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ABSTRACT: Taguchi method has been extensively applied in electromagnetic optimization. To further enhance the optimization efficiency
of the Taguchi method, a surrogate-assisted Taguchi method employing dynamic reduced rates is proposed. The reduced rate of each
design variable is proportional to its contribution percentage. Variables with higher contributions exhibit a larger reduction rate, which
subsequently decreases the search step and enhances the exploitation and convergence of the Taguchi method. Kriging model serves as
a substitute for the real fitness evaluation in predicting the result of each experiment, with its feasible state determined by the average
relative error of its predictions. This ensures the prediction accuracy while reducing the number of real fitness evaluations. The proposed
algorithm is validated by the fact that the efficiency has increased at least twofold through four benchmark function tests. In the end,
this algorithm is employed to synthesize the radiation pattern of an asymmetrical dipole array with 16 elements and to optimize the
front-to-back ratio of the Yagi-Uda antenna.

1. INTRODUCTION

In recent years, surrogate-assisted evolutionary algorithms
(SAEAs) have been widely employed in modern antenna

design due to their high efficiency, robustness, and intelli-
gence [1–3]. SAEAs generally consist of two components: sur-
rogate model and evolutionary search engine, which work in a
collaborative manner. The surrogate’s prediction accuracy and
evolutionary algorithm’s search capability significantly influ-
ence its performance.
The Taguchi method (TM) is a global optimization algorithm

that, by utilizing the orthogonal array (OA) and signal noise ra-
tio (SNR), can achieve fast convergence and strong robustness
without any gradient information. It has been widely used in
filter designs [4], antenna array synthesis [5, 6], and other mi-
crowave design problems [7]. Nevertheless, the convergence
of the TM is influenced by the reduced function, whose perfor-
mance is sensitive to the reduced ratio. In addition, the original
TM neglect accounting for the global optimal design from the
conducting experiments established by the OA.
Since the performance of the TM is sensitive to the value of

the reduced rate, an improved TM (ITM) based on the dynamic
reduced rate is proposed, which only requires the specification
of the reduced rate boundary [8]. In fact, some design param-
eters have a more significant impact on the design goal than
others. Therefore, it is crucial to fine-tune these parameters
during the optimization process to achieve optimal results. The
relationship between the reduced rate and the contribution ratio
of each parameter can be determined through the utilization of
analysis of variance (ANOVA) on the experiment results. This
is what we called a “dynamic reduced function” in ITM algo-
rithm. Another method to improve the convergence of the TM
involves substituting the costly computational model for a sur-

* Corresponding author: Xingning Jia (nxujiaxn@nxu.edu.cn).

rogate model. The experiments established by the OA during
each iteration have a uniform distribution of parameters in the
local design space. This means that training surrogate models
like the Kriging model or artificial neural network on these ex-
periment data can typically ensure lower prediction errors over
this local design space.
In this paper, we present a surrogate-assisted TM (SATM)

utilizing Kriging model to further enhance the local search ca-
pability and convergence efficiency of the ITM. The reduced
rate of the level difference in the SATM is controlled by the dy-
namic reduced rate. The Kriging model serves as a substitute
for the prohibitive computational model, thereby minimizing
the number of real fitness evaluations. SATM is ultimately uti-
lized in the synthesis of dipole antenna arrays and the design of
Yagi-Uda antenna.

2. SATM ALGORITHM
The SATM is briefly based on the framework of the ITM al-
gorithm, which involves the strategies of the dynamic reduced
rate (DRR) and the optimal solution from the experiments es-
tablished by the OA table. The DRR correlates with the contri-
bution ratio of each factor, determined through ANOVA of the
conducting experiments. A higher contribution ratio indicates
a greater reduced rate and a smaller level difference. More-
over, the optimal result of the experiments is compared with the
current global best obtained by the confirmation experiment to
avoid the situation that the experiment result has met the termi-
nation criterion, yet the confirmation experiment remains un-
satisfied. Besides, the Euclidean-based training data selection
method is adopted to train the Kriging model. For each exper-
imental parameter, non-repetitive samples closest to it are se-
lected to ensure the prediction accuracy of the local surrogate
model. The availability of the surrogate model is controlled by
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the average relative prediction error of the test samples. The
SATM algorithm is described in the following detailed steps:

