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ABSTRACT: Most of the analytical work on general transparent dispersive media to date has been confined to second-order dispersion
within the framework of the paraxial approximation. It is the aim in this article to lift this restriction. Specifically, a detailed discussion is
provided of modulated (3+ 1)-dimensional nonparaxial spatiotemporally localized waves in second-order transparent dispersive media.
Novel infinite-energy invariant wavepackets and finite-energy almost undistorted solutions are discussed in detail. Illustrative numerical
examples of the latter are given for normal dispersion in fused silica and for anomalous dispersion in a Lorentz plasma.

1. INTRODUCTION

In recent years, there has been increasing interest in novel
classes of localized solutions to various hyperbolic equations

governing acoustic, electromagnetic, and quantum mechanical
wave phenomena. The bulk of the research along these lines has
been performed in connection to the basic formulation, genera-
tion, propagation, guidance, scattering, and diffraction proper-
ties of localized waves (LWs) in free space (See [1–17] for per-
tinent literature). This interest has been sustained by advance-
ments in ultrafast acoustical, optical, and electrical devices
capable of generating and shaping very short, pulsed waves.
These ultrashort pulses exhibit distinct advantages in their per-
formance by comparison to conventional quasi-monochromatic
signals. It has been shown that such pulses have extended
ranges of localization in the near-to-far field regions. These
properties, together with their uniform focused depth in the near
field, render LW fields very useful in applications involving re-
mote sensing, ground-penetrating radar, directed energy trans-
fer and secure communications, nondestructive testing, secure
signaling, and interference-free communications.
Examples of analytical LWs include infinite-energy non-

diffracting wavepackets, such as the FocusWaveMode (FWM)
derived by Brittingham [1] (see, also, [2]), the X-wave intro-
duced by Lu and Greenleaf [5], the Focus X Wave (FXW) de-
rived by Besieris et al. [8], and the Bessel X wave formulated
by Saari and Reivelt [7], as well as almost nondiffracting finite-
energy ones, e.g., the Modified Power Spectrum (MPS) pulse
deduced by Ziolkowski [3] and the Modified Focus X Wave
(MFXW) derived by Besieris et al. [8]. Each LW pulse is an
ultra-wideband wave field consisting of a highly focused cen-
tral portion embedded in a sparse, low intensity background.
Two scales, thus, characterize these pulsed wave fields: (a)
an extremely small scale depicting the spatial extension and
the temporal duration of the high intensity focused pulse; (b)
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a larger scale specifying the size of the low intensity back-
ground field. This double trait causes LW pulses to behave
in an extraordinary fashion when they propagate in free space,
or scatter and diffract from objects. Another distinct feature
of all LW pulses is an unusual coupling between their spatial
and temporal spectral components. This coupling manifests
itself as a time-dependent (dynamic) initial excitation on the
source plane of the generated pulse; specifically, distinct seg-
ments of the source plane should be excited at different times
using various time sequences. One factor determining the se-
quential order of the excitation of the various source elements
is the spatio-temporal spectral coupling. The unusual structure
of the frequency content of LW pulses causes the spectral de-
pletion of the peaks of such pulsed wave fields to be entirely
different from that of conventional quasi-monochromatic sig-
nals, or other broadband signals. Thorough investigations of
the spectral depletion of LW pulses generated from finite-time
dynamic apertures have been undertaken. A finite-time dy-
namic aperture is an artifice developed for studying the decay
of propagating finite-energy LWpulses by time-limiting known
closed-form infinite energy LW solutions. This provides a well-
established scheme for shaping the spectral components of the
initial field in a manner that it can control the decay rate of a
LW pulse traveling away from its source plane. Such an ap-
proach is dependent on the a priori knowledge of exact closed-
form LW solutions. It does not matter whether the known ex-
act LW pulses have infinite energy, if the power content of the
initial excitation on the source plane is always finite. In most
cases, finite energy pulses can be generated by appropriately
time-windowing the infinite energy excitation field.
Experimental demonstrations of localized waves have been

performed in the acoustical [18] and optical regimes [17, 19–
23]. Work, however, was carried out at microwave frequencies
recently [24–26].
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In parallel to the work on spatially localized and temporally
ultra-short pulses in free space, research has been carried out
on localized waves that can compensate for temporal dispersive
media effects. The main goal has been to ascertain the degree
of reduction of dispersive effects through proper shaping of the
initial excitations. Such, almost nondispersive LWs, would find
applications in diverse physical areas, such as massive parti-
cle physics, high resolution imaging, medical radiology, tissue
characterization and photodynamic therapy.
One of the simplest analytical models incorporating dis-

persion is the Klein-Gordon equation, important in model-
ing cold plasma and in relativistic particle physics. Original
work on localized waves involving this equation by MacK-
innon [27, 28] dealt with the modeling of relativistic massive
particles. A more systematic approach to the derivation of
exact, nondispersive packet solutions to equations modeling
relativistic massive particles was carried out by Shaarawi et
al. [29], first in connection with the Klein-Gordon equation
and then the Dirac equation. The bidirectional wave transfor-
mation [4] developed for the scalar wave equation was shown
by Tippett and Ziolkowski [30] to have interesting extensions
for first-order hyperbolic systems. The method they devel-
oped was applied to the linearized cold plasma equations and
nondispersive LWs solutions were established. FWM-type so-
lutions to the Klein-Gordon were developed by Hillion [31] and
Borisov and Utkin [32]. Luminal, subluminal, and superlumi-
nal ideal (nondispersive) solutions to the Klein-Gordon equa-
tion were derived by Rodrigues and Maiorino [33]. A com-
prehensive study of FWM-type LWs in a collisionless plasma
was undertaken by Abdel-Rahman et al. [34], with empha-
sis on their generation from finite-time dynamic apertures. A
systematic derivation of finite energy FWM and X Wave-type
LWs based on dimension-reduction techniques for the Klein-
Gordon was provided by Besieris et al. [35, 36]. More recently,
Kiselev-type (exponentially localized) nondispersive solutions
to the Klein-Gordon equation were derived by Perel and Fi-
alkowsky [37].
The Klein-Gordon equation, characterized by anomalous

dispersion, is a very special case of the broad general class of
normal and anomalous temporally dispersive media. A first
attempt to address space-time localization in a more general
dispersive medium, albeit confined to second-order dispersion,
was made by Sõnjalg and Saari [38] and by Sõnjalg, Rätsep
and Saari [39], who studied the suppression of temporal spread
of ultrashort pulses and demonstrated experimentally the prop-
agation of a Bessel-X pule with strong lateral and longitudi-
nal localization in dispersive media. Subsequent work along
these lines was undertaken by Porras [40], Orlov et al. [41],
Zamboni-Rached et al. [42], Porras et al. [43], Porras and Gon-
zalo [44], Porras and Di Trapani [45], Longhi [46], Ciattoni and
Di Porto [47], Orlov and Stabinis [48], Malaguti et al. [49], Por-
ras et al. [50], Melaguti and Trillo [51], Salem and Bağci [52].
More recent work in this area has been undertaken by Hall and
Abouraddy [53, 54], He et al. [55], Yessenov et al. [56], and
Palastro et al. [57]. A tutorial review of spatiotemporal sculp-
turing of light has been provided by Zhan [58] recently.

Most of the analytical work on general dispersive media to
date has been confined to second-order dispersion within the
framework of the paraxial approximation. It is the aim in this
article to lift this restriction. Specifically, a detailed discussion
will be provided of modulated (3+ 1)-dimensional nonparax-
ial spatiotemporally localized waves in second-order trans-
parent dispersive media, and novel infinite-energy invariant
wavepackets and finite-energy almost undistorted nonparaxial
solutions will be derived.
An outline of this work is as follows. In Section 2, the gen-

eral theory of temporally dispersive media is given, and an
expansion of a modulated scalar-valued solution to all orders
of dispersion is provided. Terminating this expansion to sec-
ond order, different approximations (e.g., paraxial, inability to
account for single-cycle pulses, etc.) are discussed. Also, a
framework for infinite-energy invariant nonparaxial localized
waves is introduced. To view the different families of localized
waves, both infinite-energy and finite energy, exact localized
waves to the Klein-Gordon equation are given in Section 3. A
wide class of infinite-energy invariant nonparaxial localized so-
lutions for second-order dispersive media is given in Section 4.
Finite-energy nonparaxial localized solutions for second-order
dispersive media are given in Section 5. Numerical illustrations
of subluminal, luminal, and superluminal finite-energy (3+ 1)-
dimensional nonparaxial spatiotemporally localized waves in
second-order transparent dispersive media are given in Sec-
tion 6, for normal dispersion in fused silica and anomalous dis-
persion in a Lorenz plasma. Concluding remarks are made in
Section 7.

