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ABSTRACT: Chipless Radio Frequency Identification (RFID) technology offers a cost-effective and durable alternative to chipped tags
for identification and tracking applications. By eliminating the need for an integrated circuit, chipless tags are cheaper and can withstand
harsher environments. This opens doors to not only track items throughout a supply chain or monitor valuable assets, but also integrate
basic sensors for functionalities like environmental monitoring or smart agriculture. However, limitations in data capacity, read range, and
decoding complexity currently hinder their full potential. This paper explores the application of machine learning techniques to improve
the interrogation process and enhance the reliability of chipless RFID systems. The effectiveness of machine learning in optimising
chipless RFID systems hinges on the richness and variety of training data. A robust dataset encompassing diverse tag characteristics,
environmental factors, and reader configurations is paramount. Nevertheless, gathering real-world RFID data can be difficult. To address
this, a data collection procedure has been specifically designed to gather backscattered information from the chipless tags at multiple
orientations and distances. Four binary combinations of a 5-bit RFID tag based on frequency-selective surfaces operating in the 2–8GHz
range are considered for generating the database. The dataset is then used to train and validate various classification models, including
support vector machine (SVM), k-nearest neighbour (k-NN), Decision Tree (DT), Naive Bayes classifier, and Logistic Regression (LR).
The proposed Support Vector Machine model is able to identify the tag at a distance of up to 70 cm from the interrogator, with multiple
rotational degrees of freedom.

1. INTRODUCTION

Radio Frequency Identification (RFID) technology provides
significant advantages in the realm of the Internet of Things

(IoT) by enabling efficient and automated identification and
tracking of objects. This leads to improved inventory manage-
ment, streamlined logistics, and enhanced data collection [1–
4]. The main setback to its adoption is the cost of designing
and fabricating the integrated circuit required for data process-
ing. Chipless RFID (CRFID), introduced in recent years, offers
the aforementioned advantages while being affordable, print-
able, and suitable for large-scale manufacturing and hostile set-
tings [5].
In a conventional RFID framework, the interrogator antenna

initiates the activation of RFID elements and subsequently cap-
tures the scattered electromagnetic signals. Each resonant el-
ement on the tag modulates the incident wave with a unique
resonant frequency signature determined by its design param-
eters. Chipped RFID systems leverage an application-specific
integrated circuit (ASIC) to enhance the backscattered signal,
enabling efficient separation of tag data from ambient noise.
In contrast, CRFID tags rely solely on their Radar Cross Sec-
tion (RCS), leading to a restricted reading range and increased
susceptibility to interference and reflections. The time and fre-
quency domain characteristics of chipless backscattered tags,
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essential for data encoding and reader interaction, are analysed
in [6] by Babaeian and Karmakar. The intricate nature of the
reflected signal in CRFID systems, a result of factors like an-
tenna reflection, tag structural modes, tag antenna modes, en-
vironmental reflections, and background noise, is mathemati-
cally described by Equation (1). These components can overlap
significantly in both the time and frequency domains, creating
complex signals that are difficult to decipher.

Stotal = Santenna + Stag_struc + Stag_ant + Senv + noise (1)

where Stotal is the total signal, and Santenna, Stag_struc, Stag_ant,
and Senv are the antenna reflection component, tag structural-
mode components, tag antenna-mode components, and the re-
flection from the environment, respectively.
The system’s performance is further influenced by factors

such as the distance and orientation between the interrogator
and tag, and the presence of nearby objects. To address these
hurdles, numerous efforts have been made focusing on tag de-
sign, encoding techniques, and detection algorithms. A com-
prehensive overview of measurement methods, response de-
tection approaches, and decoding techniques is provided by
Brinker and Zoughi [7].
Despite the progress in tag design and detection algorithms,

ensuring reliable tag identification continues to be a hurdle.
Several factors influence success, including the tag’s efficiency,
the effectiveness of the chosen signal processing techniques,

57doi:10.2528/PIERC24092505 Published by THE ELECTROMAGNETIC ACADEMY

https://doi.org/10.2528/PIERC24092505


Thomas, Sylaja, and Kurian

TABLE 1. Review of existing literature.