S0: Define the fitness function f(x⃗), where x⃗ =(x1, . . . , xd)
T

is a vector comprising design parameters. xi ∈
[
xL
i , x

U
i

]
,

where xL
i and xU

i denote the lower and upper boundaries
of the factor xi, 1 ≤ i ≤ d, with d indicating the dimen-
sion of x⃗. Select the proper OA (M , K, S, 2) according
to the value of d, whereK is the factor number of the OA
with the condition that K ≥ d. S represents the level
number, with a value of S = 3 in this paper. For the expo-
nential reduced function, set the lower limit rmin and upper
limit rmax of the reduced rate r. Initialize the global opti-
mal value fg and its corresponding design parameter g⃗; let
e denote the average relative error of the prediction result
of the surrogate model, with a threshold defined as emax.
Initialize the surrogate model availability status SM = 0.
This indicates that the prediction accuracy of the surro-
gate model does not meet the requirements at this time,
and only the real fitness function can be used to calculate
f(x⃗). In other cases, the value f(x⃗) is estimated using the
surrogate model. All parameters and results calculated by
the real fitness function are stored in matrix D with di-
mensions of q × (k + 1), which is an empty matrix in the
initialization. Set the termination criterion and initialize
the iteration count t = 0.

S1: Confirm the parameter values with respect to the different
levels of each factor. Let the parameter values associated
with levels 1, 2, and 3 of the factor xi in the tth iteration
be denoted as xi |t1, xi |t2, and xi |t3. The relationship
among them is outlined as follows: xi |t1= xi |t2 −Lt

i,
xi |t3= xi |t2 +Lt

i, whereLt
i represents the level difference

of factor xi at the tth iteration. Lt
i = rti×Lt−1

i , where 1 ≤
i ≤ d. Perform boundary checking, when xi |t1< xL

i , set-
ting xi |t1= xL

i , and when xi |t3> xU
i , defining xi |t3= xU

i .
In the initial iteration, to maximize coverage of the design
space, the value for level 2, denoted as xi |02, is determined
at the midpoint of the optimization range, calculated as
xi |02=

(
xU
i − xL

i

)
/2. The values for level 1 and level 3

are defined as xi |01= xi |02 −L0
i and xi |03= xi |02 +L0

i ,
respectively, where L0

i =
(
xU
i − xL

i

)
/ (S + 1).

S2: The vector x⃗t
n denotes the design parameter associated

with the nth experiment in the tth iteration, where 1 ≤
n ≤ M . The fitness value f(x⃗t

n) for each experiment is
calculated. Calculate f(x⃗t

n) using the real fitness function
under the conditions where q ≤ 3×M or SM = 0. Subse-
quently, restore the parameter x⃗t

n and the result f(x⃗t
n) in

the matrix D. In the event that the minimum value f(x⃗t
n0)

within the set of values f(x⃗t
n) is less than the global best

fg , let g⃗ = x⃗n0 and proceed to S4. If q ≥ 3 × M and
SM = 0, turn to S3 to construct the Kriging model. If
SM = 1, calculate the fitness values f̂(x⃗t

n) for each ex-
periment utilizing the Kriging model. Determine the min-
imum value within f̂(x⃗t

n) represented as f̂(x⃗t
n0), calculate

f(x⃗t
n0) using the real fitness function if f̂(x⃗t

n0) < fg , and
restore the parameters x⃗t

n0 and f(x⃗t
n0) in the matrix D. If

f(x⃗t
n0) < fg , then set g⃗ = x⃗n0 and proceed to S4.

S3: Construct the Kriging model. Initialize the matrix T to be
an empty matrix. If q ≥ 3 × M and SM = 0, calculate
the Euclidean distances |x⃗t

n − D⃗j | between every set of
parameters x⃗t

n in the OA and the vector D⃗j in the matrix
D. The top 20% samples closest to x⃗t

n are selected, du-
plicated, and subsequently recorded in matrix T. Suppose
that the dimension of the current matrix T is p× (q + 1),
where p ≤ q. The vectors in each row of matrix T are
randomly arranged. The first ⌊0.95p⌋ rows are designated
as the training dataset, while the subsequent ⌊0.05p⌋ rows
are allocated for tests. The Kriging model is established
based on the ooDACE toolbox [9]. For each test data x⃗c

i

and its corresponding real fitness function value f(x⃗c
i ),

1 ≤ i ≤ ⌊0.05p⌋, the prediction values of the Kriging
model are f̂(x⃗c

i ). The mean relative error e of all test data
predictions f̂(x⃗c

i ) is calculated by (1). If e ≤ emax, then
SM = 1.

e =

⌊0.05p⌋∑
i=1

∣∣∣f̂(x⃗c
i )− f(x⃗c

i )
∣∣∣

|f(x⃗c
i )|

/⌊0.05p⌋ (1)

S4: After obtaining the results of all experiments in the tth it-
eration, a response table is established through the analysis
of mean (ANOM), and the elements of response table (RT)
are determined by (2).

