method based on the median deviation correntropy of hyper-
bolic tangent kerne and designs an intelligent optimization algorithm for the segmentation and hunting mechanism of gold long-nosed
raccoon to obtain accurate DOA estimation angle. The DOA estimation method proposed in this paper uses spatial smoothing technology
to process the median deviation correntropy of single snapshot data, and then uses the hyperbolic tangent kernel to remove impulse noise
from the pseudo-covariance matrix. The weighted signal subspace fitting method is used to obtain the accurate DOA estimation angle.
The Monte Carlo analysis experiments of different schemes are verified, especially in the case of a single snapshot, low generalized
signal-to-noise ratio (GSNR), and strong impulse noise.

1. INTRODUCTION

The Direction of Arrival (DOA) refers to the direction of ar-
rival of space signals. The main task is to process space

signals and estimate their parameters. It has been widely used
in many military and civil economic fields such as communica-
tion, radar, navigation systems, and radio astronomy [1–3]. It
has achieved rapid development in the past 30 years.
Direction of arrival estimation is an important research di-

rection in array signal processing [1]. Its main task is to
process space signals and estimate their parameters. It has
a wide range of applications in military and civilian fields,
such as radar detection [2, 3], electronic countermeasures [4],
sonar [5], and wireless sensor networks (WSNs). Subspace-
based super-resolution algorithms such as multiple signal clas-
sification (MUSIC) algorithm and Estimation of signal param-
eters via rotational invariance technique (ESPRIT) algorithm
usually require the rank of the covariance matrix of the received
data to be equal to the number of sources and need more snap-
shots to obtain the signal subspace and noise subspace to im-
prove the estimation accuracy. They are two common algo-
rithms for DOA estimation. In the process of military con-
frontation, the signal often appears in a short time and has a
fast jump speed. The signal is difficult to be detected, and other
scenarios that require the system to have high real-time perfor-
mance and some physical limitations mean that the number of
snapshots used for DOA estimation can only be small, and even
in the worst case, there is only a single snapshot.
However, most of the above methods perform DOA estima-

tion in a Gaussian noise environment. In practical applications,
there are usually a large number of non-Gaussian noises with
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peak pulse characteristics, such as sea clutter, ground clutter,
atmospheric environment, and radar scattering echoes in na-
ture. It is possible to show bursts and peaks, making the noise
environment exhibit strong pulse characteristics [6–8]. In this
environment, the performance of conventional DOA methods
will seriously degrade or even fail.
There have been some studies on DOA estimation in im-

pulsive noise environment, and the method based on frac-
tional lower order statistics (FLOS) is one of the more effective
ones [4, 5]. For example, ROC-MUSIC algorithm based on the
common torque is proposed in [6]. Ref. [7] proposes a FLOM-
MUSIC algorithm based on fractional lower order moments
(FLOM). Ref. [8] proposes a fractional lower order moment
cyclic covariance (FLOC) MUSIC algorithm using the FLOC
matrix. However, these methods all require prior knowledge
of the stable distribution characteristic index, which has cer-
tain limitations. By using the characteristics of the kernel func-
tion, correlation entropy has a good inhibitory effect on impulse
noise and does not require prior knowledge of noise. In this pa-
per, hyperbolic tangent kernel is introduced into the weighted
signal subspace fitting algorithm for the first time. The spatial
smoothingmethod is used to process the covariancematrix with
the median deviation correntropy, and the hyperbolic tangent
kernel median deviation correntropy weighted signal subspace
fitting DOA estimation method is proposed.
The Golden Coati optimization algorithm (GCOA) proposed

in this paper adopts the golden sine segmentation search strat-
egy [9], introduces the development stage of Harris Eagle
Round-Up [10], and finally carries out the crisscross method
of disordered dimension sampling, which reduces the compu-
tational cost, prevents the reduction of the overall sparsity due
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to the reduction of the dimension close to the best individual,
and improves the global search ability. Therefore, GCOA can
be used to solve the objective function of the median deviation
correntropy of the hyperbolic tangent kernel, which is referred
to as the Golden Coati weighted signal subspace fitting method
based on hyperbolic tangent kernel median deviation corren-
tropy (GCOA-HMCE-WSF) method.