Reference Calibration Data set size Model Achievements Limitations

[21]
Background
subtraction

Exact dataset size
is not mentioned

SVM, k-NN
and

Ensembles

Compared different
ML models on the
collected dataset
Not sensitive to
tag misprints

Size of the dataset
is not mentioned

[20]
Background
subtraction

d— 5cm to 50 cm,
Multiple orientations
(0◦ to 40◦ along ϕ,
0◦ to 40◦ along θ)

(Total 816
measurements)

SVM

Achieved high
accuracy along

multiple orientation
Presence of nearby
objects considered

Very small dataset

[22] Time gating

10 meas/tag
(180 instances)
& data augm-
entation (3600
instances)

DNN
18 different tags

considered

Artificial dataset
Measurement inside
anechoic chamber

[23]
Background
subtraction

Three different
datasets

(8800 instances)
LR

Introduction of
dimensionality

reduction method,
thresholding scheme

Generalisation of
the model needs
background -
subtraction

This Paper
Raw S21

data is used

Two different
datasets

(4480 instances
/tag)

SVM

Proposed data
collection method
Considered multiple

orientations
Effect of background
noise is considered

Model fails beyond
certain orientation

and distance

and the surrounding environment. The existing methods often
require sophisticated algorithms, each specifically designed to
decode the unique properties and encoding schemes of a par-
ticular tag [8–10]. This approach, while functional, presents
constraints in terms of scalability and adaptability. A paradigm
shift is emerging in chipless radio frequency identification with
the arrival of machine learning (ML) algorithms. These al-
gorithms represent a significant leap forward, moving away
from the traditional methods that require specialised knowledge
about tag design and intricate signal processing techniques [11-
14]. Instead, data-driven algorithms harness the power of data
itself. By analysing vast datasets collected from CRFID inter-
rogations, these algorithms can learn to identify patterns and
decode the information embedded within the complex reflected
signals.
This study addresses two primary concerns that impede the

use of ML for CRFID: data scarcity and algorithm robustness.
The issue of limited availability of training data is tackled by
automating the data acquisition system and streamlining the
process to collect a large volume of data that accurately re-
flects real-world scenarios. By replacing manual collection,
the data’s relevance to practical deployments is ensured, ul-
timately enhancing the performance of the trained ML algo-
rithms. Additionally, the research investigates the robustness

of these ML algorithms under various real-world conditions,
evaluating their capability in recognising tags across long de-
tection ranges and different tag orientations.

2. STATE OF THE ART ML IN CRFID
In conventional tag identification and authentication systems,
effectively extracting tag information requires expertise in ad-
vanced signal processing techniques, including background
subtraction, time gating, continuous wavelet transformation,
and match filtering [7, 15–19]. Recent studies indicate that ML
methods could address the difficulties related to CRFID tag
identification [20–23]. However, there is currently limited lit-
erature on the application of ML for RFID tag classification.
Table 1 provides an overview of some existing contributions in
this area.
A hybrid method combining millimetre-wave frequency

scanning and ML approaches to enhance the performance of
CRFID systems is reported by Arjomandi and Karmakar [21].
Individual tags printed with alphanumeric characters are
interrogated using orthogonally polarised horn antennas in the
60GHz spectrum. The resulting data undergoes processing
for feature learning and classification using various networks
such as SVM, k-NN, and ensembles. This approach achieves a
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reading accuracy of over 95%, marking significant progress in
low-cost chipless tag applications.
An ML-based tag identification method capable of effec-

tively reading transponders across different ranges and situa-
tions is proposed by Jeong et al. [20]. The dataset includes
816 measurements from four RFID topologies with T-shaped
resonant elements operating in the 2–10GHz bandwidth. The
dataset encompasses the magnitude, phase, real part and imag-
inary part of the reflection coefficient S21, enhancing the com-
prehensiveness of the database. Classification techniques such
as DTs, Boosted Trees, k-NN, and SVM are employed, with the
SVM classifier using a linear kernel achieving an accuracy of
99.3%.
The feasibility of using deep neural networks to analyse

