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ABSTRACT: With the rapid development of various intelligent scenarios, the demand for low latency, efficient processing, and energy
optimization is increasing. In smart communities, intelligent transportation, industrial environments, and other scenarios, a large amount
of data is generated that needs to be processed in a short time. Traditional cloud computingmodels are difficult tomeet the requirements for
real-time and computing efficiency due to the long data transmission distance and high latency. Therefore, this paper introduces Intelligent
Reflecting Surfaces (IRS) into the optimization model of Device-to-Device (D2D) communication and Mobile Edge Computing (MEC)
collaborative offloading to enhance system performance and minimize total latency. This paper proposes a latency minimization problem
for joint offloading mode selection, computing resource allocation, and IRS phase beamforming. The original problem is decoupled into
three subproblems using the Block Coordinate Descent (BCD) algorithm. Through precise potential game theory, the Nash equilibrium
(NE) is achieved, and multi-objective optimization is realized using the Lagrangian multiplier method and KKT conditions. Finally, a
phase shift optimization problem is solved using the gradient descent algorithm. Simulation results show that the proposed algorithm
outperforms other benchmark schemes in terms of performance.

1. INTRODUCTION

With the rapid advancement of technology, particularly the
rapid iteration of big data, cloud computing, and artificial

intelligence, the demand for information processing and data
transmission is growing. Real-time processing and decision-
making of massive data have become critical needs for current
intelligent applications. From smart cities to the Industrial In-
ternet of Things (IIoT), various scenarios are increasingly de-
manding low latency and efficient computing. However, tra-
ditional cloud computing architectures, due to long data trans-
mission distances and high latency, are unable to meet the low
latency and real-time requirements of these applications [1]. In
response, mobile edge computing (MEC) has emerged, deploy-
ing edge servers locally to process data near its source, effec-
tively reducing transmission latency. However, MEC systems
still face challenges such as limited computing resources and
bandwidth, especially in device-dense environments, where re-
source allocation and communication efficiency become criti-
cal issues that need to be addressed.
To address these challenges, Device-to-Device (D2D) com-

munication technology has been introduced to support direct
communication between devices, reducing reliance on edge
servers. Through D2D communication, devices can transmit
data directly, significantly reducing transmission delays and al-
leviating the burden on edge servers. Furthermore, reconfig-
urable intelligent surfaces (RISs), also known as intelligent re-
flective surfaces (IRS) or large intelligent surfaces (LIS), have
receivedmuch attention for their potential to enhance the capac-
ity and coverage of wireless networks by intelligently reconfig-
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uring the wireless propagation environment [2]. In this paper,
intelligent reflective surfaces (IRSs) are proposed as a promis-
ing new solution to achieve these goals. Specifically, an IRS
is a planar array of a large number of reconfigurable passive
elements (e.g., low-cost printed dipoles), where each element
is capable of independently generating a certain phase shift to
the incident signal (controlled by an additional intelligent con-
troller), thus collaboratively changing the reflected signal [3].
These elements enhance the signal transmission by adjusting
the phase, thus reducing the system delay. In existing research,
significant progress has been made in MEC, D2D communica-
tion, and IRS technology, but their applications and optimiza-
tions are mainly focused on individual technical layers.

2. RELATED WORK
Firstly, MEC technology reduces computing latency and lo-
cal device energy consumption by offloading computationally
intensive tasks to MEC servers, such as base stations, access
points, or roadside units, where tasks can be processed closer to
the data source. Refs. [4–11] cover various aspects such as task
offloading decisions, service caching, and workload schedul-
ing. For example, the introduction of the Gibbs sampling algo-
rithm helps minimize service delays while also reducing out-
sourced traffic. Additionally, other studies have explored ef-
ficient allocation of computing resources by optimizing net-
work access selection and service placement to handle the chal-
lenge of concurrent tasks from multiple users. Further work
considers the impact of heterogeneous edge servers and differ-
ent user locations on offloading strategies, implementing dy-
namic offloading decisions through methods like Markov De-
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cision Processes (MDPs), which greatly reduce task processing
times and communication delays. Research [12] investigated
an IRS-assisted NOMA-MEC system, which significantly re-
duced the system delay by optimising the power allocation and
IRS phase matrix, and verified the key role of IRS for channel
enhancement. Research [13] introduced IRS in a cell-freeMEC
system and reduced the system delay by jointly optimising IRS
reflections, user power and computational resources, further
demonstrating the potential of IRS for enhancing communi-
cation efficiency. In addition, [14] proposed an IRS optimi-
sation algorithm based on deep reinforcement learning, which
effectively improved the performance of edge computing sys-
tems by jointly optimising IRS phases and computing offload-
ing decisions. Different from the above studies, this research
introduced IRS technique in D2D collaborative MEC systems,
which achieved lower latency and higher resource utilisation
by jointly optimising task offloading, resource allocation, and
IRS dynamic phase adjustment, providing a new solution for
complex communication scenarios.
D2D-assisted MEC offloading, as another important tech-

nology, has gained widespread research attention. D2D com-
munication allows devices to transmit data directly, bypassing
the edge server, thereby reducing network load and latency.
Various D2D communication frameworks proposed in [15–20]
focus on optimizing energy consumption and task allocation
strategies. For example, the D2D offloading framework in cog-
nitive radio networks combines power control and deadline op-
timization in direct communication between users to minimize
system energy consumption. Researchers have also proposed
innovative mechanisms for D2D-assisted computation offload-
ing, such as pricing-based matching algorithms to optimize re-
source sharing and task allocation between users, particularly
for delay-sensitive applications. In these frameworks, D2D
communication effectively improves resource utilization, espe-
cially on devices with underutilized computing resources.
The collaborative offloading between MEC and D2D fur-

ther optimizes the performance of mobile edge computing sys-
tems. By jointly using MEC and D2D, researchers can flexi-
bly schedule tasks across multiple devices, achieving efficient
resource utilization. Refs. [21–26] not only optimize offload-
ing decisions and resource allocation but also propose solutions
that treat both MEC servers and devices with spare computing
capacity as edge nodes, jointly handling computational tasks.
This collaborative mechanism effectively reduces task process-
ing delays and local device energy consumption, while fur-
ther optimizing device selection, task partitioning, and caching
strategies through reinforcement learning. Moreover, the intro-
duction of a collaborative mechanism helps address communi-
cation bottlenecks under high load conditions, enhancing the
overall processing capability of the edge network. In recent
years, [27] proposed a D2D collaborative offloading frame-
work based on game theory, which achieves real-time task of-
floading decision-making in dynamic MEC environments by
introducing satisfaction metrics and no-regret dynamics mech-
anisms, improving the collective system benefits and quality
of service. The CODE framework proposed in [28] focuses
on dealing with the offloading problem of large-scale video
traffic and significantly reduces network latency through dual

schemes of maximising offloading andminimising latency. Re-
search [29], on the other hand, uses attention mechanism and
deep reinforcement learning to optimise resource allocation
and collaboration decisions in D2D-MEC systems, and demon-
strates good performance in large-scale user scenarios.
In recent years, the application of Intelligent Reflecting Sur-