2. SIGNAL AND NOISE MODELS

2.1. Signal Model
It is considered that N narrowband sources are incident on a
uniform equidistant linear array composed ofQ array elements
with θi (i = 1, 2, . . . N). The array element spacing is d, and
the wavelength is λ. Taking the first array element as the refer-
ence array element, the output of the k-th array element at time
t can be expressed as:

xk(t) =

N∑
i=1

si(t)ej2π sinθi(k−1)d/λ + nk(t), (1)

k = 1, 2, . . . , Q

In the formula, si(t) denotes the i-th incident signal; θi denotes
the direction of arrival; λ denotes the signal’s wavelength and
satisfies the ‘half-wavelength’ condition d ≤ λ/2. nk(t) de-
notes the additive noise contained in the kth array element. Eq.
(1) can be further expressed in the following matrix form:

X(t) = AS(t) +N(t) (2)

In the formula, theN×1-dimensional signal vector andM×1-
dimensional noise data vector incident on the array in space can
be expressed as:

S(t) = [s1(t), s2(t), . . . , sN (t)]T

N(t) = [n1(t), n2(t), . . . , nQ(t)]
T (3)

The Q ×N dimensional manifold matrix (steering vector ma-
trix) A and the i-th steering vector can be expressed as:

A = [a(θ2), a(θ2), . . . , a(θN )] (4)

where a(θi) = [1, ej2π sin θid/λ, . . . , ej2π sin θi(Q−1)d/λ]T is the
direction vector of the i-th source.

2.2. Alpha Stable Distribution
The impulse noise in this paper uses the Alpha stable distri-
bution model [11]. Since there is no closed-form probability
density function, the Alpha stable distribution is usually char-
acterized by the characteristic function, which is expressed as
follows:

Φ(u) = exp{jau− γ |u|α [1 + jβsgn(u)ω(u, α)]} (5)

Among them

sgn(u) =

 1 u > 0
0 u = 0
−1 u < 0

(6)

ω(u, α) =

{
tan(πα2 ), α ̸= 1
2
π log |u| , α = 1

(7)

It can be seen from formula (3) that the characteristic function
is determined by four parameters: α, β, γ, and µ. Parameter
α is called characteristic exponent, which is used to measure
the tailing thickness of the probability density function, and the
value range is (0, 2]. When α = 2, the stable distribution de-
generates into a Gaussian distribution. Parameter β is called the
index of skewness, which represents the skewness of the distri-
bution, and the value range is [−1, 1]. When β = 0, the stable
distribution is usually called symmetric alpha stable (SαS) dis-
tribution. Parameter γ is called scale parameter, which is used
to measure the degree of dispersion of the sample. Analogous
to the variance of the conventional distribution, the value range
is (0,+∞). Parameter µ is called location parameter, and the
value range is (−∞,+∞). When 0 < α ≤ 1, µ represents the
median of the variable, and when 1 < α ≤ 2, µ represents the
mean of the variable.

3. DOA ESTIMATION ALGORITHM BASED ON GCOA-
HMCE-WSF

3.1. HMCE-WSF Algorithm
It is assumed that the sources are independent of each other,
that the sources and noise are independent of each other, that
the mean value of the received data of the array elements is
zero, that the received noise between the array elements is un-
correlated, and that the variance is equal. Then, the covariance
matrix of the received data can be expressed as:

R = E
[
XXH] = ARSA

H + σ2
NI (8)

E[ · ] denotes the mathematical expectation, H the conjugate
transpose, I the unit matrix, and σ2

N the variance of noise.
To make full use of the single snapshot data received by the

array, a uniform equidistant linear array of Q elements is di-
vided into M overlapping subarrays by forward sliding. Each
subarray has L elements, where M = Q − L + 1. Its spatial
smoothing structure is shown in Figure 1.

Subarray 1

Subarray 2

1 2 . . . L L+1 . . .Q -L+1 . . . Q -1 Q

SubarrayM

FIGURE 1. Spatial smoothing structure diagram.

Taking the first subarray on the left side as the reference array
element, the single snapshot signal received by the mth subar-
ray can be expressed as:

ym(t) = [ym(t), ym+1(t), . . . , ym+L−1(t)]
T

= A(θ)D(t)Ām + nm(t) (9)

In the formula, A(θ) is the corresponding array man-
ifold of the first subarray receiving data. D(t) =
diag[s1(t),s2(t), . . . ,sN (t)]N×N is the diagonal ma-
trix of the incident signal vector. nm(t) is the cor-
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Ām =
[
e−j 2πλ sin(θ1)(m−1), e−j 2πλ sin(θ2)(m−1), . . . , e−j 2πλ sin(θN )(m−1)

]T
N×1

(10)

The following matrix is constructed by using the data received
byM sub-matrices:

Y =


y1(t) y2(t) . . . yM (t)
y2(t) y3(t) . . . yM+1(t)
...