ηk,s = −10 lg
(

1

m

m∑
i=1

(
fk,s
i

)2)
(2)

where fk,s
i represents the ith experiment value of fac-

tor k at level s. m is the total number of experiments
in which the level of factor k is s. The value is con-
verted to SNR. ηk,s denotes the element value in RT cor-
responding to the level s of the Kth factor. For the min-
imization problem where the fitness function is positive,
the criterion of “the larger the better” is applied. This
indicates that the level value with the maximum value
of each factor xi in RT is the best level of the factor
at present. The optimal level values of each factor are
formed the confirmation experiment parameters, denoted
as x⃗t

opt = (xt
o,1, x

t
o,2, . . . , x

t
o,k). Perform the confirma-

tion experiment f(x⃗t
opt) and store the result in matrix D.

If f(x⃗t
opt) < fg , then g⃗ = x⃗opt. ANOVA is performed on

the experimental results from the tth iteration to determine
the current contribution percentage P t

i of each parameter,
where 1 ≤ i ≤ d, and the sum of all contribution percent-
ages satisfies

∑d
i=1 P

t
i = 1. Then, the reduced rate rt+1

i ,
which corresponds to the level difference Lt

i of factor xi

at the t+ 1 iteration, is calculated using Equation (3).

rt+1
i = [rmax − rmin]× P t

i + rmin (3)

If SM = 0, estimate f̂(x⃗t
opt) using the Kriging model.

Calculate the relative error e between f̂(x⃗t
opt) and f(x⃗t

opt),
and set SM = 0 if e ≥ emax.

S5: The termination criteria consist of the following condi-
tions: the maximum number of real fitness evaluations
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FIGURE 1. Flowchart of the proposed SATM algorithm.

TABLE 1. The value ranges of the benchmark functions and the parameter settings for the optimization algorithms.

Algorithms
Benchmark Fucntions F1: Sphere F2: Rastrigin F3: Griewank F4: Rosenbrock

Boundaries −15 ≤ xi ≤ 30 −4 ≤ xi ≤ 5.12 −20 ≤ xi ≤ 30 −20 ≤ xi ≤ 30

SATM
emax = 0.05 for F1 emax = 0.05 for F2 emax = 0.01 for F3 emax = 0.03 for F4

OA (27, 13, 3, 2), rmin = 0.85, rmax = 0.95, MNRFEs = 1500
ITM OA (27, 13, 3, 2), rmin = 0.85, rmax = 0.95, Tmax = 90

EO Np = 40, a1 = 2, a2 = 1, GP = 0.5, V = 1, NRFEs = 2520
TL-SSLPSO k = 3, NRFEs = 1500

(MNRFEs) must reach the predetermined value, or the
function f(g⃗)must meet the specified value. If either con-
dition is satisfied, return g⃗. Otherwise, t = t + 1, let
xi |t+1

2 = xt
opt,i, and proceed to S1.

The flowchart of SATM algorithm is shown in Fig. 1.

3. EXPERIMENTAL STUDY
The Sphere, Rastrigin, Griewank, and Rosenbrock benchmark
functions in 10 dimensions are selected for the purpose of com-
paring the performance of ITM and SATM algorithms. Table 1
presents the boundaries of each benchmark function, as well as
the parameter settings for ITM and SATM algorithms. The first
10 columns of OA (27, 13, 3, 2) are selected, with rmin = 0.85
and rmax = 0.95, respectively. For the ITM algorithm, the max-
imum number of iterations is defined as Tmax = 90, which re-
sults in a total of 2520 real fitness evaluations. In SATM algo-
rithm, MNRFEs are set to 1500. This study employs two ad-
ditional algorithms for comparative analysis: equilibrium op-

timizer (EO) [10] and truncation-learning-driven surrogate as-
sisted social learning particle swarm optimizer (TL-SSLPSO)
[11]. These algorithms represent recent advancements in the
fields of meta-heuristic and surrogate-assisted evolutionary op-
timization methods. The control parameter settings for EO and
TL-SSLPSO are also provided in Table 1.
Figure 2 shows the convergence curves for the four