faces (IRS) in Mobile Edge Computing (MEC) has made sig-
nificant progress. By adjusting the phase of reflective units,
IRS changes the propagation paths of wireless signals, improv-
ing the performance of communication links and providing new
optimization methods for MEC task offloading. Ref. [30] pro-
poses an IRS-assisted MEC system, where the optimization of
IRS phase settings and computing resource allocation signif-
icantly reduces the total task offloading delay. Ref. [31] ex-
plores the application of IRS in multi-user MEC systems, sig-
nificantly reducing communication and computational delays
in multi-user scenarios through joint optimization of IRS phase
and task offloading strategies. To reduce the complexity of IRS
phase optimization, [32] proposes a low-complexity phase ad-
justment algorithm, effectively addressing computational bot-
tlenecks in large-scale IRS applications. Ref. [33] introduces
an IRS-assisted multi-group multicast MISO systemmodel and
employs a joint design method based on semi-definite relax-
ation (SDR) and alternating optimization to simultaneously op-
timize transmission beamforming and IRS phase adjustment.
Through such joint optimization, the system’s total transmis-
sion rate is maximized while ensuring the quality of service
(QoS) for each user group. Ref. [34] proposes an efficient joint
optimization framework combining IRS phase adjustment with
active beamforming at the base station to maximize the trans-
mission rate of task offloading systems. Specifically, [35, 36]
delve into the potential of RIS-assisted edge-D2D collaborative
computing in industrial applications. This study proposes an in-
novative collaborative offloading mechanism that dynamically
adjusts RIS phases and offloading strategies between D2D de-
vices, improving computational efficiency and communication
reliability in industrial applications. Overall, IRS technology
enhances the performance of MEC task offloading by optimiz-
ing signal propagation paths, providing more efficient solutions
for edge computing. Inspired by this, this paper introduces IRS
into D2D communication and MEC collaborative offloading
optimization, aiming to minimize total system latency through
joint optimization of offloading selection, resource allocation,
and IRS phase control. The Block Coordinate Descent (BCD)
algorithm is adopted to decompose the problem into three sub-
problems, which are solved using game theory, KKT condi-
tions, and gradient descent methods to achieve collaborative
optimization.
Although significant progress has been made in reducing

computing latency and optimizing communication perfor-
mance with MEC, D2D, and IRS technologies, most existing
studies focus on optimizing two of these technologies, with
little research exploring how to organically combine all three
to harness their synergistic effects and further improve overall
system performance. By integrating MEC, D2D communica-
tion, and IRS technologies, future intelligent cell systems will
be better able to optimize resource utilization, significantly
reduce data processing delays, and enhance the efficiency of
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communication systems. Thus, based on the above analysis,
this study aims to fill the gap in existing research. While
D2D-assisted MEC offloading helps reduce task delays, this
collaborative offloading also incurs additional migration costs
due to unstable mobility, and some areas experience severe
signal blocking and multipath effects due to dense cell build-
ings and multi-story structures. Therefore, integrating IRS to
improve efficiency is crucial. In this study, we investigate
D2D-assisted MEC collaborative offloading based on IRS,
aiming to minimize system latency and improve performance
by integrating MEC, D2D communication, and IRS.
The contributions of this paper are summarized as follows:

• Proposed collaborative optimization model: This paper
combines Intelligent Reflecting Surface (IRS), Device-to-
Device (D2D) communication, and Mobile Edge Com-
puting (MEC), proposing a new collaborative optimiza-
tion model. This model systematically addresses the to-
tal latency minimization problem in cell scenarios by
jointly optimizing offloading mode selection, computing
resource allocation, and IRS phase beamforming, effec-
tively improving system communication efficiency and re-
source utilization.

• Application of a precise potential game model: For the of-
floading mode selection problem, a precise potential game
model is introduced, forming a stable offloading strategy
among user devices through game theory. This model bal-
ances competition among user devices, achieving global
latency minimization and ensuring that the system con-
verges at the Nash equilibrium (NE), providing a solid the-
oretical foundation for collaborative optimization.

• Multi-objective resource collaborative optimization: To
address the complex resource allocation problem, this pa-
per proposes a multi-objective resource collaborative op-
timization algorithm. By employing the Lagrangian mul-
tiplier method and KKT conditions, the joint optimization
of offloading ratio and resource allocation is achieved un-
der constraints, further reducing task processing latency.
This method effectively allocates limited computing re-
sources within the system, ensuring the stability and ef-
ficiency of multi-user task processing.

• IRS-GD phase optimization algorithm: To further opti-
mize system performance, a gradient descent (GD)-based
IRS phase optimization algorithm is designed. By dynam-
ically adjusting the IRS phase, data transmission rates are
significantly improved, reducing system latency. This al-
gorithm provides an effective solution for the practical de-
ployment and optimization of IRS, improving system per-
formance.

The rest of this paper is organized as follows. In Section 2,
the system model is established, and the latency minimization
problem is formulated and decomposed. Section 3 designs an
algorithm to solve the latency minimization problem. Section 4
presents simulation experiments and discusses the results. Fi-
nally, Section 5 concludes the paper.

3. SYSTEM MODELLING AND PROBLEM FORMULA-
TION

3.1. Communications Model
As shown in Fig. 1, this paper considers a D2D-assisted MEC
cooperative offloading system based on the assistance of mul-
tiple IRSs in a cellular scenario. The system consists of a cellu-
lar access network and a D2D communication network, a base
station (BS) with edge servers located at the centre of the cel-
lular network, user devices (UDs) and service devices (SeDs).
These User Devices have limited computational resources and
latency-sensitive computationally intensive tasks to be per-
formed, and Service Devices are composed of idle users with
relatively high computational power, but still limited with re-
spect to the edge servers to handle multiple computationally
intensive tasks at the same time. Define M = {1, 2, . . . ,M}
andK = {1, 2, . . . ,K} as the sets of UDs and SeDs of the ac-
cess system, respectively. Define the sets of BS0 and SeDs as
S = {0,K}. The UDs compete for communication and com-
putational resources for task processing, and the SeDs comprise
multiple computationally-assisted nodes (e.g., smart terminals
and small-volume devices with smaller computational capabil-
ities). Multiple IRSs and SeDs that assist BSs and D2Ds are
deployed around the cell to provide quality for smart applica-
tion services in the cell. The UDs can communicate with the
edge servers through the base station by using wireless cellular
access technology; they can also communicate with the SeDs
by using D2D communication technology, but the UDs are al-
lowed to be within the maximum distance of the D2D commu-
nication only to establish with any of the devices in the SeDs
and D2D link. The applications considered in this study are
data partitioning oriented. The computational tasks on the UDs
can be arbitrarily divided into three parts, and the computations
are simultaneously executed locally, on the edge server and on
the SeDs in parallel.

MEC server Base station

UD2
SeDs

UD1

IRS1 IRS2

FIGURE 1. Model diagram of D2D-assisted MEC co-unloading system
with IRS.