...
. . .

...
yL(t) yL+1(t) . . . yQ(t)


L×M

(11)

According to Eq. (10), matrix Y can be expressed as:

Y = A(θ)D(t)Ā+ n(t) (12)

where Ā can be specifically expressed as:

Ā =
[
Ā1, Ā2, . . . , ĀM−1

]

=


1 e−j 2πλ sin(θ1) . . . e−j 2πλ sin(θ1)(M−1)

1 e−j 2πλ sin(θ2) . . . e−j 2πλ sin(θ2)(M−1)

...
...

. . .
...

1 e−j 2πλ sin(θN ) . . . e−j 2πλ sin(θN )(M−1)


N×M

(13)

The noise vector matrix is:

n(t) =


n1(t) n2(t) . . . nM (t)
n2(t) n3(t) . . . nM+1(t)
...

...
. . .

...
nL(t) nL+1(t) . . . nQ(t)


L×M

(14)

To reduce the influence of noise and enable it to realize fea-
ture decomposition, covariance processing is performed on the
constructed matrix Y :

Ry = Y Y H = A(θ)D(t)ĀĀHD(t)HA(θ)H + σ2I (15)

The matrix after covariance processing has the conjugate sym-
metry property, but the diagonal elements do not match. There-
fore, to construct the Toeplitz matrix, the diagonal elements are
median processed to obtain the following matrix:

~Ry =


ỹ1(1) ỹ∗2(1) . . . ỹ∗L(1)
ỹ2(1) ỹ1(1) . . . ỹ∗L−1(1)
...

...
. . .

...
ỹL(1) ỹL−1(1) . . . ỹ1(1)


L×L

(16)

To obtain a better estimation effect in the impact noise envi-
ronment, the low-order moment matrix based on the hyperbolic
tangent kernel correlation entropy is obtained by processing Eq.
(15) and Eq. (16) and using the hyperbolic tangent kernel me-
dian deviation correlation entropy:

~R =


r̃11 r̃12 . . . r̃1L
r̃21 r̃22 . . . r̃2L
...

...
. . .

...
r̃L1 r̃L2 . . . r̃LL


L×L

(17)

where the specific elements can be expressed as

r̃ij =
1

L

L∑
k=1

(
(Ry(i, k)− ỹ(i, k)) · (Ry(j, k)

−ỹ(j, k))∗ · tanh(Ry(:,k)·(Ry(:,k))
H

2σ2 )

)
(18)

where r̃ij represents each element in the matrix ~R. tanh(·) is
the kernel function of the hyperbolic tangent kernel, σ the ker-
nel length of the kernel function, Ry(i, k) the element of row
i and column k in matrix Ry , (·)∗ the conjugate, and (·)H the
conjugate transpose.
The characteristic decomposition of R̃ can be obtained:

R̃ = UsVsU
H
s + UnVnU

H
n (19)

Us represents the signal subspace spanned by the eigenvector
corresponding to the large eigenvalue, Un the noise subspace
spanned by the eigenvector corresponding to the small eigen-
value, Vs a diagonal matrix composed of N large eigenvalues,
and Vn a diagonal matrix composed of small eigenvalues. The
orthogonal projection matrix is:

PA(θ) = A(θ)
(
AH(θ)A(θ)

)−1 AH(θ) (20)

The angle estimation equation of the single-snapshot weighted
signal subspace fitting equation based on the hyperbolic tangent
kernel median deviation correntropy is:

θ̂ = argmax
θ

tr
{
PA(θ)UsWUH

s

}
(21)

In the formulaW = (Vs−µI)2V −1
s , µ is the average of L−N

small eigenvalues, I the unit matrix, and tr(·) the matrix trace
function.
In this case, the pseudo-covariance matrix of the mean de-

viation correntropy of the hyperbolic tangent kernel can be
used to obtain the estimated value of the WSF algorithm un-
der impulse noise. The proposed single-snapshot estimation
method based on theHMCE-WSF applicable toGaussian noise,
Cauchy noise, weak impulse noise, and strong impulse noise.
In addition, the HMCE-WSF method proposed in this paper is
suitable not only for uniform linear arrays (ULA), but also for
uniform circular arrays (UCA), planar arrays, special arrays,
and other complex array structures.