2. BASIC THEORY
Electromagnetic wave propagation in a linear, homogeneous,
lossy, temporally dispersive medium is governed by the scalar
equation [59]

∇2u(r⃗, t) + β2
op(−i∂/∂t)u(r⃗, t) = 0 (1)

if polarization is neglected. In this expression, u(r⃗, t) is a real
field and β2

op(−i∂/∂t) a real pseudo-differential operator. A
physical interpretation of the latter is provided in the frequency
domain; specifically,

F
{
β2
op(−i∂/∂t)u(r⃗, t)

}
= β2

c (ω)ũ(r⃗, ω), (2)

where F {·} denotes Fourier transformation, and ũ(r⃗, ω) is the
Fourier transform of u(r⃗, t) with respect to time. The func-
tion βc(ω) appearing at the right-hand side of Eq. (2) is a com-
plex wavenumber, viz., βc(ω) = β(ω) − iα(ω), expressed
in terms of the real wavenumber β(ω) and attenuation factor
α(ω). Strictly, the Kramers-Kronig relations require the pres-
ence of loss. In the sequel, however, it will be assumed that the
loss in the medium is very small and can be neglected; there-
fore, α(ω) = 0.
For a physically convenient central radian frequency ω0, the

real field u(r⃗, t) is expressed as follows:

u∓(r⃗, t) = ψ∓(r⃗, t)e
iω0t∓iβ(ω0)z + cc

= ψ∓(r⃗, t)e
iω0

(
t∓ z

vph

)
+ cc, z ≥ 0. (3)
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Here, ψ∓(r⃗, t) are complex-valued envelope functions, and
vph = ω0/β(ω0) denotes the phase speed in the medium com-
puted at the central carrier frequency ω0. A formal introduction
of Eq. (3) into Eq. (1) yields the following exact equations gov-
erning the envelope functions ψ∓(r⃗, t)[

∇2
⊥ +

∂2

∂z2
∓ 2iβ(ω0)

∂

∂z
− β2(ω0)

+

∞∑
m=0

1

m!

∂m

∂ωm
β2(ω)

∣∣∣∣
ω=ω0

(
−i ∂
∂t

)m
]
ψ∓(r⃗, t) = 0, (4)

with ∇2
⊥ denoting the transverse (with respect to z) Laplacian

operator. The presence of time derivatives arises from an in-
verse temporal Fourier transformation following the expansion
of β2(ω) in a Taylor series around the carrier frequency ω0.
Usually, at this stage in the study of wave propagation

through dispersive media, one introduces the moving reference
frame ξ = z, τ = t − (z/vgr), in terms of the group speed
vgr = 1/β1; β1 ≡ dβ(ω)/dω|ω=ω0

. Then, Eq. (4) is trans-
formed into [59, 60][

∇2
⊥ +

∂2

∂z2
+

1

v2gr

∂2

∂τ2
− 2

1

vgr

∂2

∂z∂τ
∓ 2iβ(ω0)

(
∂

∂z
− 1

vgr

∂

∂τ

)
− β2(ω0)

]
ψ∓(r⃗, τ)

+

∞∑
m=0

1

m!

∂m

∂ωm
β2(ω)

∣∣∣∣
ω=ω0

(
−i ∂
∂τ

)m

ψ∓(r⃗, τ) = 0. (5)

Several techniques have been developed based on the type of
approximations made to the exact equations (5). Among them,
the most primitive is the slowly varying envelope approxima-
tion (SVEA), whereby one neglects the second derivative with
respect to z (paraxial approximation), as well as the mixed
derivative term involving z and τ , and retains dispersive ef-
fects to second order. Recent improvements, such as the slowly
evolving wave approximation (SEWA) and the slightly altered
slowly evolving envelope approximation (SEEA) can accom-
modate the propagation of ultra-short (few-cycle) pulses by re-
taining the mixed derivative term.
The approach in this exposition is fundamentally different.

Solutions are sought for the envelope functions of the form

ψ∓(r⃗, t) = ψ∓(x, y, τ); τ = t− z

v
, (6)

where v is a fixed, yet unspecified, speed. For the sake of sim-
plicity, azimuthal symmetry with respect to the z-axis is as-
sumed. Under these conditions, Eq. (4) changes to[

∇2
ρ +

1

v2
∂2

∂τ2
± 2iβ(ω0)

1

v

∂

∂τ
− β2(ω0)

]
ψ∓(r⃗, τ)

+

∞∑
m=0

1

m!

∂m

∂ωm
β2(ω)

∣∣∣∣
ω=ω0

(
−i ∂
∂τ

)m

ψ∓(r⃗, τ) = 0. (7)

where ρ is the radial polar coordinate. Next, elementary
solutions to Eq. (7) are assumed of the form ψe

∓(ρ, τ) =
J0(κρ)e

∓iαvτ , with J0(·) the zero-order ordinary Bessel func-
tion, and α, κ real parameters with units of m−1. Such ele-
mentary solutions for the envelope functions are possible pro-
vided that the following constraint (dispersion) relationships
are obeyed:

−κ2 − α2 + 2αβ(ω0)− β2(ω0)

+

∞∑
m=0

1

m!

∂m

∂ωm
β2(ω)

∣∣∣∣
ω=ω0

(∓αv)m = 0. (8)

The latter can be rewritten formally more compactly as

−κ2 − [α− β(ω0)]
2
+ β2(ω0 ∓ αv) = 0. (9)

More general expressions for the envelope functions can be ob-
tained by means of spectral superposition, viz.,

ψ∓(ρ, τ) =

∞∫
0

dα

∞∫
0

dκκJ0(κρ)e
∓iαvτ

δ
{
−κ2 − [α− β(ω0)]

2
+ β2(ω0 ∓ αv)

}
ψ̃(κ, α). (10)

Consequently, solutions to the original problem [cf. Eq. (3)] are
given as

u∓(ρ, z, t) = ψ∓(ρ, τ)e
iω0

(
t∓ z

vph

)
+ cc, z ≥ 0. (11)

The formally exact solutions in Eq. (11) involve two speeds:
the phase speed vph of the forward and backward moving plane
waves multiplying the envelope functions and the fixed speed
v associated with the forward moving envelope functions. The
wave fields u∓(ρ, z, t) are essentially invariant; at worst, they
can propagate along the positive z-direction with only local de-
formations and regenerate periodically. The solutions given in
Eq. (11) cannot be physically realizable by virtue of their invari-
ance; they must contain infinite energy initially. Nevertheless,
based on experience with analogous idealized wave solutions
in the absence of absorption and dispersion, physically realiz-
able versions can be achieved by means of time-limited or size-
limited aperture sources on the plane z = 0. It is in this sense
that exact invariant wave solutions, such as those in Eq. (11),
are important.
For appropriate spectra ψ̃(κ, α) in Eq. (10), the envelope

functions and, hence, the real fields u∓(ρ, z, t) can be made
compact both temporally and spatially around the pulse center
at z = vt. The invariance and spatio-temporal localization of
the exact solutions u∓(ρ, z, t) in Eq. (11) is achieved by bal-
ancing two physical mechanisms; namely, diffraction and dis-
persion. A crucial role in attaining such a balance is played by
the fixed speed v. How does one choose this speed? Can it
be given a physical interpretation? A reasonable answer is that
the speed v must be chosen so that with proper selections of
spectra ψ̃(κ, α) the integrations in Eq. (10) converge to non-
singular, localized solutions for the envelope functions. Es-
sentially, this means that although the solutions u∓(ρ, z, t) in
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Eq. (11) are general, their actual implementation and correct
choice(s) for the speed v will depend on specific realizations of
the wavenumber β(ω0); in other words, on the type of medium
one deals with. In the sequel, we shall provide specific illustra-
tive examples along these lines.