Multiple IRSs are deployed to improve the communication
efficiency of UDs with BSs and SeDs in cellular and D2D net-
works, respectively. Controllers of the multiple IRSs are de-
ployed in the system to control the phase shifts of the reflec-
tion elements in the BS-based and D2D-based IRSs. It is as-
sumed that there exist L IRSs, and each IRS is equipped with
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N passive reflection elements. Therefore, the channel coef-
ficients from UDm to BS, from UDm to the IRS of the l-
th auxiliary BS, and from the IRS of the l-th auxiliary BS to

BS are hB,m ∈ C1×1, hB(l)

r,m ∈ CN×1, G(l)
m ∈ C1×N , re-

spectively. Similarly, the channel coefficients from UDm to
SeDk, UDm to the IRS of the l-th auxiliary D2D, and the
IRS of the l-th auxiliary D2D to SeDk are hk,m ∈ C1×1,

hD(l)

r,m ∈ CN×1, G(l)
d ∈ C1×N , respectively. In this paper,

we assume that the above channel coefficients are perfectly
known. For IRSs, simply set the amplitude reflection coeffi-
cients of all reflection units to 1 and denote the phase shift co-

efficient vector of the l-th IRS by θ(l) = [θ
(l)
1 , θ

(l)
2 , . . . , θ

(l)
N ]T ,

where, for all n ∈ {1, 2, . . . , N}, θ(l)n ∈ [0, 2π). Then,
we obtain the matrix of reflection coefficients of the l-th IRS,

Θ(l) = diag
{
ejθ

(l)
1 , ejθ

(l)
2 , . . . , ejθ

(l)
N

}
, where j represents the

imaginary unit. Let Φ = {Θ(1),Θ(2), . . . ,Θ(L)} denote the
set of phase variables for all L IRSs.
In communication systems, IRS enhances the channel gain

between user devices (UDs) and BSs or SeDs by dynamically
adjusting the phases of reflection units to improve the data
transmission rate and reliability. In order to optimise the system
performance, we need to reasonably allocate IRS resources to
maximise the communication performance of each UD. There-
fore, we choose to satisfy the principle of maximising channel
gain to select IRSs and allocate them to each UD to enhance
the overall communication performance of the system. The bi-
nary variable Am,l denotes whether the l-th IRS is assigned to
UDm, specifically, Am,l = 1 to denote that the l-th IRS is as-
signed to UDm and Am,l = 0 to denote that the l-th IRS is not
assigned to UDm. Additionally, each UDm can only choose
to have one and only one IRS.

For a cellular link, let HB,m = hB,m + G(l)
m Θ(l)hB(l)r,m

denote the total channel gain between the user device UDm

and the base station (BS). For each UDm, iterate through all
IRSs, l ∈ {1, 2, . . . , L}, select the one with the largest chan-
nel gain IRSl∗ , l∗ = argmaxl Hk,m, assign the best IRS
to UDm, then Am,l∗ = 1. Similarly, for a D2D link, let
Hk,m = hB,m +G(l)

m Θ(l)hB(l)r,m denote the total channel gain
between the user devices UDm and serving devices SeDs,
For each UDm, iterate through all IRSs, l ∈ {1, 2, . . . , L},
select the one with the largest channel gain IRSl∗ , l∗ =
argmaxl Hk,m, assign the best IRS to UDm, then Am,l∗ = 1.
For computational tasks generated by UDs, UDs are able to of-
fload the tasks to edge computing servers and SeDs for process-
ing. Define xms ∈ {0, 1} as the collaborative communication
indicator, where m ∈ M, s ∈ S , then x = {xms|m ∈ M, s ∈
S} is the set of offloading patterns for all UDs.

3.1.1. Cellular Links

The indicator variable xm0 = 1 indicates that UDm’s task is
offloaded to the edge server for processing over the cellular

link. In cellular networks, to avoid interference between differ-
ent users, partial offloading is performed using an orthogonal
frequency division multiple access (OFDMA) scheme. Each
user device (UD) is assigned a separate subchannel of the cel-
lular link when offloading a task, ensuring that multiple UDs
can perform task offloading at the same time without interfer-
ing with each other. In OFDMA, each subchannel is orthogonal
in the frequency domain, which means that despite the overlap
between the spectra, due to its orthogonality, UDs transmitting
data simultaneously do not interfere with each other, thus im-
proving the overall efficiency and stability of the system. In
MEC offloading, each UD is assigned a cellular link subchan-
nel for transmitting the offloaded task to the target MEC server.
Edge servers can process multiple tasks in parallel, while each
SeD can only serve one task at a time. Then the set of cellular-
UDs is defined as Uc = {m|xm0 = 1, ∀m ∈ M}. We de-
fine pm to be the transmission power between UDm and the
edge server, and furthermore, we assume that the wireless band-
width and noise power remain constant while each computa-
tional task is being transmitted, denoted asBm and δ2m, respec-
tively. Thus, the communication rate between UDm and BS
(we ignore the delay from the BS to the edge server) can be
expressed as:

Rmec
B,m

= Bm log2

1 +
pm

∣∣∣hB,m +
∑L

l=1 Am,lG(l)
m Θ(l)hB(l)r,m

∣∣∣2
δ2m


(1)

wherem ∈ Uc.

3.1.2. D2D Links

UDm can form a D2D link with any of the sets SeDk within
the maximum distance dmax. Indicator variable xmk = 1 indi-
cates that UDm’s tasks are offloaded to SeDk for remote pro-
cessing over a D2D link. Therefore, the D2D link is denoted
by xmk. For a given time range, the feasible D2D links of UDs
remain the same. Each UD can establish a D2D link with only
one SeD within the current time slot, and the connection rela-
tionship between all UDs and SeDs is fixed within this time
slot. In addition, a UD can offload its computation to at most
one SeD, and each SeD can serve at most one offloading device,
thus forming non-overlapping D2D pairs in the network. Then,
the set of D2D-UDs is defined as Ud = {m|xmk = 1, ∀m ∈
M, ∀k ∈ K}. We define pd to be the transmission power be-
tween UDm and SeDk, given a fixed bandwidth Bd and noise
power δ2d in D2D offloading, and obtain the communication rate
between UDm and SeDk, denoted as:

Rd2d
k,m

= Bd2d log2

(
1 +

pd|hk,m +
∑L

l=1 Am,lG(l)
d Θ(l)hD(l)r,m |2

δ2d2d

)
(2)

wherem ∈ Ud.
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3.2. Computational Model
For each UD, there is a latency-sensitive application task that
needs to process a large amount of input data. We consider ap-
plications oriented towards data partitioning, for which the in-
put data is known in advance and can be arbitrarily partitioned
for parallel processing due to per-bit independence. Typical ex-
amples are virus scanning, file/graphics compression, recogni-
tion, and vision applications [37]. Divide the system time into
time slots. The system state is constant within time slots but
changes between time slots. Each time slot BS allocates com-
putational resources. A computational task on UDm can be
described as Im = {Qm, Cm, τm, fm}, where Qm is the size
of the task data (in bits), Cm the computational resources re-
quired to compute one bit of the task (measured in CPU cy-
cles per second), τm the task deadline, i.e., the maximum tol-
erable delay of the task execution (in seconds), and let fm de-
note the local computational power. Let fm0 and fmk denote
the computational resources allocated to UDm for performing
offloading tasks at BS0 and SeDk per second, respectively,
and the computational resource allocation profile is defined as
f = {fms|m ∈M, s ∈ S}.
As mentioned above, consider the partial offloading policy,

where each user has only one task to be offloaded at a given
time in a short time computational offloading problem, and the
application data partitioning of the UD, where a part of the
task is processed locally, and the rest of the task is offloaded
to be executed remotely. Define the variable αm ∈ [0, 1] to de-
note the proportion of partial task offloading for UDm. Then,
(1 − αm)Qm bit is processed locally, and αmQm bit is of-
floaded to be processed on the remote device. xm0 = 1, ∀m ∈
M to denote the task is offloaded to the edge server for process-
ing via a cellular link. Tasks are offloaded to the edge server for
processing via cellular links, and xmk = 1, ∀m ∈ M, ∀k ∈ K
indicates that tasks are offloaded to the SeDs for remote pro-
cessing via D2D links.