3.2. GCOA Algorithm
The Coati Optimization Algorithm simulates two natural be-
haviors of coati in nature [12]: (a) the behavior of attacking and
hunting iguanas and (b) the behavior of fleeing from predators.
In this paper, the golden sine strategy is integrated into the ex-
ploration stage of COA to enhance the algorithm’s global search
ability. To solve the problems of uneven population distribu-
tion, reduced diversity, and low population quality in the initial
stage of the traditional COA algorithm, this paper uses a good
point set and a dynamic reverse learning strategy to initialize
the population to further increase the diversity of the algorithm
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population and the number of population elite individuals to
help the algorithm expand the search area. The development
of a traditional COA algorithm lacks the guidance of the best
information, which may not be conducive to rapid convergence
in the later stage. In this paper, the soft and hard encirclements
and fast dive strategy of Harris Hawk algorithm (HHO) are in-
troduced in the development stage. The soft encirclement or
hard encirclement is selected by prey energy, and the Levy walk
or fast dive attack is judged according to the fitness, so that the
algorithm can effectively jump out of the local optimum. In ad-
dition, in the later iteration of the GCOA algorithm, to improve
the calculation accuracy of the algorithm and the ability to jump
out of the local optimum, the disordered dimension vertical and
horizontal crossover strategy [13] is used to modify the individ-
ual, and the horizontal crossover is used to cross-search the pop-
ulation to reduce the search blind spot. The vertical crossover
increases the population diversity and reduces the probability
of the algorithm falling into the local optimum.
Suppose that we need to solve the maximum value of the

function f(h̃k̄ (̄i)), h̃k̄ (̄i) ∈ RM , where RM is a real M -
dimensional space and h̃k̄ (̄i) = [h̃k̄,1(̄i), h̃k̄,2(̄i), . . . , h̃k̄,M (̄i)].
Firstly, the GCOA algorithm is set as follows: the number

of golden coati is set to CP ; the search space dimension of
each long-nosed raccoon isM ; the maximum number of itera-
tions is G; and the current number of iterations is g. The loca-
tion of the g-th generation of the ī raccoon is defined as hg

ī
=

[hg
ī,1
, hg

ī,2
, . . . , hg

ī,M
]. The position of the optimal raccoon in-

dividual in the g-th generation is hg
best = [hg

1, h
g
2, . . . , h

g
M ], and

h̄g

Ĩ
= [h̄g

Ĩ,1
, h̄g

Ĩ,2, . . . , h̄
g

Ĩ,M
] denotes the new position of the

iguana on the ground. Sp is the escape probability of prey,
which is a random number between (0, 1); |E| is the escape
energy of prey, which is defined as E = 2rand · (1− g

G ); rand
represents a random number between (0, 1).
Through the initialization of the good point set, CP popu-

lation h̃ is generated. Through the following formula, the dy-
namic reverse learning strategy is carried out on the population
after the initialization of the point set:

h = h̃+ r̃1 ×
(
r̃1 ×

(
lb + ub − h̃

)
− h̃
)

(22)

In the search space, the first stage is the exploration stage: a
group of coati climb up a tree and use the golden sine segmen-
tation search method to approach the iguana and expel it. Other
coati wait under the tree until the iguana falls to the ground. Af-
ter the iguana lands, the long-nosed raccoon will attack it and
hunt it.
In the exploration stage, the long-nosed raccoon uses the

golden sine segmentation strategy to search for the iguana. The
search formula is as follows:

hg+1
ī

(m) = wg · hg
ī
(m) · |sinR1|

+r1 sin(2r2)·
(
t1h

g
best(m)−t2 ·I1 ·hg

ī
(m)

)
(23)

where ī = 1, 2, . . . , Cp/2, wg = 0.3 + 0.6 g
G , R1 = 2π · rand,

r1, r2 = π · rand, I1 denotes a random integer in the set of

integers {1,2}, t1 = −π+ 1−(
√
5−1)/2
2π , t2 = −π+(

√
5− 1) ·

2π.