3. EXACT MODULATED LOCALIZED WAVES IN A
COLD PLASMA

There are several physical situations where β2(ω) is a second-
order polynomial in ω. In such cases, one can obtain exact an-
alytical localized wave solutions. A particular example of this
category will be provided in this section. Specifically, a study
will be undertaken of localized waves in cold plasma. The main
goal of this canonical problem is to illustrate in a relatively sim-
ple setting the procedure for deriving invariant localized waves
by a judicious choice of the pivotal fixed speed v. Most of the
exact localized wave solutions derived in this section are new.
In addition to their own physical relevance, they will be used
for comparison purposes with approximate localized waves in
more complicated media in the next section.
Electromagnetic wave propagation in collisionless (cold)

plasma is governed by the Klein-Gordon equation. In this case,
β2(ω) = (ω/c)2 − (ωp/c)

2, where c = 1/
√
ε0µ0 is the speed

of light in vacuo and ωp denotes the plasma frequency. For this
medium, the dispersion relations given in Eq. (9) simplify to

−κ2+α2

(
v2

c2
− 1

)
+2αβ(ω0)

(
1∓ ω0

β(ω0)

v

c2

)
= 0. (12)

The phase speed in cold plasma is given by vph = ω0/β(ω0) =

c/
√

1− (ωp/ω0)2. It is related to the group speed as follows:
vphvgr = c2. As a result, the dispersion relations in Eq. (12)
may be rewritten as

−κ2 + α2

(
v2

c2
− 1

)
+ 2αβ(ω0)

(
1∓ v

vgr

)
= 0, (13)

and the envelopewave functionsψ∓(ρ, τ) in Eq. (10) specialize
to

ψ∓(ρ, τ) =

∞∫
0

dα

∞∫
0

dκκJ0(κρ)e
∓iαvτ

δ

{
−κ2+α2

(
v2

c2
− 1

)
+2αβ(ω0)

(
1∓ v

vgr

)}
ψ̃(κ, α). (14)

It is clear, in this case, that the fixed speed v can be compared
to three other speeds; the speed of light in vacuo c and the
phase and group speeds in the medium. When such compar-
isons are made, one should take into consideration the relations
c < vph < ∞ and 0 ≤ vgr < c for ω0 ≥ ωp. Several distinct
cases will be considered in detail below.

Case A (v > c):

With γ̃ = 1/
√

(v/c)2 − 1, the integration over κ in Eq. (14)
allows the envelope function ψ+(ρ, τ) to be expressed as

ψ+(ρ, τ) =

∞∫
0

dαF̃+(α)e
iαvτ

J0

[
ρ

γ̃

√
α2 + 2αγ̃2β(ω0)

(
1 +

v

vgr

)]
; τ = t− z

v
(15)

For the specific spectrum F̃+(α) = exp(−a+α), where a+ is
a real positive parameter, the integration can be carried out ex-
plicitly ([61], 4.15.19), resulting in the following exact solution
to the 3D Klein-Gordon equation:

u+(ρ, z, t) = e
iω0

(
t+ z

vph

)
ψ+(ρ, τ)

= e
iω0

(
t+ z

vph

)
1√

(ρ/γ̃)2 +
[
a+ − iv

(
t− z

v

)]2
× exp

{
γ̃2β(ω0)

(
1 +

v

vgr

)[
a+ − iv

(
t− z

v

)]

−
√

(ρ/γ̃)2 +
[
a+ − iv

(
t− z

v

)]2}
+ cc. (16)

This solution is clearly bidirectional. The envelope function
ψ+(ρ, τ)moves in the positive z-direction with the fixed super-
luminal speed v, while it is modulated by a plane wave propa-
gating backwards with the phase speed vph. It should be noted
that since the relation v > cmust hold for the validity of the so-
lution, and furthermore, c < vph < ∞, a particular choice for
v would be the phase speed vph. In that case, both the envelope
function and the modulating plane wave in Eq. (16) move with
the same speed, but in opposite directions. For v = vph, a closer
study reveals that the wavepacket u+(ρ, z, t) can be expressed
in terms of a different envelope function traveling forward at
the phase speed vph, modulated by a plane wave also moving
in the forward direction at the group speed vgr; specifically,

u+(ρ, z, t) = exp

[
i 2β(ω0)

vph
vgr

(
vph
vgr

− 1

)−1

(z − vgrt)

]
1√

(ρ/γ̃)2 +
[
a+ − ivph

(
t− z

vph

)]2 × exp
{
−γ̃2β(ω0)

(
1+

vph
vgr

)√
(ρ/γ̃)2+

[
a+−ivph

(
t− z

vph

)]2+cc.(17)

In order to be able to interpret the general solution u+(ρ, z, t)
given in Eq. (16) more easily, the latter is specialized to a solu-
tion of the 3D scalar wave equation by means of the restrictions
β(ω0) = ω0/c, vph = vgr = c. One, then, obtains

u+SWE(ρ, z, t) = eiω0(t+ z
c )ψ+(ρ, τ)
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= eiω0(t+ z
c ) 1√

(ρ/γ̃)2 +
[
a+ − iv

(
t− z

v

)]2
× exp

{
γ̃2
ω0

c

(
1 +

v

c

) [
a+ − iv

(
t− z

v

)]
−
√
(ρ/γ̃)2 +

[
a+ − iv

(
t− z

v

)]2}
+ cc. (18)

This solution is bidirectional. The envelope function ψ+(ρ, τ)
moves in the positive z-direction with the fixed superluminal
speed v, while it is modulated by a plane wave propagating
backwards with the speed of light. A closer study, however,
reveals that the wavepacket can be expressed in terms of a dif-
ferent envelope function traveling forward at the superluminal
speed v, modulated by a plane wave also moving in the forward
direction at the subluminal speed c2/v; specifically,

u+SWE(ρ, z, t) =
1√

(ρ/γ̃)2 +
[
a+ − iv

(
t− z

v

)]2
exp

[
i
ω0

c

(v/c)(
v
c − 1

) (z − c2

v
t)

]
× exp

{
−γ̃2ω0

c

(
1 +

v

c

)
√
(ρ/γ̃)2 +

[
a+ − iv

(
t− z

v

)]2}
+ cc. (19)

In the limit v → c, it can be shown from either Eq. (18) or
Eq. (19) that u+SWE(ρ, z, t) is simplified as follows:

u+FWM(ρ, z, t) = eiω0(t+ z
c )ψ+(ρ, τ) + cc = eiω0(t+ z

c )

1

a+ − ic
(
t− z

c

) e−ω0
c

ρ2

a+−ic(t− z
c ) + cc. (20)

This is the original axisymmetric focus wave mode (FWM)
solution to the 3D scalar wave equation in unbounded free
space. In the form shown in Eq. (20), it was first formulated
by Ziolkowski [3] who was motivated by Brittingham’s work
in 1983 [1]. The pure FWM consists of an envelope travel-
ing along the positive z-direction with speed c modulated by
a plane wave moving in the negative z-direction with speed
c. The entire wave packet sustains only local deformations;
more precisely, it regenerates periodically. The FWM is physi-
cally unrealizable because it contains infinite energy. Finite en-
ergy FWM-type localized waves in an unbounded space have
been derived by various means, e.g., by a superposition of pure
FWMs, by Ziolkowski [3], Besieris et al. [4], and others.
In the limit ω0 → 0, one obtains from the solution

u+SWE(ρ, z, t) given in Eq. (19) the “pure” zero-order X wave
solution

uXW

(
ρ, t− z

v

)
=

1√
(ρ/γ̃)2 +

[
a+ − iv

(
t− z

v

)]2 , (21)

which was introduced by Lu and Greenleaf [5] and Zi-
olkowski et al. [6]. (In the latter reference, this solution

was referred to as a slingshot superluminal pulse). It is an
infinite energy localized wave (LW) pulse propagating without
distortion along the z-direction with the superluminal speed.
The more general X-shaped wave packet u+SWE(ρ, z, t) given

in Eq. (19) combines features present in both the zero-order X
wave [cf. Eq. (21)] and the FWM [cf. Eq. (20)]. For this rea-
son, it has been called focused X wave (FXW) [8]. It resembles
the zero-order X wave, except that its highly focused central re-
gion has a tight exponential localization, in contrast to the loose
algebraic transverse dependence of the zero-order X wave.
With this background in mind, one can interpret the solution

u+(ρ, z, t) of the 3D Klein-Gordon equation given in Eq. (16)
as an extension of that of the 3D scalar wave equation given in
Eq. (19). Thus, u+(ρ, z, t) is an exact modulated FXW in cold
plasma.
Proceeding analogously, one can establish the following X-

shaped unidirectional localized wave solution

u−(ρ, z, t) = e
iω0

(
t− z

vph

)
ψ−(ρ, τ)