benchmark functions optimized by ITM, SATM, EO, and
TL-SSLPSO algorithms, respectively. It can be seen from
Figs. 2(a)–(c) that, in comparison to the results of ITM
algorithm, the prediction performance of the Kriging model
of SATM algorithm meets the requirements when t = 7. The
optimization results of SATM algorithm demonstrate signifi-
cant improvements over ITM algorithm when being evaluated
with the same number of real fitness evaluations (NRFEs).
TL-SSLPSO shows faster convergence when being applied to
the sphere function; however, it encounters local minima in the
other two functions. For the Rosenbrock function, the Kriging
model of SATM algorithm achieves the required prediction
accuracy at t = 24. The optimal result, with respect to meeting
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FIGURE 2. Convergence curves of ITM, SATM, EO and TL-SSLPSO
for the (a) Sphere, (b) Rastrigin, (c) Griewank and (d) Rosenbrock
benchmark functions.

the termination condition, is nearly identical to the result
generated by the ITM algorithm. The local prediction accuracy
of Kriging for the Rosenbrock function is inferior, resulting
in convergence at a local optimum. However, the results of
SATM algorithm are better than those of the ITM algorithm
under the same NRFEs. Moreover, the results obtained by EO
and TL-SSLPSO are significantly lower than those achieved
by ITM and SATM. Overall, SATM algorithm can achieve the
same optimization results with an average of 50% fewer real
fitness evaluations than ITM algorithm.

4. DIPOLE ARRAY SYNTHESIS
By optimizing the relative position, excitation amplitude, and
phase of the array elements, the antenna array synthesis based
on intelligent optimization algorithm can realize the control-
lable adjustment of the direction pattern, which is useful in
the fields of communication, remote sensing, radar, and other
fields [12]. The synthesis of dipole arrays for low-RCS [13] and
shaped patterns [14, 15] has been investigated using optimiza-
tion methods. In this section, as illustrated in Fig. 3, an asym-
metric 16-element half-wave dipole array is placed horizontally
along the z-axis, where the array spacing is λ0/2 ≈ 2m, and
λ0 represents the wavelength operating at 75MHz in free space.
The dipole element is a rectangular metal sheet that is fed at the
center of the dipoles. The Method of Moment (MOM) is em-

x
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#10#10#9#9#8#8#7#7#1#1 #16#16

x

y

z V1
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#10#9#8#7#1 #16

FIGURE 3. Configuration of the 16-element dipole array.

ployed to compute the radiation characteristics of a half-wave
dipole array [16]. According to MOM’s discretization require-
ments, each dipole cell is divided into 48 grids, so the entire
array is divided into 768 grids in total. It is required to synthe-
size low sidelobe level and null control by optimizing the exci-
tation magnitudes for each element, with the excitation magni-
tude values ranging from 0 to 1. In order to compare the per-
formance of the proposed algorithm, the convergence results
for ITM, EO, and TL-SSLPSO are also given. ITM and SATM
algorithms utilize first 16 columns of OA (54, 25, 3, 2). The
control parameters for SATM algorithm are defined as follows:
rmin = 0.85, rmax = 0.95, and emax = 0.02.

4.1. Null Control
In this example, by optimizing the excitation magnitudes of
each dipole, three radiation pattern cases with low sidelobe and
nulls in specified directions are investigated. At XOZ plane,
all three array patterns exhibit a low sidelobe level that falls
within the range of [−25 dB,−20 dB]. In case 1, the nulls oc-
cur in the narrow directions of θ = [44◦, 53◦] and [128◦, 137◦],
whereas in case 2, they are located in the wide directions of
θ = [40◦, 60◦] and [120◦, 140◦]. In case 3, the nulls are found
in the asymmetry directions of θ = [35◦, 55◦] and [120◦, 145◦].
The fitness function for this example is defined in (4), with
AFUB andAFLB denoting the upper and lower limits of the con-
strained values of the array radiation pattern, as depicted by the
black dashed lines in Figs. 4(e)–(g), respectively, dθ = 0.9◦

in this case. Hence, the optimal value of the fitness function is
0. The termination condition for ITM and SATM algorithms is
defined by two criteria: either reaching the maximum number
of iterations, specified as Tmax = 50, or achieving a global best
value of 0.

4.2. Sidelobe Suppression
In this example, the optimization goal is to suppress the side-
lobe level of the array pattern through the adjustment of the
dipole’s excitation magnitude. The termination condition of the
algorithm is the maximum number of iterations Tmax = 50.