3.2.1. Local Computing

TheUDswill process a small portion of their tasks locally. Each
UD has a fixed CPU frequency, and the time consumption for
local computation depends on the CPU clock frequency fm and
the number of CPU cycles required per bit Cm. Then, the local
computation delay DL

m for UDm is

DL
m =

(1− αm)QmCm

fm
(3)

3.2.2. Edge Computing

The total latency of offloading to the edge server for remote pro-
cessing consists of three components, namely the time Dmec,t

m

for uploading the computational task, the time Dmec,c
m for exe-

cuting the task on the MEC server, and the time for download-
ing the computational results by the UD. Since the size of the
downloaded results is usually much smaller than the size of the
transmitted data, it is ignored. Therefore, the latency to com-

plete the edge computation can be calculated as:

Dmec
m = Dmec,t

m +Dmec,c
m =

αmQm

Rmec
B,m

+
αmQmCm

fm0
, m ∈ Uc.

(4)
It is assumed that the computational capacity at the edge

servers is limited, so the feasible computational resource allo-
cation must satisfy

∑M
m=1 xm0fm0 ≤ F0, where F0 is the to-

tal computational capacity of the edge servers (in CPU cycles
per second). On the other hand, the computational resources
of SeDs are fully allocated to offloading tasks because a SeD
serves only one UD.

3.2.3. D2D-SeDs Computing

Similar to edge computing, the latency of UDm to complete
D2D-SeDs computation can be obtained from the D2D trans-
mission latencyDd2d,t

m and remote execution latencyDd2d,c
m , de-

noted as:

Dd2d
m = Dd2d,t

m +Dd2d,c
m

=

K∑
k=1

xmk

(
αmQm

Rd2d
k,m

+
αmQmCm

fmk

)
, m ∈ Ud. (5)

3.3. Problem Formulation
In this work, the objective of this study is tominimise the sum of
task computation delays for all UDs, which offload part of the
computation to the edge servers or SeDs of the BS by establish-
ing cellular or D2D links. In the case of partial offloading, then
two processes are involved, i.e., local computation and com-
putation offloading (offloading plus remote execution). Since
local computation can be performed simultaneously with the
computation offloading process [38], the total task computa-
tion delay of UDm is determined by the longer process, which
can be expressed as:

Dm = max{DL
m, Dmec

m , Dd2d
m } (6)

Based on the system model of this study, considering the
maximum delay constraints of the application and limited com-
puting resources, the problem of minimizing the total system
delay is formulated as a joint optimization problem for offload-
ing decisions, computing resource allocation, and IRS phase
optimization, as follows:

P0 : min
x,α,f,Θ

M∑
m=1

Dm (7a)

s.t. Dm ≤ τm, ∀m ∈M, (7b)

K∑
k=1

xm,k ≤ 1, ∀m ∈M, (7c)

xms ∈ {0, 1}, ∀m ∈M, ∀s ∈ S, (7d)
0 < αm < 1, ∀m ∈M, (7e)
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M∑
m=1

xm0fm0 ≤ F0, (7f)

fm0 ≥ 0, m = 1, 2, . . . ,M, (7g)

0 ≤ θ(l)n < 2π, ∀n ∈ {1, 2, . . . , N} (7h)

L∑
l=1

Am,l = 1, ∀m ∈M. (7i)

As shown above, the objective function in (7a) represents the
minimization of the total execution delay of all UD tasks. The
constraint in (7b) implies that the execution delay of task UDm

must not exceed the maximum tolerable delay. The user asso-
ciation constraint in (7c) and (7d) ensures that UDm can only
select one SeD for task offloading from multiple SeDs, where
user association is a binary variable. (7e) defines the range of
the offloading ratio, ensuring that the offloading ratio for the
part of UDm’s task processed remotely by the edge server or
offloaded through aD2D link to the SeD is positive and does not
exceed 1. (7f) and (7g) represent the constraints on the comput-
ing resources allocated to each device. (7h) indicates the phase
beamforming constraint of the l-th IRS, while (7i) specifies that
each UDm is assigned exactly one IRS.

3.4. Problem Decomposition
According to the constraints in (7b)–(7h), it can be observed
that the proposed total delay minimization problem is a Mixed
Integer Non-linear Programming (MINLP) problem, which is
NP-hard. Therefore, this section first decomposes the optimiza-
tion problem into three subproblems: offloading mode selec-
tion, joint offloading ratio and computing resource allocation,
and IRS phase optimization.

3.4.1. Offloading Decision Problems

This subproblem addresses the decision-making problem of
UDm’s offloading mode in the cell network under delay con-
straints. By selecting the offloading mode of UDm’s task to
either edge computing or D2D communication, the total sys-
tem delay is minimized. When switching modes, the allocated
computing resources and IRS-assisted phase are fixed to deter-
mine the offloading mode for UDm across the entire system.
The problem is then transformed into:

P1 : min
x

M∑
m=1

Dm

s.t. (7b), (7c), (7d). (8)

This problem is a combinatorial optimization problem,
where the task of each user device must be determined as being
offloaded via either the cellular link or the D2D link. Heuristic
algorithms, integer programming, or dynamic programming
can be employed to solve this problem. For example, greedy
algorithms based on network topology and channel state can
be used for decision-making, or integer programming models
can be used for precise solutions.

3.4.2. Joint Offloading Ratios and Computational Resource Allocation
Problems

This subproblem solves the system’s total delay minimization
problem by determining the offloading ratio for each user de-
vice and the computing resource allocation scheme for the edge
server, given the delay constraints, offloading decisions, and
the correlation constraints between offloading decisions and re-
source allocation. In this subproblem, the phase and offloading
mode are fixed, simplifying the problem into:

P2 : min
α,f

M∑
m=1

Dm

s.t. (7b), (7e), (7f), (7g). (9)

These two problems can be combined into a multi-objective
optimization problem, which simultaneously considers
offloading ratios and computing resource allocation. Multi-
objective optimization algorithms, such as Multi-Objective
Particle Swarm Optimization (MOPSO) or Multi-Objective
Genetic Algorithm (MOGA), can be used to solve this. Al-
ternatively, the two problems can be solved independently,
and iterative optimization can be used to gradually optimize
the offloading decisions and resource allocation, for example,
using an Alternating Minimization algorithm or a step-by-step
optimization approach.