After the iguana falls to the ground, it is placed in a random
position in the search space. Based on this random position,
the gold long-nosed raccoon on the ground moves in the search
space and updates the position using Formulas (24) and (25).

hg+1
ī

(m)

= wg · hg
ī
(m) · |sinR2|

+r3 sin(2r4) ·
∣∣∣t1h̄g

Ĩ,m
− t2 · I2 · hg

ī
(m)

∣∣∣ , f(hg
ī
(m))

< f
(
h̄g

Ĩ,m

)
(24)

hg+1
ī

(m)

= wg · hg
ī
(m) · |sinR2|

+r3 sin(2r4) ·
∣∣∣t1hg

ī
(m)− t2h̄

g

Ĩ,m

∣∣∣ , f(hg
ī
(m))

≥ f
(
h̄g

Ĩ,m

)
, (25)

where i = Cp

2 + 1,
Cp

2 + 2, . . . , Cp, R2 = 2π · rand, r3, r4 =
π·rand, I2 denotes a random integer in the set of integers {1, 2}.
If the new position calculated by each gold long-nosed rac-

coon improves the value of the objective function, the new po-
sition is acceptable; otherwise, the gold long-nosed raccoon re-
mains in the previous position.
The second stage, the stage of coati escaping from preda-

tors, is also called development stage. In this stage, the soft
and hard encirclements and fast dive strategies of the Harris ea-
gle are introduced. The soft encirclement or hard encirclement
is selected by prey energy, and Levi’s walk or fast dive attack
is judged according to the fitness, so that the algorithm can ef-
fectively jump out of the local optimum.
When 0.5 ≤ |E| < 1 and Sp ≥ 0.5, the soft encirclement

strategy is adopted, and the update formula is:

hg+1
ī

(m) =
(
hg
best(m)− hg

ī
(m)

)
−E ·

∣∣Ju1
· hg

best(m)− hg
ī
(m)

∣∣ (26)

where Ju = 2 · (1− rand).
When |E| < 0.5| and Sp ≥ 0.5, the hard-surround strategy

is adopted, and the update formula is:

hg+1
ī

(m) = hg
best(m)− E ·

∣∣hg
best(m)− hg

ī
(m)

∣∣ (27)

When 0.5 ≤ |E| < 1 and Sp < 0.5, the progressive fast sub-
duction soft encirclement strategy is adopted, and the position
and direction of the prey are gradually corrected according to
the deceptive behavior of the prey, so as to select the best posi-
tion to capture the prey. It is implemented through the follow-
ing two strategies. When the first strategy is invalid, the second
strategy is executed, and the update formulas are:

hg+1
ī

= hg
best − E ·

∣∣Ju2
· hg

best − hg
ī

∣∣ (28)

hg+1
ī

= hg
best − E ·

∣∣Ju2
· hg

best − hg
ī

∣∣+ r5 Levy (29)

In the formula, r5 is a random number between (0, 1); Levy is
Levy’s flight strategy; and the formula is:

Levy = 0.01
u · σ̃

|v|
1
β̃

, σ̃ =

 Γ(1 + β̃) · sin(πβ̃2 )

2

(
β̃−1
2

)
· Γ( 1+β̃

2 ) · β̃

 (30)
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where β = 1.5, u, v are random numbers obeying (0, 1) stan-
dard normal distribution, and r6 is random number between
(0, 1).
When |E| < 0.5 and Sp < 0.5, the Harris hawks try to

shorten the distance between them and the average position of
the target prey by using the progressive rapid subduction hard
encirclement. The update position formula of this strategy of
hawk is similar to the formula in the soft encirclement of the
progressive rapid subduction. When the first strategy is invalid,
the second strategy is executed, and the update formulas are
respectively:

hg+1
ī

= hg
best − E ·

∣∣Ju3
· hg

best − hg
mean
∣∣ , (31)

hg+1
ī

= hg
best − E ·

∣∣Ju4 · h
g
best − hg

mean
∣∣+ r6Levyv (32)

where hg
mean is the average position of the g-th golden coati, and

r6 is a random number between (0, 1).
Horizontal crossover refers to selecting two individuals from

the same dimension of the population, exchanging individual
information according to a certain random proportion, generat-
ing their own offspring, and updating the position of the indi-
vidual through the survival of the fittest to improve the global
optimization performance of the algorithm. The expression is:

Y g+1
j̄

(m) = q2 · hg
j̄
(m) + (1− q2) · hg

ī
(m)