4.3. Results and Discussions
The parameter settings for EO and TL-SSLPSO are consistent
with those utilized in benchmark optimizations. The fitness
value statistics from ten independent runs for SATM, EO, and
TL-SSLPSO algorithms are detailed in Table 2. SATM yields
the lowest best and average values for cases 1 and 2 of the null
control. In contrast, TL-SSLPSO achieves the lowest best and
average values for case 3 of the null control and sidelobe sup-
pression. The optimal values achieved by ITM algorithm are
greater than those obtained by SATM, as well as the average
values, demonstrating that SATM has superior search abilities
relative to ITM algorithm.

f =

∫ 180◦

0◦
[AF(θ)−AFUB(θ)][

1+sgn(AF(θ)−AFUB(θ))
2

]
dθ
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FIGURE 4. Convergence curves and the two optimal normalized radiation patterns obtained from SATM, ITM, EO, and TL-SSLPSO for null control
(a), (e) case 1, (b), (f) case 2, (c), (g) case 3, and (d), (h) sidelobe level suppression, respectively.

TABLE 2. Statistics of dipole array synthesis

Cases
Algorithms SATM ITM EO TL-SSLPSO

Null Control

Case 1
Worst 5.11E-03

2.52E-03
6.05E-02 4.71E-02

Best 0 0 6.05E-02
Average 2.03E-03 2.24E-02 2.65E-02

Case 2
Worst 1.04E-02

5.62E-03
1.65E-01 1.47E-01

Best 0 2.29E-04 4.83E-03
Average 3.71E-03 7.29E-02 4.08E-02

Case 3
Worst 4.35E-02

4.19E-02
1.25E-01 3.98E-02

Best 1.35E-02 9.42E-03 2.84E-03
Average 2.96E-02 5.88E-02 1.66E-02

Sidelobe Suppression
Worst 6.25E-02

5.94E-02
5.19E-02 4.92E-02

Best 4.34E-02 4.14E-02 3.81E-02
Mean 5.57E-02 4.62E-02 4.14E-02

+

∫ 180◦

0◦
[AFLB(θ)−AF(θ)]

[
1+sgn(AFLB(θ)−AF(θ))

2

]
dθ (4)

Figures 4(a)–(c) present the convergence curves for null con-
trol cases derived from SATM, ITM, EO, and TL-SSLPSO.
SATM exhibits the lowest average fitness values for case 1 and
case 2 with almost a 22% reduction in NRFEs relative to ITM
algorithm. Figs. 4(e)–(f) illustrates the optimal normalized ra-
diation patterns for case 1 and case 2, as derived from SATM
and EO algorithms. In the asymmetry null control case, i.e.,
case 3, as depicted in Fig. 4(c), TL-SSLPSO exhibits superior
performance compared to the other three algorithms. There-
fore, the optimal radiation patterns achieved by TL-SSLPSO
and SATMare depicted in Fig. 4(g). In the sidelobe suppression
case shown in Fig. 4(d), upon reaching the maximum number

of iterations, the optimal values achieved by SATM and ITM
are 0.0434 (−27.25 dB) and 0.0594 (−24.52 dB), respectively.
SATM algorithm requires a total of 1246 real fitness evalua-
tions, which means a decrease of 54.7% with respect to the
NRFEs performed by ITM algorithm. The average and optimal
values achieved by SATM are comparable to those obtained by
EO and higher than those achieved by TL-SSLPSO. Fig. 4(h)
presents the optimal radiation patterns obtained by SATM and
TL-SSLPSO. Moreover, the radiation patterns associated with
the optimal results achieved by SATM are simulated using the
commercial electromagnetic software FEKO (computations in-
volving bodies of arbitrary shape) [17], and these patterns coin-
cide with the MOM simulations performed in MATLAB [16].

5. YAGI-UDA ANTENNA DESIGN
AYagi-Uda antenna (YUA), which is usually used as an exam-
ple for verifying the performance of optimization algorithm, is
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FIGURE 5. Configuration of the six-element Yagi-Uda antenna
(0.15λ0 ≤ Sj ≤ 0.45λ0, j = 1, 2, · · · , 5, 0.42λ0 ≤ Li ≤ 0.52λ0,
i = 1, 2, 0.4λ0 ≤ Li ≤ 0.495λ0, i = 3, 4, 5, 6).

adopted in this section [18, 19]. The configuration of YUA,
illustrated in Fig. 5, comprises a driven element, a reflec-
tor, and four directors. All elements are circular metal posts
with lengths denoted as Li (i = 1, 2, . . . , 6). The space dis-
tance between adjacent posts is represented as Sj , where j =
1, 2, . . . , 6. It is known from [20] that the best directivity of a
six-element YUA is 13.41 dB without accounting for the front-
to-back ratio (FBR). The objective is to ensure that the directiv-
ityD exceeds 13.41 dB, in addition to achieving a higherFBR.
The objective function is defined as (5).