3.4.3. IRS Phase-Shift Optimisation Problem

By fixingUDm’s offloading mode and allocated computing re-
sources, the IRS phase is adjusted to minimize system delay. At
this point, the optimization problem is transformed into:

P3 : min
Θ

M∑
m=1

Dm

s.t. (7b), (7h). (10)

The IRS phase problem is typically a continuous optimiza-
tion problem, requiring the adjustment of IRS phase settings to
maximize system performance. Numerical optimization meth-
ods such as Gradient Descent, Conjugate Gradient, or Quasi-
Newton methods can be used to solve this. Additionally, con-
vex optimization theory can be considered, using convex opti-
mization algorithms such as the interior-point method or pro-
jected gradient method to solve the problem.

4. ALGORITHM DESIGN AND IMPLEMENTATION
In this section, the solutions to the above three subproblems
will be discussed in detail. The offloadingmode selection prob-
lem will be solved in Subsection 3.1; the joint offloading ratio
and computational resource allocation problem will be solved
in Subsection 3.2; the IRS phase optimisation problem will be
solved in Subsection 3.3; and in Subsection 3.4, an algorithm
for delay minimisation in the alternating iteration method will
be proposed until the algorithm converges, and a suboptimal
solution is obtained.
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4.1. Precise Potential Game Optimisation Algorithms
From the perspective of game theory, this subsection utilises
the accurate potential game to solve the task offloading strat-
egy problem, i.e., the choice of UDm offloading mode. The
objective of the whole optimisation problem is to minimise the
total delay of the whole system, and based on this condition, an
accurate potential game game-theoretic model is introduced. In
this paper, UDm can choose to offload to the edge servers via
the cellular network, or to the SeDs via D2D communication.
For all UDs in the system, the offloading modes are assumed to
be X−ms when the offloading modes of all other user devices
are determined, except for UDm. Then, UDm will choose the
optimal offloading mode that minimises its own delay, so the
offloading decision subproblem is denoted as:

min
x

Dm(xms, X−ms), ∀m ∈M, ∀s ∈ S (11)

Since there is a competitive relationship between end-users
in the system, the offloading mode selection game can be de-
fined as G = {M,xms, Dm|m ∈ M, s ∈ S}, where M de-
notes the set of participants in the game, i.e., all end-devices in
the system; xms denotes the strategy space of UDm, i.e., the
offloading modes, and Dm denotes the delay function of the
participants.
Definition 1: For offload mode policy x∗

ms, if all UDSs in
the system satisfy

Dm(x∗
ms, X

∗
−ms) ≤ Dm(xms, X

∗
−ms), ∀m ∈M, ∀s ∈ S

(12)
then the offloading mode strategy x∗

ms is said to be the NE of
the game G. The NE is a state that makes the system stable, and
when the Nash equilibrium is reached, and none of the other
players change their strategies, none of the players in the game
can further increase their utility by unilaterally changing their
own strategies, i.e., all the players in the game have reached the
equilibrium state.
Definition 2: If there exists a potential function P (X) for the

game process, when the unloading pattern of UDm changes
unilaterally from xms to x′

ms and xms, x
′
ms ∈ x, there is the

following relation.

Dm(xms, X−ms)−Dm(x′
ms, X−ms)

=P (xms, X−ms)− P (x′
ms, X−ms), ∀m ∈M, ∀s ∈ S (13)

Then the game is an exact potential game. Every precise po-
tential game with a finite set of strategies has NE [39] and has
Finite Improvement Property (FIP), i.e., any step of the update
process for a better response must be finite and lead to NE.
Corollary 1: The game G is an exact potential game with

the potential function shown in Equation (14), and the game G
always converges to NE with FIP.

P (X) =xmk

M∑
m=1

Dd2d
m

+ (1− xmk)

xm0D
mec
m +

M∑
m′=1,m′ ̸=m

Dd2d
m

 ,

∀m ∈M (14)

Proof: WhenUDm updates the unloading mode from xms to
x′
ms, the potential function P (X) should satisfy Equation (13),

and when UDm’s unloading mode changes from D2D unload-
ing mode to MEC unloading mode, xms = xmk = 1, x′

ms =
xm0 = 1. Then there is

P (xmk, X−ms)− P (xm0, X−ms)

=

M∑
m=1

Dd2d
m −Dmec

m −
M∑

m′=1,m′ ̸=m

Dd2d
m −Dmec

m

=Dm(xmk, X−ms)−Dm(xm0, X−ms) (15)

The derivation reveals that the potential function P (X) al-
ways satisfies Equation (13) for a change in UDm’s offloading
pattern. Thus, the game G satisfies the conditions for an accu-
rate potential game, and there always exists NE. After obtaining
the optimal unloading mode selection strategy via FIP, none of
UDm has an incentive to deviate unilaterally.
Algorithm 1 leverages a precise potential game model to op-

timize the task offloading strategy for user devices (e.g., choos-
ing edge computing or D2D communication). By updating the
offloading modes iteratively based on changes in the potential
function, it minimizes the total system delay and ensures con-
vergence to a Nash Equilibrium.

Algorithm 1 Task Offloading Strategy Optimization Based on
Precise Potential Game
1: Input: M,K,L,N,Qm, Cm, αmec, αd2d, Bd2d, Bmec, pd,

pm, Gd, Gm, hd, hm, fm0, fmk, δd2d, δmec, iter1, ϵ
2: Initialization Offloading modes xms for all UDm,m ∈
M, s ∈ S , and delay D0

3: Compute the initial potential function value P (X)
4: for t = 0 to iter1 do
5: for each user device UDm ∈M do
6: for each offloading mode s ∈ S do
7: Compute the delay Dm(xms, X−ms) of UDm un-

der mode s
8: end for
9: Find the offloading mode that minimizes delay s∗ =

argmins Dm(xms, X−ms)
10: Update the offloading mode of UDm, xms ← s∗

11: end for
12: Compute the new potential function value P (X)
13: Calculate the change in the potential function ∆P =

|Pnew(X)− Pold(X)|
14: if ∆P < ϵ then
15: Break the loop
16: end if
17: Update the potential function valuePold(X)← Pnew(X)
18: end for
19: Output: Optimal offloading mode xms

4.2. Resource Co-optimisation Algorithm
After determining the offloading pattern of UDm within the
system, it is necessary to identify amulti-objective optimisation
problem consisting of the offloading ratio and computational
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resource allocation to the MEC server. The computational re-
source allocation problem is usually a minimisation problem
containing at least two inequality constraints; therefore, in this
study, the Lagrange multiplier method with KKT conditions is
used to solve the problem. The original problem is transformed
into a dyadic problem to be solved by integrating the constraints
into the optimisation problem, and the subproblems are shown
in Equation (9).
Firstly, the task offloading ratio needs to be determined, and

it is an important factor for partial offloading, which affects the
latency of local and remote execution. WhenUDm chooses the
D2D offloadingmode, the optimisation problem is expressed as
follows:

min
α

max

{
αmQm

Rd2d
k,m

+
αmQmCm

fmk
,
(1− αm)QmCm

fm

}

s.t. (7b), (7e), (7f), (7g). (16)

According to Equation (16), in the D2D offloading mode, the
latency consists of two parts: local execution and remote exe-
cution. Since these two parts are simultaneous, the total delay
in the D2D offloading mode should be the larger of the two,
and it is obvious that the delay of UDm is minimised when the
two parallel processes spend the same amount of time, under
the constraint of the total delay Equation (7b)