+c2 ·
(
hg
j̄
(m)− hg

ī
(m)

)
(33)

Y g+1
ī

(m) = q1 · hg
ī
(m) + (1− q1) · hg

j̄
(m)

+c1 ·
(
hg
ī
(m)− hg

j̄
(m)

)
(34)

where Y g+1
ī

(m) and Y g+1
j̄

(m) are the m-th dimension of the

offspring individuals i and j obtained after crossing. hg
ī
(m)

and hg
j̄
(m) are the m-th dimension of the parent individuals i

and j. q1 and q2 are random numbers between [0, 1]. c1 and
c2 are random numbers between [−1, 1]. The number of cross
dimensions is determined by the sampling rate, which is defined
as:

Ratesample = ceil
(
max

( g

G
, ε1

)
× dim

)
(35)

where Ratesample is the sampling rate, ceil(·) the rounding op-
erator, ε1 the minimum sampling number, which can avoid the
early lower sampling rate, and dim is the dimension.
Vertical crossover refers to the exchange of dimensional in-

formation between different dimensions of the best individuals
in the population according to a certain vertical crossover prob-
ability, thus generating a new generation of the best individuals
to compete with their parents, which is conducive to learning
from each other in different dimensions and avoiding prema-
ture convergence of a certain dimension. The expression is:

Y g+1
best (m) = q · hg

best(m) + (1− q) · hg
best(m̄) (36)

where q is a random number between [0, 1], and Y g+1
best (m) is

the offspring obtained after the parent generation crosses. Sim-
ilarly, the cross-dimension is determined by the sampling rate.

In the process of repeated iteration, the position of the golden
coati with the largest fitness value is selected as the global op-
timal position. When the maximum number of iterations G is
reached, the global optimal position of the golden coati hG

best
is taken as the optimal solution output of the solution function
f(hG

best).

3.3. GCOA-HMCE-WSF Method for DOA Estimation

For the direction-finding problem of HMCE-WSF in impulsive
noise environment, the position of the golden coati represents a
potential solution in the direction-finding equation of WSF. In
the maximum optimization problem of HMCE-WSF, the esti-
mated parameter θ represents the position of the golden coati,
which corresponds to the GCOA algorithm. The fitness value
is expressed as:

fg
ī
= f(h̃g

ī
) = tr

[
PA(θ)UsWUH

s

]
(37)

The fitness value is used to evaluate the state of each golden
coati. In the DOA estimation problem, the purpose is to search
the population position corresponding to the maximum fitness
value. The global optimal golden coati is equivalent to the opti-
mal direction vector θ̂, so the DOA estimation problem is trans-
formed into a continuous optimization problem for searching
for the optimal position.
In summary, GCOA-HMCE-WSF can be described by the

following steps:
(a) Receive the single snapshot data sent by the array antenna

y(t).
(b) The received data of each subarray is obtained by forward

sliding: y1(t), y2(t), . . . , yM (t).
(c) Matrix Y is constructed according to Formula (11), and

matrix ~Ry is obtained by pseudo-covariance median deviation
processing.
(d) According to Formula (18), the matrix ~Ry is processed

by hyperbolic tangent kernel correntropy to obtain matrix ~R.
(e) The orthogonal projection matrix is obtained by eigen-

decomposition of ~R, and the HMCE-WSF angle estimation
equation is constructed. According to Formula (37), it is trans-
formed into the maximum value to optimize the fitness func-
tion.
(f) The golden raccoon optimization algorithm population

is initialized by using the good point set and dynamic reverse
learning strategy, and the fitness value is calculated to deter-
mine the location of the iguana.
(g) Exploration stage: the golden sine segmentation strategy

is used to hunt the iguana and update the population position.
(h) Development stage: using Harris Hawk soft, hard sur-

rounded, rapid subduction strategy to update the population.
(i) The vertical and horizontal crossover strategy uses disor-

dered dimension sampling
(j) To determine whether the maximum number of iterations

G is reached, if not, return step (g); if it is reached, the iteration
is terminated, and the global optimal gold raccoon position is
output as the direction of arrival estimation result output.
The implementation of the proposed method is shown in Al-

gorithm 1.
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Algorithm 1 the Proposed Method
Input: Single snapshot data received in impulsive noise environment
Output: Single snapshot DOA estimation angle value
1: Construct ~Ry as (16), And according to Formula (18), the formula is processed to obtain Formula (17) ~R.
2: Pair (17) Eigen-decomposition formula (19).
3: According to formula (19) and formula (20), the angle estimation Equation (21) is obtained.
4. The formula (21) is transformed into the fitness function formula (37).
5. The GCOA algorithm is used to optimize the maximum value of Equation (37) to obtain the DOA estimation angle.