= e
iω0

(
t− z

vph

) exp [−iγ̃2β(ω0)
(

v
vgr

− 1
)
v
(
t− z

v

)]√
(ρ/γ̃)2 +

[
a− − iv

(
t− z

v

)]2
× exp

{
−γ̃2β(ω0)

(
v

vgr
− 1

)
√
(ρ/γ̃)2 +

[
a− − iv

(
t− z

v

)]2}
+ cc. (22)

to the 3D Klein-Gordon equation, with a− being a real positive
parameter. As in the case of the solution u+(ρ, z, t), the speed
v of the envelope can be chosen to equal the phase speed vph.
Then, u−(ρ, z, t) can be rewritten in the new form

u−

(
ρ, t− z

vph

)
=

exp

{
−β(ω0)

√
(ρ/γ̃)2+

[
a−−ivph

(
t− z

vph

)]2}
√

(ρ/γ̃)2+
[
a−−ivph

(
t− z

vph

)]2 +cc. (23)

This special X-shaped localized wave has an interesting struc-
ture. The “modulating plane wave” has disappeared com-
pletely; only an envelope function remains traveling along the
positive z-direction with the phase speed vph. Essentially, it
is the analog of the pure XW solution [cf. Eq. (21)] for cold
plasma.

Case B (v = c):

For v = c, the dispersion relations in Eq. (13) become

−κ2 + 2αβ(ω0)

(
1∓ c

vgr

)
= 0. (24)
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For α and κ nonnegative, the only interesting envelope wave
function is

ψ+(ρ, τ) =

∞∫
0

dα

∞∫
0

dκκJ0(κρ)e
iαcτ

δ

[
−κ2 + 2αβ(ω0)

(
1 +

c

vgr

)]
ψ̃(κ, α). (25)

Integration over α yields

ψ+(ρ, τ) =

∞∫
0

dκκJ0(κρ)

exp
[
icτ

κ2

2β(ω0) (1 + c/vgr)

]
F̃+(α). (26)

For the spectrum

F̃+(α) = β(ω0) (1 + c/vgr)

exp
[
−a+

κ2

2β(ω0) (1 + c/vgr)

]
, (27)

where a+ is a real positive parameter, and the integration over
κ in Eq. (26) can be carried out explicitly ([62], 6.631.4), re-
sulting in the following exact solution to the 3D Klein-Gordon
equation:

u+(ρ, z, t) = e
iω0

(
t+ z

vph

)
ψ+(ρ, τ) =

e
iω0

(
t+ z

vph

)
a+ − ic

(
t− z

c

)
exp

[
−1

2
β(ω0)(1 + c/vgr)

ρ2

a+ − ic
(
t− z

c

)] . (28)

This is an FWM solution for cold plasma. It should be noted
that when u+(ρ, z, t) is specialized to the case of free space,
one obtains the FWM solution of the 3D scalar wave equation
given in Eq. (20).

Case C (v = −c):

Proceeding analogouslywith the previous case, we obtain the
FWM solution

u−(ρ, z, t) = e
iω0

(
t− z

vph

)
ψ−(ρ, τ) =

e
iω0

(
t− z

vph

)
a− − ic

(
t+ z

c

)
exp

[
−1

2
β(ω0)(1 + c/vgr)

ρ2

a− − ic
(
t+ z

c

)] . (29)

for the Klein-Gordon equation. When u−(ρ, z, t) is specialized
to the case of free space, one obtains the dual to the FWM so-
lution of the 3D scalar wave equation given in Eq. (20); specif-
ically,

u−FWM(ρ, z, t) = eiω0(t− z
c )ψ−(ρ, τ) + cc

= eiω0(t− z
c ) 1

a− − ic
(
t+ z

c

)e−ω0
c

ρ2

a−−ic(t+ z
c ) + cc. (30)

The importance of this solution is due to its connection to
paraxial pulsed beam solutions to the 3D scalar wave equa-
tion. Specifically, if t + (z/c) is formally replaced by 2z/c
in u−FWM(ρ, z, t), one obtains an exact solution to the paraxial
pulsed beam equation(

∇2
ρ + 2

∂2

∂ς∂z

)
uPB(ρ, z, t) = 0, ς = z − ct. (31)

One of the simplest monochromatic paraxial beams is derived
from Eq. (30), viz.,

uPB(ρ, z, t) =
1

a+ − i2z
e
−iω0

(
z−ct−i ρ2

a+−i2z

)
. (32)

It is important to point out that the procedure outlined above
for deriving paraxial pulsed beams from exact FWMs does not
apply to the Klein-Gordon equation.

Case D (v < c):

Recall the dispersion relations given in Eq. (13), viz.,

−κ2 + α2

(
v2

c2
− 1

)
+ 2αβ(ω0)

(
1∓ v

vgr

)
= 0 (33)

and the envelope wave functions ψ∓(ρ, τ) in Eq. (14); specifi-
cally,

ψ∓(ρ, τ) =

∞∫
0

dα

∞∫
0

dκκJ0(κρ)e
∓iαvτ

δ

{
−κ2+α2

(
v2

c2
−1

)
+2αβ(ω0)

(
1∓ v

vgr

)}
ψ̃(κ, α). (34)

For v < c, one can identify three special ranges: (i) vgr < v <
c; (ii) v = vgr; (iii) v < vgr. The structure of the solutions cor-
responding to these three special ranges is summarized below:

(i) The solutions u∓(ρ, z, t) are localized and subluminal.

(ii) The solution u−(ρ, z, t) is unbounded, and u+(ρ, z, t)
is localized and subluminal.

(iii) The solution u−(ρ, z, t) is unbounded, and u+(ρ, z, t)
is localized and subluminal.

We shall provide next an illustrative example of a subluminal
localized solution for u+(ρ, z, t). With γ = 1/

√
(1− (v/c)2,

the integration over κ and a change of variables in Eq. (34) al-
lows the envelope function ψ+(ρ, τ) to be brought to the par-
ticular form

ψ+(ρ, τ) = exp [ivτβ(ω0) (1 + v/vgr)]

×
∞∫
0

dᾱF̃+(ᾱ) cos(ᾱvτ)J0
(
ρ

γ

√
b2 − ᾱ2

)
;
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b = γ2β(ω0)

(
1 +

v

vgr

)
; τ = t− z

v
. (35)

For the spectrum F̃+(ᾱ) = H(ᾱ− b), whereH(·) is the Heav-
iside unit step function, the integration can be carried out ex-
plicitly ([62], 6.677.6), resulting in the following exact solution
to the 3D Klein-Gordon equation:

u+(ρ, z, t) = e
iω0

(
t+ z

vph

)
ψ+(ρ, τ)

= e
iω0

(
t+ z

vph

)
exp

[
iβ(ω0)

(
1 +

v

vph

)
v
(
t− z

v

)]

×
sin
{
b

√
ρ2 +

[
v
(
t− z

v

)]2}
√
ρ2 +

[
v
(
t− z

v

)]2 + cc. (36)

This expression is a nonsingular localized wave consisting of
an envelope function moving in the positive z-direction with
the subluminal (v < c) speed and modulated by a plane wave
propagating in the opposite direction with the phase speed vph.

4. INVARIANT MODULATED NONPARAXIAL LOCAL-
IZED WAVES IN ARBITRARY LOSSLESS DISPERSIVE
MEDIA: SECOND-ORDER DISPERSIVE EFFECTS
Our aim in this section is to examine the feasibility of novel
nonparaxial invariant localized wave solutions in arbitrary loss-
less dispersive media, with dispersive effects considered only
up to second order. Using the notation

βn=[(dn/dωn)β(ω)]ω=ω0
, vph=ω0/β0, vgr=1/β1, (37)

the dispersion relations in Eq. (8) become

−κ2 + α2

[(
v

vgr

)2 (
1 + β0β2v

2
gr

)
− 1

]

+2αβ0

(
1∓ v

vgr

)
= 0. (38)

For convenience, the following definition is made:

1

g2
= (v/vgr)

2
(
1 + β0β2v

2
gr

)
− 1. (39)

In the sequel, it will be tacitly stipulated that g is a real number.
This condition could be satisfied for both normal (β2 > 0) and
anomalous (β2 < 0) dispersion if v were larger than a critical
speed vc determined by setting the right-hand side of Eq. (38)
equal to zero. If, however, v = vgr, one has the relation 1/g2 =
β0β2v

2
gr. This means that the reality of g can be satisfied only

for normal dispersion (β2 > 0). Of course, these statements
assume that one chooses the central frequency ω0 so that β0 is
positive.