(1− αm)QmCm

fm
≤ τm. (17)

From the constraints in Equation (17), we can obtain the min-
imum value of αm

αmin
m = 1− τmfm

QmCm
. (18)

Define variable αd2d as the offloading ratio that achieves the
minimum value of the total delay in the D2D offloading mode,
and when the two parts of the delay are equal, we can obtain
Equation (19)

αm =
1

1 + fm
CmRd2d

k,m

+ fm
fmk

= αd2d. (19)

It is shown below that the delayDm is minimised in the D2D
offloading mode when αm = αd2d.
Derivation of the objective function when the latency is large

for local and remote execution, respectively, leads to Equations
(20) and (21)

∂Dm

∂αm
=−QmCm

fm
<0, ∀m ∈M, αmin

m ≤ αm ≤ αd2d, (20)

∂Dm

∂αm
=

Qm

Rd2d
k,m

+
QmCm

fmk
>0, ∀m∈M, αd2d≤αm ≤ 1. (21)

It can be seen that the objective function is monotonically de-
creasing on the interval αmin

m ≤ αm ≤ αd2d and monotonically

increasing on αd2d ≤ αm ≤ 1. Therefore, the time delay Dm

is minimised at αm = αd2d.
When UDm selects the MEC offloading mode, according to

Equation (6), the magnitude of the total system delay is deter-
mined by the larger value of the local computation delay and
the MEC task offloading delay, and it is necessary to take into
account the offloading ratio and the computational resource al-
location of the MEC server at the same time; therefore, the op-
timisation problem is expressed as:

min
α,f

M∑
m=1

max

{
αmQm

Rmec
B,m

+
αmQmCm

fm0
,
(1− αm)QmCm

fm

}

s.t. (7d), (7f), (7g). (22)

Similarly, from the minimum delay in the D2D offloading
mode, the variable αmec is defined as the offloading ratio in
which the total delay in the MEC offloading mode obtains the
minimum value, and the delayDm in theMEC offloadingmode
is minimum when αm = αmec.

αm =
1

1 + fm
CmRmec

k,m
+ fm

fm0

= αmec. (23)

Substituting Equation (23) into the optimisation problem
Equation (22), i.e.,

min
f

M∑
m=1

1− 1

1 + fm
CmRmec

k,m
+ fm

fm0

 QmCm

fm
(24a)

s.t.
M∑

m=1

xm0fm0 ≤ F0, (24b)

fm0 ≥ 0, m = 1, 2, . . . ,M, (24c)

Notice that constraints (24b) and (24c) are convex such that
the objective function of (24a) is denoted as Dm, which is a
multivariate function. The function is convex if its Hessian ma-
trix is positive definite. The Hessian matrix can be expressed
as:

H =


∂2Dm

∂f2
10

. . . ∂2Dm

∂f10∂fm0

...
. . .

...
∂2Dm

∂fm0∂f10
. . . ∂2Dm

∂f2
m0

 (25)

By obtaining the second order derivatives ofDm with respect
to fm0, we have

∂2Dm

∂f2
m0

=
2AB

(Afm0 +B)
3 ·

QmCm

fm
≥ 0, ∀m ∈M (26)

where A = 1+ fm
CmRmec

k,m
, B = fm. Similarly, the second-order

mixed partial derivatives ofDm are

∂2Dm

∂fm0∂fm′0
= 0, ∀m, m′ ∈M, m ̸= m′ (27)
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By Equations (26) and (27), we can determine that the Hes-
sian matrix H is positive definite, and hence (24a) is a convex
optimisation problem that can be solved by the KKT condition.
Its Lagrangian function is expressed as

L(f10, . . . , fmo, λ, µ1, . . . , µM )

=

M∑
m=1

1− 1

1 + fm
CmRmec

k,m
+ fm

fm0

 QmCm

fm

+ λ

( M∑
m=1

xm0fm0 − F0

)

+

M∑
m=1

µm(F0 − fm0) (28)

∂L

∂fm0
= − B

(Afm0 +B)
2 ·

QmCm

fm
+ λ− µm = 0,

∀m ∈M (29)

M∑
m=1

xm0fm0 − F0 = 0, ∀m ∈M (30)

µm(fm0 − F0) = 0, ∀m ∈M (31)

where λ, µ1, . . . , µM is a non-negative Lagrange multiplier.
Thus, the Lagrange multipliers can be updated by gradient

descent as

λ(t+ 1) =

[
λ(t) + δ(t)

( M∑
m=1

xm0fm0 − F0

)]+
(32)

µm(t+ 1) = [µm(t) + δ(t)(F0 − fm0)]
+ (33)

where t is the iteration index, and δ(t) is the positive step size
at iteration t.
Algorithm 2 uses the Lagrangian multiplier method and

Karush-Kuhn-Tucker (KKT) conditions to solve the multi-
objective optimization problem of offloading ratios and edge
server resource allocation. It iteratively updates resource allo-
cation variables and Lagrange multipliers to optimize resource
distribution under constraints, further reducing system latency.

4.3. IRS-GD Phase Shift Optimisation Algorithm
As described in Section 3.2, the optimal solution to Problem P2
leads to Dm = DL

m = Dd2d
m in the D2D offloading mode and

Dm = DL
m = Dmec

m in the MEC offloading mode. Therefore,
with fixed offloading modes, the problem formulation after re-
placing Dm with Dd2d

m , Dmec
m , respectively, and deleting the

constant term is as follows:

min
Θ

M∑
m=1

αmQm

xmkR
d2d
k,m + xmoR

mec
B,m

s.t. (7h) (34)

Algorithm 2 Resource Collaborative Optimization Algorithm

1: Input: M,Qm, Cm, xms, θ
(l)
n , Rd2d

k,m, Rmec
B,m, τm,F0, iter2, ϵ

2: Initialization Lagrange multipliers: λ, µ1, . . . , µM

3: for t = 1 to iter2 do
4: Update Lagrange multipliers:
5: λ(t+ 1) = [λ(t) + δ(t)(

∑M
m=1 xm0fm0 − F0)]

+

6: form = 1 toM do
7: µm(t+ 1) = [µm(t) + δ(t)(F0 − fm0)]

+

8: end for
9: Solve subproblem (24):
10: Use KKT conditions and gradient descent to update

fm0 until convergence
11: Compute the gradient of the objective function
12: Use gradient descent to update fm0 until KKT con-

ditions are met
13: Solve subproblem (16):
14: Calculate αm based on αmec and αd2d

15: Compute the corresponding delay Dm and select the
αm with the minimum delay

16: Check if convergence conditions are met:
17: If the changes in Lagrange multipliers and resource

allocation variables are less than ϵ, break the loop
18: end for

4.3.1. D2D Offloading Mode

When xmk = 1, ∀m ∈M, ∀k ∈ K, the D2D offloading mode
is selected, then the minimisation objective function is:

Ld2d = min
Θ

M∑
m=1

αmQm

Rd2d
k,m

(35)

For each phase shift θn, the gradient of the objective function
Ld2d with respect to θn is computed:

∂Ld2d

∂θn
= −

M∑
m=1

αmQm

(Rd2d
k,m)2

·
∂Rd2d

k,m

∂θn
(36)