4. SIMULATION RESULTS AND DISCUSSION

4.1. Performance Test of the GCOA-HMCE-WSF Algorithm
To verify the performance of the GCOA-HMCE-WSF algo-
rithm proposed in this paper, a series of simulation experiments
and related analyses will be carried out in this section.
Assuming that the number of array elements is 64, the num-

ber of sub-arrays is 16, and four completely coherent far-field
narrowband signals are used as the incident sources. Their
DOA incident directions are θ1 = −45

◦ , θ2 = −10
◦ , θ3 =

30
◦ , θ2 = 60

◦ , respectively. The number of snapshots is set to
1, and the interference noise is modeled by the Alpha stable dis-
tribution model. Since there is no finite second-order moment
in the stable distribution noise, the generalized signal-to-noise
ratio (GSNR) [14] is used to measure the intensity of impulse
noise, which is defined as:

GSNR = 10 log10
Ps

γ
(38)

wherePs denotes the signal power, and γ denotes the dispersion
coefficient of Alpha stable distribution.
The parameters of GCOA algorithm are set as follows: the

number of population is Cp = 100, and the maximum number
of iterations is G = 2000.
In the simulation experiment, different experimental condi-

tions are set to evaluate the performance of the algorithm, and
1000 independent Monte Carlo experiments are carried out for
each condition. The five comparison algorithms are One-bit-
AN [15], 1-D estimation based on particle swarm optimization
(1D-PSO-MUSIC [16]), SSCS-MUSIC [17], MPDNN [18],
FLOM-ML [19], and CRB. To quantitatively analyze the per-
formance of each algorithm, this paper uses two indicators as
evaluation criteria, namely, estimation accuracy and root mean
square error (RMSE).
Assuming that the angle of N sources incident on the array

is θ = [θ1, θ2, . . . , θN ], the corresponding DOA estimation is

θ̂ = [θ̂1, θ̂2, . . . , θ̂N ]. The number of Monte Carlo experiments
is Q̃, and the definition of the estimation accuracy is as follows:

PAcc =
NAcc

NTol
(39)

In the formula, NTol denotes the total number of experiments,
and NAcc denotes the total number of experiments which de-
notes the number of correct DOA estimations. A correct DOA
estimation needs to satisfy the condition. |θ̂i(k)− θi| ≤ 1

◦ .

Among them, θ̂i(k) represents the DOA estimation of the i-th
source in the k-th experiment, and θi represents the true DOA
estimation of the i-th source. The corresponding root mean
square error (RMSE) is defined as follows:

RMSE =

√√√√ 1

Q̃N

Q̃∑
i=1

N∑
k=1

∣∣∣θ̂k(i)− θk

∣∣∣2 (40)

4.2. The Simulation Results of the Algorithm under Different
Characteristic Indexes
This group of experiments analyzes the influence of the charac-
teristic index on the performance of the algorithm. The smaller
the characteristic index is, the stronger the impulse of the noise
is, GSNR = 1 dB. The number of snapshots is 1, and the per-
formance of the algorithm is shown in Figure 2 and Figure 3. It
can be seen from the graph that One-bit-AN has the worst per-
formance in an impulse noise environment, and as the charac-
teristic index decreases, the performance decays fastest, and its
resistance to impulse noise is the worst. Due to the low number
of snapshots set in the experiment, the performance ofMPDNN
and FLOM-ML algorithms also decays rapidly. The above four
algorithms almost fail in the robust pulse environment below
α = 1. The performance of GCOA-HMCE-WSF algorithm in
this paper is significantly better than the other five comparison
algorithms, and it still has better estimation performance in a
strong impulse noise environment.