The envelope functions corresponding to the dispersion rela-
tions in Eq. (38), with the definition in Eq. (39) considered, can
be written as

ψ∓(ρ, τ) =

∞∫
0

dα

∞∫
0

dκκJ0(κρ)e
∓iαvτ

δ

{
−κ2 + α2

g2
+ 2αβ0

(
1∓ v

vgr

)}
ψ̃(κ, α). (40)

For v ̸= vgr and v > vc, these envelope functions are identical
to those studied in Section 3, Case A, except for the change
γ → g. Consequently, the FXW solutions found there can be
transferred to the case under consideration; specifically,

u+(ρ, z, t) = e
iω0

(
t+ z

vph

)
1√

(ρ/g)2 +
[
a+ − iv

(
t− z

v

)]2
× exp

{
g2β0

(
1 +

v

vgr

)[
a+ − iv

(
t− z

v

)]

−
√
(ρ/g)2 +

[
a+ − iv

(
t− z

v

)]2}
+ cc. (41)

and

u−(ρ, z, t)=e
iω0

(
t− z

vph

) exp [−ig2β0 ( v
vgr

− 1
)
v
(
t− z

v

)]√
(ρ/g)2 +

[
a− − iv

(
t− z

v

)]2
× exp

{
−g2β0

(
v

vgr
− 1

)
√
(ρ/γ)2 +

[
a− − iv

(
t− z

v

)]2}
+ cc. (42)

Caution must be exercised when implementing the solution
u−(ρ, z, t). Two conditions for its validity have already been
mentioned; namely, v ̸= vgr and v > vc. In this case, however,
an additional restriction must be imposed; namely, v > vgr.
Recall that the relation 1/g2 = 0 holds at the critical speed

vc. In this case, the dispersion relations in Eq. (38) are identi-
cal to those examined in Section 3, Cases B and C, except for
the changes ±c → ±vc. This means that the medium under
consideration can support FWM solutions; specifically,

u+(ρ, z, t) =
e
iω0

(
t+ z

vph

)
a+ − ivc

(
t− z

vc

)

exp

−1

2
β0(1 + vc/vgr)

ρ2

a+ − ivc

(
t− z

vc

)
 , (43)

and

u−(ρ, z, t) =
e
iω0

(
t− z

vph

)
a− − ivc

(
t+ z

vc

)
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exp

−1

2
β0(1 + vc/vgr)

ρ2

a− − ivc

(
t+ z

vc

)
 . (44)

An intriguing situation arises when g(real) ̸= 0 and v = vgr.
As mentioned above, this condition can be met only for normal
dispersion (β2 > 0). In that case, the (−) dispersion relation in
Eq. (38) is reduced to

−κ2 + α2

g2
= 0; 1/g2 = β0β2v

2
gr, (45)

and the corresponding envelope function assumes the simple
form

ψ−(ρ, τ) =

∞∫
0

dα

∞∫
0

dκκJ0(κρ)e
−iαvgrτ

δ

(
−κ2 + α2

g2

)
ψ̃(κ, α). (46)

The integration over α gives rise to the envelope function

ψ−(ρ, τ) =

∞∫
0

dκκJ0(κρ)G̃(κ)e
−iκgvgrτ . (47)

Choosing the specific spectrum G̃(κ) = (1/κ) exp(−a−κg),
one obtains the following solution:

u−(ρ, z, t) = e
iω0

(
t− z

vph

)
ψ−(ρ, τ) = e

iω0

(
t− z

vph

)

1√
(ρ/g)2 +

[
a− − ivgr

(
t− z

vgr

)]2 . (48)

This interesting, localized wave structure is a modulated X
wave. It consists of an envelope traveling forwards with the
group speed vgr, and it is modulated by a plane wave also mov-
ing forwards, however with the phase speed vph. A solution
analogous to the one given in Eq. (48), but derived on the basis
of a paraxial approximation, was reported by Porras and Gon-
zalo [44] recently. It is important to recall that no bounded
unidirectional localized wave solution [analogous to that in
Eq. (48)] could be found in Section 3 for the Klein-Gordon
equation with an envelope traveling at the group speed, sim-
ply because cold plasma is an anomalously dispersive medium
(β2 < 0), and the restriction 0 < vgr < c is applied in that
case.
Thus far, the discussion has assumed that the quantity g de-

fined in Eq. (39) is real. For v < vc, g is purely imaginary, i.e.,
g = iḡ with ḡ real. Then, the dispersion relations in Eq. (38)
change to

−κ2 − α2

ḡ2
+ 2αβ0

(
1∓ v

vgr

)
= 0, (49)

which are analogous to those studied in Section 3, Case D.
Therefore, possibilities exist for “subluminal” localized waves;
one such structure is given below:

u+(ρ, z, t) = e
iω0

(
t+ z

vph

)
exp

[
iβ0

(
1 +

v

vgr

)
v
(
t− z

v

)]

×
sin
{
b

√
ρ2+

[
v
(
t− z

v

)]2}
√
ρ2+

[
v
(
t− z

v

)]2 +cc; b ≡ ḡ2β0

(
1+

v

vgr

)
. (50)

The condition for subluminal localized waves is satisfied for
v = vgr in media characterized by anomalous dispersion. In
that case, one has ḡ2 = β0 |β2| v2gr, and the solution above be-
comes

u+(ρ, z, t) = e
iω0

(
t+ z

vph

)
exp

[
i2β0vgr

(
t− z

vgr

)]

sin

{
b

√
ρ2 +

[
vgr

(
t− z

vgr

)]2}
√
ρ2 +

[
vgr

(
t− z

vgr

)]2 + cc, (51)

with b ≡ 2β2
0 |β2| v2gr. Of course, it is known that in general

anomalously dispersive media the group speed can take any
value from −∞ to∞. Therefore, one cannot ascertain without
additional information whether the envelope of the wave packet
in Eq. (51) moves in the positive or negative z-direction.

5. FINITE-ENERGY MODULATED NONPARAXIAL LO-
CALIZED WAVES IN ARBITRARY LOSSLESS DISPER-
SIVE MEDIA: SECOND-ORDER DISPERSIVE EFFECTS
It has already been mentioned that physically realizable local-
ized waves in the presence of dispersion can be achieved by
means of time-limited or size-limited aperture sources on the
plane z = 0. It is in this respect that the exact invariant wave
solutions derived in Section 3 for the Klein-Gordon equation
and the approximate ones obtained in Section 4 for arbitrary
lossless dispersive media could be important. In this section,
an attempt will be made to determine novel nonparaxial ana-
lytical expressions of finite-energy localized waves in arbitrary
lossless dispersive media.
Toward this goal, it is convenient to return to Eq. (4) for the

envelope functions and simplify it under the assumption that
absorption can be neglected, and dispersive effects are retained
up to second order:[

∇2
⊥ +

∂2

∂z2
∓ i2β0

∂

∂z
− i 2β0β1

∂

∂t

−
(
β2
1 + β0β2

) ∂2
∂t2

]
ψ∓(r⃗, t) = 0. (52)

General solutions for the envelope functions can be represented
in terms of an ordinary Fourier synthesis as follows:

ψ∓(r⃗, t) =

∫
R3

dk⃗

∫
R1

dωδ

[
− k2x − k2y − k2z +

(
β2
1 + β0β2

)
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ω2 ∓ 2β0kz + 2β0β1ω

]
× e−ik⃗·r⃗eiωtψ̃(k⃗, ω). (53)

Next, the squares of the functions involving kz and ω within
the argument of the Dirac delta function are completed. A sub-
sequent change of variables recasts Eq. (53) into the new form

ψ∓(r⃗, t) = exp

[
−iβ0β1v2eff

(
t∓ z

β1v2eff

)]
ϕ(r⃗, t), (54)

with the function φ(r⃗, t) obeying the 3D Klein-Gordon equa-
tion (

∇2 − 1

v2eff

∂2

∂t2
−

ω2
eff

v2eff

)
ϕ(r⃗, t) = 0, (55)

which involves the effective speed

veff =
1√

β2
1 + β0β2

(56)

and the effective “plasma frequency”

ωeff = β0veff

√
(veff/vgr)