In order to calculate ∂Rd2d
k,m

∂θn
, first find the derivative of the

interior term so that A = G(l)
m Θ(l)hD(l)k,m + hk,m, then

∂|A|2

∂θn
=

∂(A∗A)

∂θn
= 2ℜ

(
A∗ ∂A

∂θn

)
Since Θ = diag

(
ejθ1 , ejθ2 , . . . , ejθN

)
, then ∂A

∂θn
=

jejθn [G(l)
d hD(l)k,m]n, therefore:

∂|A|2

∂θn
= 2ℜ

(
A∗ · jejθn [G(l)

d hD(l)k,m]n

)
Next:

∂Rd2d
k,m

∂θn
=

Bd2d

ln 2
·
pd · 2ℜ

(
A∗ · jejθn [G(l)

d hD(l)k,m]n

)
(
δ2d2d + pd|A|2

) (
1 + pd|A|2

δ2d2d

)
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4.3.2. MEC Unloading Mode

When xm0 = 1, ∀m ∈M, ∀k ∈ K, the MEC offloading mode
is selected, then the minimisation objective function is:

Lmec = min
Θ

M∑
m=1

αmQm

Rmec
B,m

(37)

Let B = G(l)
m Θ(l)hB(l)r,m + hB,m and compute the gradient of

the objective function Lmec with respect to θn:

∂Lmec

∂θn
= −

M∑
m=1

αmQm

(Rmec
B,m)2

·
∂Rmec

B,m

∂θn
(38)

∂Rmec
B,m

∂θn
=

Bmec

ln 2
·
pm · 2ℜ

(
B∗ · jejθn [G(l)

m hB(l)r,m ]n

)
(δ2mec + pm|B|2)

(
1 + pm|B|2

δ2mec

)
According to the gradient descent method, update each θn:

θ(t+1)
n = θ(t)n − µ ·

(
∂Ld2d

∂θn
+

∂Lmec

∂θn

)
(39)

This algorithm employs gradient descent to optimize the
phase shifts of IRS reflective elements, enhancing wireless
channel performance. It computes the gradients of the objective
functions for D2D and MEC modes, updates the phase vector
iteratively, and improves data transmission rates, significantly
reducing system latency.

5. SIMULATIVE RESULTS AND ANALYSIS
This section presents the results of the IRS-assisted MEC-D2D
collaborative offloading to reduce latency in cellular scenarios,
including the properties of the proposed algorithm and the la-
tency performance in simulated environmental scenarios.
In the simulation, the base station is set to (0, 0), and the

user devices and service devices are uniformly and randomly
distributed in a circular area with a radius of 300m, while the
maximum distance of D2D association is set to dmax = 50m.
Other key parameters are listed in Table 1. In the following,
simulation tests on the total system delay are performed for the
variables of user devices (UDs), service devices (SeDs), the

TABLE 1. Main parameters of the simulation [42].

Description Parameter and Value

Location model
R = 300m
dmax = 50m

Communication model

Bmec = 10MHz, Bd2d = 5MHz
σM = 10−6, σD = 7× 10−7

Qm = [250, 300]Kb

Computing model
Cm = [700, 800] cycle/s

F0 = 50× 109, fm = 0.5× 109 cycle/s
Convergence criterion ϵ = 0.001

number of IRS configurations L, reflective elements N , and
task size, respectively.
To demonstrate the superiority of the performance of the

proposed algorithmic system, the performance of the proposed
scheme is evaluated by comparing it with the following four
benchmark schemes:

(1) Greedy Edge: each UD performs task offloading via edge
servers, no D2D offloading involved [40].

(2) Stochastic phase-shift: Algorithm 1 and Algorithm 2 are
used to optimise the offloading mode, edge computing re-
source allocation and offloading ratio of user devices. The
step of designing the IRS phase shift is also skipped, and
the IRS phase shift is set randomly, obeying a uniform dis-
tribution in the range of [0, 2π).

(3) No IRS: Consider setting the reflection channel of IRS
to 0. The offloading mode selection, edge computing re-
source allocation and offloading ratio of user devices are
designed according to Algorithm 1 and Algorithm 2.

(4) Rate maximisation: the offloading decision is made in or-
der to achieve the maximum total rate, so the offloading
mode with the maximum rate is selected for each user de-
vice, and the total rate is calculated to include the sum of
the transmission rates provided by all the tasks delivered
by the cellular and D2D users in the network [41]. Edge
computing resource allocation, offloading ratio, and opti-
mal phase shift are implemented through Algorithm 2 and
Algorithm 3.

Algorithm 3 IRS-GD Phase Optimization Algorithm
1: Input: M,K,α,Qm, Bd, Bm, pd, pm, δd, δm,Gd,Gm, hd,

hm, iter3, µ, ϵ
2: Initialization Phase vector θ(0), set the maximum number

of iterations iter3 and learning rate µ
3: for t = 0 to (iter3− 1) do
4: Compute the transmission rates Rd2d

k,m and Rmec
B,m for all

users
5: Compute the gradients of the objective functions Ld2d

and Lmec for D2D and MEC modes based on equations
(36) and (38)

6: Update the phase vector according to Equation (39)
7: if ∥θ(t+1) − θ(t)∥ < ϵ then
8: Stop the iteration
9: end if
10: end for
11: Output: Optimal phase vector θ∗

This study mentions IRS-assisted communication, D2D and
MEC collaborative computational offloading to reduce the total
delay; therefore, it is important to verify the performance gain
due to the number of IRS reflective elements as well as the SeDs
of the service devices. Indeed, the computational and commu-
nication loads (in terms of computational offload requests) may
vary considerably with increasing user density. In this case, the
scalability and robustness of the proposed scheme need to be
verified. Therefore, in Fig. 2, the performance of the scheme
is analysed by varying the number of UDs while the number

10 www.jpier.org



Progress In Electromagnetics Research B, Vol. 110, 1-14, 2025

FIGURE 2. Total system delay as a function of the number of user devices
(UDs).

FIGURE 3. Total system delay as a function of the number of service
devices (SeDs).

of SeDs, K, is set to 10, the number of IRS configurations, L,
set to 10, and the number of reflective elements set toN = 40.
Specifically, Fig. 2 plots the total latency of all the schemes and
shows an increasing trend with the increase in the number of
UDs. It is clear that as the number of users increases, the MEC
computational resources allocated to the user devices decrease.
Initially, the maximised rate algorithm and the algorithm in this
paper achieve almost the same latency with a small number of
UDs, which is due to the availability of sufficient resources on
the edge servers. However, the increase in UDs leads to re-
source contention at the edge servers, and thus the collaborative
offloading scheme achieves better performance. Comparing all
the schemes, the algorithm in this paper has the smallest la-
tency growth rate. In particular, it is about 58% lower than that
without IRS, which itself confirms the effectiveness of the task
offloading strategy of this algorithm to reduce the execution la-
tency by efficiently utilising the MEC and D2D computational
resources.
The number of user devices, IRS configurations, and reflec-

tive elements are set toM = 10, L = 10, andN = 40, respec-
tively. The total delay performance curves for the five schemes
are shown in Fig. 3. From Fig. 3, it can be seen that the to-
tal delay of the system decreases with the increase of the SeDs
of the service devices, and the performance of the algorithm
in this paper outperforms that of other similar schemes. When
the number of SeDs is 10, the total delay of this paper’s algo-
rithm is 28.8% lower than the Max Rate scheme, 39.2% lower
than the Random Phase scheme, and 45.8% lower than without
RIS scheme, and note that the Greedy Edge algorithm does not
have SeDs for auxiliary task offloading, thus the change in the
number of SeDs has no effect on this algorithm. As the num-
ber of SeDs users increases, some UDs perform task offload-
ing via SeDs to alleviate the resource constraints of the edge
servers, and this collaborative task offloading strategy effec-
tively utilises the D2D-MEC computational resources to reduce
the total system latency.