Minimize F = γmax {0, 13.41−D} − FBR+ 50 (5)
FBR = 20 log10 {E (θ = 90◦, ϕ = 0◦) /

max [E (θ = 90◦, ϕb)]} (6)

where the first term in (5) is a plenty function, ensuring that the
directivity D is not less than 13.41 dB in this case. The FBR
is calculated by (6), which denotes the ratio of the electric field
at a point (θ = 90◦, ϕ = 0◦) to the maximum electric field at
the points (θ = 90◦, ϕb ∈ [160◦, 200◦]). γ is set to 103 in this
case to ensure that the directivity criterion is met firstly, then
to maximize the FBR during the optimization. The constant
50 is added here to make the minimum value of F be greater
than 0.
OA (27, 13, 3, 2) is selected for the YUA design, with pa-

rameters set as follows: rmin = 0.85 and rmax = 0.95 for
ITM and SATM, respectively, and emax = 0.05 for SATM.
The MNRFEs are set to 103. In this case, the YUA is mod-
eled using FEKO, comprising dipoles of a designated length
with radius of 0.003369λ0, where λ0 denotes the wavelength
operating at 165MHz in free space. The statistics for each
algorithm applied to YUA designs are presented in Table 3.

TABLE 3. Statistics of YUA design.

Algorithms SATM ITM EO TL-SSLPSO
Worst 25.15

25.15
656 692.55

Best 23.94 28.87 22.47
Average 24.51 398.48 438.41

Success rate 100% 100% 40% 20%

Despite the TL-SSLPSO achieving the best fitness value, it
reached the desired directivity only once in five independent
runs. SATM demonstrates a lower average fitness value and
greater robustness in this case. The convergence curves for
ITM, SATM, EO, and TL-SSLPSO are shown in Fig. 6(a). It
is obvious that the Kriging model first substitutes the real fit-
ness evaluation after 10 iterations. After 366 NRFEs, the mini-
mum value achieved by SATM is 23.94, which is 1.21 less than
the minimum value obtained by ITM, resulting in a reduction
of NRFEs by nearly 20%. The directivity and FBR achieved
through SATM are 13.42 dB and 26.06 dB, respectively. The
FBR achieved by SATM exhibits superiority compared to that
obtained through ITM, as proven by the normalized directiv-
ity displayed in Fig. 6(b). This demonstrates the capability of
SATM to enhance the optimization efficiency of ITM. An op-
timum YUA, as described in [20], is shown in Fig. 6(b), with-
out considerations for FBR optimization, which has a value of
10.05 dB. The directivity of this YUA is 13.58 dB; however, its
FBR is 16 dB lower than the optimal result obtained by SATM.

NRFEs

e
ula

v sse
nti

F

)
B

d( 
yti

vitceri
D

ITMITM
SATMSATM

EOEO
TL-SSLPSOTL-SSLPSO

SATMSATM

ITMITM

SATM

ITM

Optimum YUA w/o 

FBR optimization

NRFEs

e
ula

v sse
nti

F

θ

)
B

d( 
yti

vitceri
D

ITM
SATM

EO
TL-SSLPSO

SATM

ITM

Optimum YUA w/o 

FBR optimization

(a) (b)

FIGURE 6. (a) Convergence curves of ITM, SATM, EO and
TLSSLPSO for the YUA design and (b) directivity patterns simu-
lated by FEKO, corresponding to the optimal results achieved by ITM,
SATM, and the optimum array without FBR optimization [20], respec-
tively.

6. CONCLUSION
SATM algorithm, which is based on the Kriging model and dy-
namic reduced function, is proposed to enhance the optimiza-
tion efficiency of TM. This algorithm is applied to benchmark
functions, dipole array synthesis, and Yagi-Uda antenna prob-
lems. The benchmark function experiments indicate that SATM
algorithm exhibits greater efficiency and enhanced optimiza-
tion capabilities relative to ITM algorithm. The proposed algo-
rithm has a good potential for the application in high computa-
tional cost design problems.
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