2 − 1 (57)

In the case of the Klein-Gordon equation with β(ω) =

(1/c)
√
ω2 − ω2

p, the quantities above are simplified to veff = c

and ωeff = ωp.
To derive finite-energy localized wave solutions, it is conve-

nient to introduce the following new coordinates: ς = z − vt,
η = z + veff t. One, then, has in the place of Eq. (55)[

∇2
ρ −

(
v2

v2eff
− 1

)
∂2

∂ς2
+ 2

(
1 +

v

veff

)
∂2

∂ς∂η
−
ω2
eff

v2eff

]

ϕ(ρ, ς, η) = 0, (58)

where azimuthal symmetry has been assumed for simplicity. A
general solution to this equation can be represented spectrally
as follows:

ϕ(ρ, ς, η) =

∞∫
0

dα

∞∫
0

dβ

∞∫
0

dκκJ0(κρ)e
−iαςeiβη

×δ

[
−κ2+

(
v2

v2eff
−1

)
α2+2

(
1+

v

veff

)
αβ−

ω2
eff

v2eff

]
ϕ̃(κ, α, β). (59)

For a given central radian frequency ω0, the effective speed veff
and effective frequency ωeff are fixed. In the sequel, it will be
assumed that veff is a real positive quantity. By virtue of its def-
inition, however, ωeff may be real or purely imaginary. To pro-
ceed further with the analysis, specific assumptions will have
to be made.

5.1. Finite-Energy FWM-Type Localized Waves
Let ωeff be real and v = veff. Then, Eq. (59) is simplified to

ϕ(ρ, ς, η) =

∞∫
0

dβ

∞∫
0

dκκJ0(κρ)e
iβη

e
−i

(
κ2+

ω2
eff

v2
eff

)
ς
4β
ϕ1(κ, β) (60)

after the integration over α has been performed. Choosing the
specific spectrum

ϕ̃1(κ, β) =
1

2
√
πβ3/2

e−a2β e−a1
κ2

4β e
−a3

ω2
eff

v2
eff

1
4β
, (61)

where a1,2,3 are positive real parameters, leads to the final so-
lutions [recall Eqs. (54) and (3)]

u∓(ρ, z, t) = e
iω0

(
t∓ z

vph

)
e
−iβ0β1v

2
eff

(
t∓ z

β1v2
eff

)

1

a1 + iς

1√
a2 − iη + ρ2

a1+iς

× exp

[
−
ωeff

veff

√
(a3 + iς)

(
a2−iη+

ρ2

a1+iς

)]
. (62)

To be interpreted more easily, they are specialized to free space.
In that case, one has the finite-energy splash mode solution [3]

u(ρ, z, t) =
1

a1 + iς

1√
a2 − iη + ρ2

a1+iς

;

ς = z − ct, η = z + ct (63)

to the 3D scalar wave equation in vacuum, which consists of
a superposition of FWMs. In this sense, one can say that
the finite-energy solutions u∓(ρ, z, t) given in Eq. (62) are
the splash mode analogs for an arbitrary lossless dispersive
medium, with dispersive effects considered up to second or-
der. Three distinct speeds appear in Eq. (62): the phase speed
vph, speed β1v2eff = v2eff/vgr, and effective speed veff.

5.2. Finite-Energy X-Shaped Localized Waves
In Eq. (59), it is assumed that v > veff and ωeff is real. Then,

with g ≡ 1/
√

(v/veff)2 − 1 and upon integration with respect
to κ, one has

ϕ(ρ, ς, η) =

∞∫
0

dα

∞∫
0

dβe−iαςeiβηJ0

[
ρ

g

√
α2 + 2g2

(
v

veff
+ 1

)
αβ − g2

ω2
eff

v2eff

]
ϕ̃2(α, β). (64)
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Completion of the square with respect to α and a change of
variable brings Eq. (64) to the new form

ϕ(ρ, ς, η) =

∞∫
0

dβeiβηe
ig2β

(
v

veff
+1

)
ς

∞∫
0

dᾱe−iᾱς

J0

[
ρ

g

√
ᾱ2 −B2

]
ϕ̃2(ᾱ, β);

B ≡ g

(
v

veff
+ 1

)√
β2+

(
v

veff
+1

)−2 ω2
eff

v2eff
. (65)

The spectrum φ̃(ā, β) is chosen as follows: φ̃2(ᾱ, β) =
F̃ (β) exp(−a1ᾱ)H(ᾱ−B). Then, the integration over ᾱ can
be carried out exactly ([61], 4.15.9), resulting in the expression

u∓(ρ, z, t) = e
iω0

(
t∓ z

vph

)
e
−iβ0β1v

2
eff

(
t∓ z

β1v2
eff

)

1√
(ρ/g)2 + (a1 + iς)2

×
∞∫
0

dβeiβA exp
[
−Q
√
β2+W 2

]
F̃ (β), (66)

where

A =
v

veff

(
1 +

v

veff

)−1
(
z −

v2eff
v
t

)
,

W =

(
v

veff
+ 1

)−2 ω2
eff

v2eff
,

Q = g

(
v

veff
+ 1

)√
(ρ/g)2 + (a1 + iς)2.

(67)

For the singular spectrum F̃ (β) = δ(β), these expressions are
reduced to

u∓(ρ, z, t) = e
iω0

(
t∓ z

vph

)
e
−iβ0β1v

2
eff

(
t∓ z

β1v2
eff

)

× 1√
(ρ/g)2 + (a1 + iς)2

exp
[
−g

ωeff

veff

√
(ρ/g)2 + (a1 + iς)2

]
, (68)

which are variations of the FXW solutions found in Section 4.
Using appropriate nonsingular spectra F̃ (β), one can determine
from Eq. (66) finite-energy X-shaped localized waves analo-
gous to the modified focus X wave (MFXW) solutions to the
3D scalar wave equation in free space [8]. One such solution
arises from the Fourier cosine transform

u∓(ρ, z, t) = e
iω0

(
t∓ z

vph

)
e
−iβ0β1v

2
eff

(
t∓ z

β1v2
eff

)

1√
(ρ/g)2+(a1+iς)2

×
∞∫
0

dβ cos (βA) exp
[
−a
√
β2+W 2

]

π−1/2
√
2β
[(
W 2 + β2

)1/2 −W
] (
W 2 + β2

)−1/2
; (69)

specifically,

u∓(ρ, z, t) = e
iω0

(
t∓ z

vph

)
e
−iβ0β1v

2
eff

(
t∓ z

β1v2
eff

)

1√
(ρ/g)2 + (a1 + iς)2

×
[
Q+

(
Q2 +A2

)1/2]1/2
(
Q2 +A2

)−1/2 exp
[
−W

(
Q2 +A2

)1/2]
. (70)

5.3. Finite-Energy Subluminal Localized Waves
In Eq. (59), it is assumed that v < veff, and ωeff is real. Then,

with g ≡ 1/
√

1− (v/veff)2 and upon integration with respect
to κ, one has

ϕ(ρ, ς, η) =

∞∫
0

dα

∞∫
0

dβe−iαςeiβη

J0

[
ρ

g

√
−α2 + 2g2

(
v

veff
+ 1

)
αβ + g2

ω2
eff

v2eff

]
×ϕ̃2(α, β).(71)

Completion of the square with respect to α and a change of
variable brings Eq. (71) to the new form

ϕ(ρ, ς, η) =

∞∫
0

dβeiβηe
−ig2β

(
v

veff
+1

)
ς

∞∫
0

dᾱe−iᾱς

J0

[
ρ

g

√
B̄2 − ᾱ2

]
ϕ̃2(ᾱ, β); B̄ ≡ g2

(
v

veff
+ 1

)
√
β2 − g−2

(
v

veff
+ 1

)−2 ω2
eff

v2eff
. (72)

The spectrum ϕ̃(ā, β) is chosen as follows: ϕ̃2(ᾱ, β) =
H(B̄ − ᾱ). Then, the integration over ᾱ can be carried out
exactly ([62], 6.677.6]), resulting in the expression

u∓(ρ, z, t) = e
iω0

(
t∓ z

vph

)
e
−iβ0β1v

2
eff

(
t∓ z

β1v2
eff

)

1√
(ρ/g)2 + ς2

×
∞∫
0

dβe
−iβ v

veff

(
1− v

veff

)−1
(
z−

v2
eff
v t

)

sin
(
a
√
β2 − b2

)
F̃ (β), (73)
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where

a = g2
(
v

veff
+ 1

)√
(ρ/g)2 + ς2,

b = g−1

(
v

veff
+ 1

)−1
ωeff

veff
. (74)

Choosing the spectrum F̃ (β) =
√
2π−1/2e−a1β(β + b)−1/2,

a1 > 0, β > b, results ([61], 5.6.29) in the finite-energy sublu-
minal localized solution

u∓(ρ, z, t) = e
iω0

(
t∓ z

vph

)
e
−iβ0β1v

2
eff

(
t∓ z

β1v2
eff

)

1√
(ρ/g)2 + ς2

× ar−1R−1/2e−br;

r =
(
p2 + a2

)1/2
, p = a1 + i

v

veff

(
1− v

veff

)−1

×

(
z −

v2eff
v
t

)
, R = p+ r. (75)

There are several remaining issues associated with nonparax-
ial finite-energy localized wave solutions in arbitrary lossless
dispersive media. For example, the case where ωeff is purely
imaginary in Eq. (59). This case will not be explored in this
exposition.