The numbers of user devices and service devices are set to
M = 10 and K = 10, respectively, and the number of reflec-
tive elements is set to N = 40. Specifically, Fig. 4 compares
the total system delay with the number of IRSs. It can be seen
that the total system delay decreases with the increase in the
number of IRS units L in all scenarios except the without IRS
deployment scenario. This indicates that increasing the number
of IRSs improves the system performance, mainly by enhanc-
ing the channel quality and signal transmission efficiency. As
can be seen in Fig. 4, with the number of IRSs set to 10, the to-
tal system delay of this paper’s algorithm is 30.46% lower than
that of the Max Rate scheme, 38.76% lower than that of the
Random Phase scheme, 49.49% lower than that of the Without
RIS scheme, and 57.38% lower than that of the Greedy Edge
scheme; however, with further increase in the L, the delay re-
duction gradually slows down, showing diminishing benefits of
performance enhancement, and when the number of IRS units
is increased to a certain level, the further reduction of delay is
no longer as pronounced as it was initially. Although increasing
the number of IRS units can optimise the system performance
within a certain range, its improvement effect on the total sys-
tem delay gradually saturates when L exceeds a certain thresh-
old.
The number of user devices, service devices, and IRS config-

urations are set toM = 10,K = 10, and L = 10, respectively.
Fig. 5 evaluates the effect of the number of reflective elements
of the IRS on the total system delay. Firstly, the algorithm of
this paper outperforms the other research schemes in terms of
performance as shown in Fig. 2. Comparing the random phase-
shift and the case with no IRS yields the lowest total system de-
lay as shown in Fig. 5 and once again validates the effectiveness
of D2D-MEC co-unloading with IRS assistance. As the num-
ber of IRS reflective elements increases, the effective signal-
to-noise ratio (SNR) of the user-to-BS and user-to-D2D com-
munication paths increases, which reduces the upload latency
of the user device to the edge server and inter-user communica-
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FIGURE 4. Impact of the number of IRS configurations (L) on total
system delay.

FIGURE 5. Total system delay as a function of the number of IRS reflec-
tive elements (N).

tion. However, the improvement in system performance (i.e.,
delay reduction) due to an increase in the number of reflective
elements is compromised by the fact that once a sufficient num-
ber of IRS reflective elements have been deployed, the wire-
less channel is enhanced, with limited incremental gains from
the additional elements. As the number of IRS reflective el-
ements N increases, the total delay of the algorithms in this
paper, Max Rate and Random Phase algorithms decreases, but
afterN = 20, since the wireless channel is already sufficiently
enhanced by the available IRS reflective elements, and the per-
formance gain reaches saturation, the total delay performance
improvement of the system is not significant whenN > 20. In
particular, the performance gain is very significant when the of-
floading resources are limited, e.g., the total delay of theGreedy
Edge algorithm is reduced by 23.8% from 423ms to 322ms
whenN is increased from 10 to 100. Note that the performance
fluctuations given by the without IRS algorithm are due to the
dynamic nature of the wireless network, and the change in N
has no effect on the algorithm.
The numbers of user devices and service devices are set to

M = 10 and K = 10, respectively, and the number of reflec-
tive elements is set to N = 40. The effect of task size on the
total delay performance is shown in Fig. 6. Firstly, the proposed
algorithm significantly outperforms other schemes. Secondly,
it can be seen from Fig. 6 that the total system delay of all the
studied schemes increases with the increase of task size. By
comparing the performance trends of Random Phase and With-
out IRS, it can be concluded that if IRS assists in reducing the
task transmission delay, compared with Greedy Edge, the al-
gorithm of this paper optimises the offloading decision, MEC
resource allocation and offloading ratio to significantly reduce
the total system delay, which also verifies the effectiveness of
the algorithmic scheme of this paper. Compared to other stud-
ied schemes, the Greedy Edge scheme has worse performance
because the total uplift rate is the highest as the task size in-
creases. The reason for this is that the total computational re-

FIGURE 6. Impact of task size on total system delay for different
schemes.

sources of the edge server are tight as the task size increases,
and therefore, the total latency under this algorithm increases
faster than the schemes of other studies.
Our simulation model assumes ideal conditions, such as per-

fect phase adjustments for the IRS and accurate channel state
information (CSI), which may not fully reflect real-world de-
ployment scenarios. For instance, hardware imperfections in
IRS or errors in CSI estimation could degrade performance.
Additionally, the model does not account for the computational
complexity or energy consumption of large-scale IRS deploy-
ments, which could become significant in practical implemen-
tations. Future studies could incorporate these factors and ex-
plore the robustness of the proposed algorithms under dynamic
and imperfect conditions, such as user mobility and environ-
mental changes.
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6. CONCLUSIONS
In this study, the significant advantages of the proposed IRS-
assisted MEC-D2D cooperative offloading algorithm in reduc-
ing system delay in cellular scenarios are verified through simu-
lation results. The experimental results show that the algorithm
is able to minimise the total system delay in various test sce-
narios, especially when the number of user devices increases,
demonstrating good scalability and robustness. The algorithm
is able to significantly reduce the task execution delay by ra-
tionally utilising the computational resources for mobile edge
computing (MEC) and device-to-device (D2D) communica-
tion. In particular, the introduction of the Intelligent Reflec-
tive Surface (IRS) greatly improves the overall performance of
the system. By increasing the number of reflective elements,
IRS effectively improves the signal-to-noise ratio of the chan-
nel, which further reduces the data upload delay. Simulation
results show that IRS plays a key role in enhancing the commu-
nication efficiency of D2D-MEC cooperative offloading. Com-
pared with other benchmark schemes, the algorithm proposed
in this paper performs well under all test conditions, especially
in scenarios where the number of serving devices increases, and
effectively reduces the total system delay through better task of-
floading strategies and resource allocation. In addition, the al-
gorithm is still able to maintain low latency when dealing with
large-scale tasks, which fully demonstrates its adaptability and
effectiveness in complex network environments.
Overall, the IRS-assisted MEC-D2D cooperative offloading

algorithm proposed in this paper performs well in reducing sys-
tem delay, improving communication efficiency and resource
utilisation, and demonstrates a wide range of application po-
tentials and research values.
The simulation models in this study assume ideal conditions,

such as perfect IRS phase alignment and accurate CSI, which
may not reflect real-world scenarios. Factors like IRS hardware
defects, CSI estimation errors, computational complexity, and
energy consumption in large-scale deployments are not consid-
ered. Future research could address these limitations by explor-
ing algorithm robustness under dynamic and imperfect condi-
tions, including user mobility and environmental changes.
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