4.3. The Effect of GSNR on the Performance of the Algorithm
This group of experiments analyzes the effect of GSNR on the
algorithm’s performance. In the stable distributed noise envi-
ronment with 5 snapshots and α = 1.5, the impact of GSNR
on the performance of the algorithm is shown in Figure 4 and
Figure 5. It can be seen from the graph that One-bit-AN and 1D-
pso-MUSIC perform well when the GSNR is high, but the per-
formance of the algorithm decreases significantly as the GSNR
decreases. FLOM-ML and MPDNN algorithms perform well
when GSNR is high. However, when GSNR is less than 0 dB,
the performance of these algorithms decreases significantly.
The algorithm GCOA-HMCE-WSF in this paper performs bet-
ter than the other five comparison algorithms in the case of each
GSNR.

4.4. The Influence of Source Spacing on DOA Estimation
This group of experiments analyzes the influence of the DOA
interval of two sources on the algorithm’s performance, as
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FIGURE 2. The success rate simulation comparison curves under differ-
ent characteristic indexes.

FIGURE 3. RMSE simulation comparison curve under different charac-
teristic indexes.

FIGURE 4. The success rate simulation comparison curves under differ-
ent GSNRs.

FIGURE 5. RMSE simulation comparison curves under different
GSNRs.

shown in Figure 6 and Figure 7. The DOA of source 1 is fixed
as θ = 10◦; the angle θ of source 2 is in the range of [11, 20];
the impact strength α = 1, GSNR = 10 dB. When the DOA
interval is less than a particular value, the correct DOA value
cannot be estimated, and the algorithm is almost ineffective. It
can be seen from the graph that the minimum resolution suc-
cess angle interval of One-bit-AN and 1D-PSO-MUSIC algo-
rithms is the largest. SSCS-MUSIC, MPDNN, and FLOM-ML
have smaller minimum resolution success angle intervals. The
GCOA-HMCE-WSF algorithm in this paper has the best effect,
and the minimum resolution success angle interval is 2◦. At the
same time, as the DOA interval of the source becomes smaller,
the performance of each algorithm decreases. In contrast, the
performance of the DMCE-MUSIC algorithm is better than the
other five comparison algorithms, and the gap with the Cramer-
Rao bound is smaller, showing a broader applicability.

4.5. Performance Analysis of DOA Estimation for Coherent Sig-
nals

This group of experiments analyzes the influence of two coher-
ent signals on the algorithm’s performance, as shown in Fig-
ure 8 and Figure 9. The incident angles of coherent sources 1
and 2 are θ1 = 10◦ and θ2 = 30◦, characteristic exponent
α = 1.5 and GSNR = 10 dB. It can be seen from the figure
that the low-order moment direction-finding methods based on
the MUSIC algorithm class cannot achieve accurate estimation
of coherent sources. In contrast, the FLOM-ML and GCOA-
HMCE-WSF algorithms have a high success rate for coherent
source estimation. Among them, the algorithm proposed in this
paper has better performance.
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FIGURE 6. The success rate simulation comparison curve under different
angle intervals.

FIGURE 7. RMSE simulation comparison curves at different angle in-
tervals.

FIGURE 8. The success rate simulation curves of two coherent sources
under different GSNRs.

FIGURE 9. RMSE simulation curves of two coherent sources under dif-
ferent GSNRs.

5. CONCLUSION

Aiming at the problem of poor performance of traditional DOA
estimation methods in an impulsive noise environment, this pa-
per first introduces a new exponential kernel-hyperbolic tan-
gent kernel. On this basis, the Toeplitz matrix is constructed
by smoothing the spatial array and median filtering, and the
covariance of the matrix is processed by the method of median
deviation correntropy and hyperbolic tangent kernel, so as to ef-
fectively suppress impulse noise. Finally, the proposed GCOA
algorithm is used to solve the weighted signal subspace fitting
equation. The simulation results show that the GCOA-HMCE-
WSF method proposed in this paper can effectively locate in-
dependent sources and coherent sources in complex impulsive
noise environments. Under the condition of the large-scale an-
tenna array, DOA estimation of a single snapshot source can be

carried out quickly and effectively. The proposed GCOAHM-
CEWSFmethod can achieve better performance than some pre-
vious methods in the case of a single snapshot and strong im-
pulsive noise, and the superiority and robustness of the GCOA-
HMCE-WSF method are tested. In the subsequent research,
we will design new de-impact processing methods and single-
snapshot direction-finding methods to improve the effective-
ness and real-time performance of DOA estimation in harsher
noise environments and design more effective multi-objective
quantum swarm intelligence optimization algorithms to solve
more complex DOA estimation problems.
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