6. ILLUSTRATIVE NUMERICAL EXAMPLES

6.1. Finite-Energy Localized Waves in a Lorentz Plasma under
Anomalous Dispersion Conditions
In this subsection, numerical examples will be presented of
three types of finite-energy localized waves propagating in a
lossless Lorentz medium characterized by the index of refrac-
tion

n(ω) =

√
1 +

ω2
p

ω2
r − ω2

, (76)

with specific values ωp = 4.36 × 1010 rad/s and ωr = 2 ×
1010 rad/s for the plasma and resonant frequencies, respec-
tively. For these parameters, the index of refraction is purely
imaginary in the frequency range ωr < ω < ωc, where
ωc = 4.79683 × 1016 rad/s. In the frequency regime where
n(ω) is real, one has the properties n(ω) > 1 for ω < ωr

and n(ω) < 1 for ω > ωc. Correspondingly, the phase and
group speeds are respectively superluminal and subluminal for
ω < ωr, and both subluminal for ω > ωc.
The central frequency is chosen as ω0 = 5 × 1010 rad/s. At

this frequency, the relevant parameters are given as follows:

vph = 9.74453× 108m/s, vgr = 7.87767× 107m/s;
β0 = 51.3109 rad/m, β1 = 1.26941× 10−8 s/m,
β2 = −1.5322× 10−24 s2/m;

veff = 1.10082× 108m/s, ωeff = 5.5135× 109 rad/s.

Since β2 < 0, the medium is characterized by anomalous dis-
persion for frequencies near the chosen central frequency ω0.

6.1.1. Splash Mode

The finite-energy, FWM-type localized wave u−(ρ, z, t),
shown analytically in Eq. (62), will be used for the first
numerical illustration. The envelope of this wavepacket
propagates bidirectionally along the z-direction with the
effective speeds ±veff, defined in Eq. (56), and it is modulated
by the product of two plane waves traveling in the positive
z-direction with speeds vph and vm ≡ v2eff/vgr, respectively.
In addition to the central frequency ω0, two other frequencies
appear in the expression for the finite energy FWM localized
wave. The frequency ωm ≡ β0vgr, associated with the second
modulating plane wave, and the effective frequency ωeff,
defined in Eq. (57), associated with the envelope function. The
expression for u−(ρ, z, t) in Eq. (62) has been derived under
the condition that ωeff is a real quantity. For Lorentz plasma,
this condition is met if the central frequency is larger than the
critical frequency defined at the beginning of this section. But
this is precisely the anomalous dispersion regime. [It should
be noted that for a central frequency smaller than the resonant
frequency (normal dispersion region), the effective frequency
is purely imaginary, and the Klein-Gordon equation in Eq. (55)
changes into a Proca (or De Broglie) equation. Finite-energy
localized waves can be determined under these conditions;
however, they will not be pursued in this exposition].
Surface and temporal plots for the finite-energy splash mode

solution given in Eq. (62) are shown in Figure 1.

6.1.2. Modified Focus X Wave (Superluminal)

The finite-energy modified focus X wave solution is given in
Eq. (70). Surface and temporal plots are shown in Figure 2 for
a speed v slightly larger than veff.

6.1.3. MacKinnon Wavepacket (Subluminal)

The finite-energy subluminal MacKinnon solution is given in
Eq. (75). Surface and temporal plots are shown in Figure 3 for
a speed v slightly smaller than veff.

6.2. Finite-Energy Localized Waves in Fused Silica under Nor-
mal Dispersion Conditions
In this subsection, numerical examples will be presented of two
types of finite-energy localized waves propagating in lossless
fused silica characterized by an index of refraction defined by
the Sellmeier formula [40]

n(ω) =

√√√√1 +

3∑
m=1

(2πc)
2
Bm

1− λ2m/λ2
;

λm = 2πc/ωm, λ = 2πc/ω, (77)

with specific values

B1 = 0.6961663, B2 = 0.4079426, B3 = 0.8974794

λ1 = 0.0684043, λ2 = 0.1162414, λ3 = 9.896161.
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FIGURE 1. (a) Surface plots of |Re {u+(ρ, z, t)}| vs. τ = t−z/veff ∈ (−1, 1)10−10 s and ρ ∈ (−4, 4)10−1 m for three values of the range z = −4,
0 and 4m; (b) Temporal plots of Re {u+(0, z, t)} vs. τ = t−z/veff ∈ (−1, 1)10−10 s for z = 0, 4 and 8m. Parameter values: a1 = 2×10−3 m−1

and a2 = 10m−1.
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FIGURE 2. (a) Surface plots of |Re {u−(ρ, z, t)}| vs. τ = t − z/v ∈ (−2, 2)10−11 s and ρ ∈ (−2, 2)10−2 m for three values of the range
z = −10−1, 0 and 10−1 m. (b) Temporal plots of Re {u+(0, z, t)} vs. τ = t − z/v ∈ (−2, 2)10−11 s for z = 0, 10−2 and 10−1 m. Parameter
values: a1 = 10−3 m−1 and v = 1.10815× 108 > veff.
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FIGURE 3. (a) Surface plots of |Re {u+(ρ, z, t)}| vs. τ = t − z/v ∈ (−1, 1)10−10 s and ρ ∈ (−2, 2)10−1 m for three values of the range
z = −8 × 10−1, 0 and 8 × 10−1 m. (b) Temporal plots of Re {u+(0, z, t)} vs. τ = t − z/v ∈ (−1, 1)10−10 s for z = 0, 1 and 2m. Parameter
values: a1 = 1m−1 and v = 1.1× 108 < veff.
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FIGURE 4. (a) Surface plots of |ψ−(ρ, z, τ)| vs. τ = t − z/vgr ∈ (−1, 1)5 × 10−13 s and ρ ∈ (−1, 1)2 × 10−3 m for three values of the range
z = −2 × 10−3, 0 and 2 × 10−3 m. (b) Temporal plots of Re {ψ−(0, z, τ)} vs. τ = t − z/vgr ∈ (−1, 1)5 × 10−13 s for z = 0, 10−3 and
5× 10−3 m. Parameter value: a1 = 1m−1.

The central frequency is chosen as ω0 = 2πc 104 rad/s. At
this frequency, the relevant parameters are given as follows:

vph = 1.72904× 108m/s, vgr = 1.7239× 108m/s;
β0 = 109, 018 rad/m, β1 = 5.8079× 10−9 s/m,
β2 = 2.7756× 10−24 s2/m.

Since β2 > 0, the medium is characterized by normal disper-
sion for frequencies near the chosen central frequency ω0.

6.2.1. Finite-Energy X-Shaped Localized Wave

The nonparaxial Eq. (5) with dispersive effects retained to sec-
ond order is simplified to

(
−2iβ0

∂

∂z
+

∂2

∂z2
− 1

vgr

∂2

∂z∂τ
− β0β2

∂2

∂τ2
+∇2

t

)

ψ (ρ, z, τ) = 0; τ = t− z/vgr. (78)

It has already been mentioned that in the slowly varying enve-
lope approximation (SVEA) one neglects the second derivative
with respect to z (paraxial approximation), as well as the mixed
derivative term involving z and τ , and retains dispersive ef-
fects to second order. Recent improvements, such as the slowly
evolving wave approximation (SEWA) and the slightly altered
slowly evolving envelope approximation (SEEA) can accom-
modate the propagation of ultra-short (few-cycle) pulses by re-
taining themixed derivative term. In the following, both second
derivative with respect to z and second derivative with respect
to z and τ will be retained.
A finite-energy X-shaped solution to Eq. (78) is given as fol-

lows:

ψ (ρ, z, τ) =
1√

M
√
b2M + τ2

√
b
√
M +

√
b2M + τ2

e−iZe−
1
b

√
b2M+τ2

;

A = 1− v2grβ0β2, b =

√
A

vβ0gr
;

Z = z (vgrβ0)
2
/A+ τvgrβ0/A,

M = ρ2v2grβ
3
0β2 + (a1 + iZ) .

(79)

Surface and temporal plots are shown in Figure 4.

6.2.2. Finite-Energy MacKinnon-Type Localized Wave

A finite-energy MacKinnon-type solution to Eq. (78) is given
as follows:

ψ (ρ, z, τ) =
1

R
eiZ
(

1

r1

√
R1 e

−r1 − 1

r2

√
R2 e

−r2

)
;

A = 1 + v2grβ0β2,

Z = z (vgrβ0)
2
β2/A− τ vgrβ0/A,

R =
√
ρ2β3

0v
2
grβ2/A+ Z2.

r1 =

√
(a1 − iR)

2
+ (τβ0vgr)

2
/A,

r2 =

√
(a1 + iR)

2
+ (τβ0vgr)

2
/A;

R1 = a1 − iR+ r1, R2 = a1 + iR+ r2.

(80)

Surface and temporal plots are shown in Figure 5.

7. DISCUSSION
Instead of the expansion approach used in Section 2, the follow-
ing alternative method has been used in the literature. Based on
the dispersion relationship [see Eq. (2)]

−κ2 − k2z +
ω2

c2
n2 (ω) = −κ2 − k2z + β2(ω) = 0, (81)
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FIGURE 5. (a) Surface plots of |ψ−(ρ, z, τ)| vs. τ = t − z/vgr ∈ (−1, 1)10−12 s and ρ ∈ (−1, 1)10−3 m for three values of the range z =
−5 × 10−3, 0 and 5 × 10−3 m. (b) Temporal plots of Im {ψ−(0, z, τ)} vs. τ = t − z/vgr ∈ (−1, 1)10−12 s for z = 0, 10−2 and 2 × 10−2 m.
Parameter value: a1 = 10m−1.

wheren(ω) denotes the index of refraction, and the Fourier syn-
thesis below is used to obtain an azimuthally symmetric real
wavefunction

u (r, z, t) =

∫ ∞

−∞
dkze

−ikzz

∫ ∞

−∞
dωeiωt

∫ ∞

0

dκκJ0 (κρ)

δ
[
−κ2 − k2z + β2(ω)

]
× ũ (κ, kz, ω − ω0) , (82)

with ω0 being a fixed carrier frequency. Next, a new variable
Ω = ω − ω0 is introduced, together with the constraint kz =
(Ω/v) − β0. Expanding β2(Ω + ω0) in a Taylor series and
retaining up to second-order dispersion terms we obtain

ψ− (r, z, t) =

∫ ∞

−∞
dΩe−i(Ω/v)(z−vt)

∫ ∞

0

dκκJ0 (κρ)

×δ
[
−κ2Ω

2

v2

(
v2

v2gr

(
1+β0β2v

2
gr

)
−1

)
+2

Ω

v
β0

(
1− v

vgr

)]
.(83)

The argument of the Dirac delta function is identical to the ex-
pression in Eq. (38) with the definition Ω = αv.
This approach has been used both in free space

(e.g., [17, 22, 23]) and in dispersive media (e.g.,
[46, 49, 52, 53, 55, 57]). However, with a few exceptions
(e.g., [46, 49, 52]), all the work is limited to deriving invariant
wavepackets in dispersive media based on the paraxial (narrow
angular spectrum) approximation. In contrast, nonparaxial
infinite-energy and finite-energy spatiotemporally localized
pulses have been derived in this article.
The scope in this article has been limited to azimuthally sym-

metric solutions. This restriction can be lifted easily by re-
placing J0(κρ) with exp(imϕ)Jm(κρ) in the Fourier synthe-
sis and choosing appropriate spectra. Another method allow-
ing azimuthal dependence is based on the following specific
ansatz. Given the following azimuthally symmetric solution to
the Klein-Gordon equation for a cold plasma

w (ρ, z, t) = eikzz

exp
[√

k2z + ω2
p/c

2

√
ρ2 + (a− ict)

2

]
√
ρ2 + (a− ict)

2
,

a > 0, (84)

the expression

W (ρ, ϕ, z, t)=w (ρ, z, t)

 ρeiϕ

(a−ict)+
√
ρ2+(a−ict)2

m

(85)
is an azimuthally asymmetric solution to the Klein-Gordon
equation. Of course, this also applies to the “effective” Klein-
Gordon equation derived in Section 5, specifically Eq. (55),
where veff replaces c, and ωeff replaces the plasma frequency ωp.
Two extensions to the new solution above are possible: (a) In-
tegration over the wavenumber kz with appropriate spectra will
yield new solutions; (b) the Klein-Gordon equation is Lorentz
invariant. Therefore, Lorentz transformations, say involving
the variables z and t, will result in new solutions.
In this article, the solutions are limited to scalar-valued ones.

One method of lifting this restriction is as follows. Let the
scalar potentialΦ(r⃗, t) and the vector potential A⃗(r⃗, t) obey the
Klein-Gordon equation

(
∇2 − 1

c2
∂2

∂t2
−
ω2
p

c2

){
Φ(r⃗, t)

A⃗ (r⃗, t)

}
= 0, (86)

as well as the Lorentz gauge

∇ · A⃗ (r⃗, t) +
1

c2
∂

∂t
Φ(r⃗, t) = 0. (87)

If the electric and magnetic fields are defined as E⃗ = −∇Φ−
∂A⃗/∂t and B⃗ = ∇× A⃗, respectively, they obey the Maxwell-

56 www.jpier.org



Progress In Electromagnetics Research, Vol. 181, 43-59, 2024

Proca equations

∇× E⃗ = − ∂

∂t
B⃗,

∇× B⃗ =
1

c2
∂

∂t
E⃗ −

ω2
p

c2
A⃗,

∇ · E⃗ = −
ω2
p

c2
Φ,

(88)

In this case, the fields E⃗ and B⃗ individually obey the Klein-
Gordon equation.
An alternative procedure for deriving vector-valued so-

lutions has been provided by Hillion [65]. Let the scalar
function Φ(r⃗, t) be a solution of the Klein-Godon equa-
tion (86). Then, a magnetic vector Hertz potential is defined as
Π⃗m(r⃗, t) = Φ(r⃗, t)⃗az . The corresponding transverse electric
(TE) fields are defined as

E⃗m (r⃗, t) = − ∂

∂t
µ0∇× Π⃗m (r⃗, t) ,

H⃗m (r⃗, t) = ∇×∇× Π⃗m (r⃗, t) .

(89)

Similarly, an electric vector Hertz potential is defined as
Π⃗e(r⃗, t) = ∂Φ(r⃗, t)/∂t⃗az . Then, transverse magnetic (TM)
fields are given as follows:

E⃗m (r⃗, t) = ∇×∇× ∂Π⃗m (r⃗, t) /t,

H⃗m (r⃗, t) = ε0

(
∂2

∂t2
+ ω2

p

)
Π⃗m (r⃗, t) .

(90)

ε0 and µ0 denote the electric permittivity and magnetic perme-
ability of vacuum. Both the TE and TM fields obey the modi-
fied Maxwell equations

∇× E⃗e,m = − ∂

∂t
µ0H⃗e,m,

∇× H⃗e,m = ε0
∂

∂t
E⃗e,m − ε0ω

2
p

∂

∂t
E⃗e,m,

∇ · E⃗e,m = 0,

∇ · E⃗e,m = 0.

(91)

The fields E⃗e,m and H⃗e,m individually obey the Klein-Gordon
equation.
Finally, the restriction of the discussion in this article to trans-

parent (lossless) dispersive media must be mentioned. Lift-
ing this limitation for nonparaxial localized solutions requires
more thorough treatment. However, lossy dispersive media
have been discussed in the literature for pulsed beam propaga-
tion within the framework of the paraxial approximation (see,
e.g., [50, 63, 64]).
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