electromagnetic signatures from CRFID tags for authentica-
tion applications is investigated by Nastasiu et al. [22]. The
study considered 18 distinct mm-wave E-shape resonators (65–
72GHz) in ten different locations, yielding a dataset compris-
ing 180 measurements. Data augmentation techniques, includ-
ing adding white Gaussian noise, were used to expand this
dataset to 3600 observations, enhancing the diversity of infor-
mation in each electromagnetic signature. A fully connected
neural network evaluated on this augmented database success-
fully categorised 18 tags with 100% accuracy.
A comprehensive methodology for implementing ML algo-

rithms to achieve reliable CRFID tag identification is provided
by Sokoudjou et al. [23]. The study examines three distinct
datasets covering various ranges, with and without initial back-
ground subtraction. Principal Component Analysis (PCA) is
utilised for dimensionality reduction, alongside a thresholding
scheme to boost prediction confidence. Results demonstrate
accurate classification of analysed tags, achieving comparable
accuracy values to those reported in existing literature.
The literature reveals that models are generally trained with

relatively small datasets, often comprising fewer than 600mea-
surements per tag, which may constrain their generalisability to
new tag responses. Automated data collection methods, typi-
cally burdensome in RFID measurements, are not widely cov-
ered. Most datasets are either augmented from limited real-life
data or refined through background subtraction. Furthermore,
evaluating the trade-offs between tag orientation and interroga-
tor position remains necessary.

3. DATA COLLECTION
The efficacy of ML algorithms in optimizing CRFID systems
is intrinsically tied to the richness, heterogeneity, and compre-
hensive representation of key parameters within the training
dataset. These parameters include the angular orientations of
the tag — specifically, the yaw (ψ), pitch (θ), and roll (ϕ) —
along with the spatial separation (d) between the tag and in-
terrogator, and the varying environmental conditions in which
the system operates. A dataset that captures these multidimen-
sional variables is essential for enabling ML models to gen-
eralize effectively across diverse scenarios, thereby enhanc-
ing the system’s robustness and performance in practical appli-
cations. Given the challenges associated with acquiring real-
world RFID data, particularly from chipless tags, a rigorously

designed data collection protocol is required. This protocol
must systematically capture the backscattered electromagnetic
responses under varying angular orientations, distances, and
environmental conditions, thus providing a scientifically sound
basis for training ML models to address the current limitations
in CRFID technology.

3.1. Tag Design and Topology
In this study, the proof-of-concept CRFID tag described by Be-
tancourt et al. [24] serves as a reference. The octagonal tag is
designed to operate in the ultra-wideband 2–8GHz bandwidth.
The symmetry provided by the octagonal shape enables the tag
to be read independently of the polarisation of the interrogator.
This topology is advantageous in real-life applications where
maintaining a stable tag position is challenging. Fig. 1 illus-
trates the dimensions of a unit element that encodes 5 bits of
information. Fig. 2 shows the simulated radar cross section re-
sults for the four tags analysed in this study, generated using
CST Microwave Studio.

FIGURE 1. Detailed structure of the octagonal CRFID tag unit element
highlighting key dimensions necessary for its design and functionality.
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FIGURE 2. Simulated radar cross section results for the four tags anal-
ysed in this study, generated using CST Microwave Studio.

The distribution of surface current (jin and jout) in the adja-
cent octagons determines the presence or absence of response
in the tag. When the adjacent tags are open-circuited, the cre-
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ated electric field will be similarly polarised, and at bore sight,
the scattered beam will destructively interfere, resulting in a re-
sponse at a frequency determined by the diameter, width, and
separation of the rings. Conversely, adding a short circuit be-
tween adjacent octagons causes the radiated electric field from
the current sources to constructively interfere, suppressing res-
onance.
The tag design is based on frequency-selective surface (FSS)

designmethodology. Once a unit element, as shown in Fig. 1, is
selected, this structure can be further replicated to enhance the
overall Radar Cross Section. For the study reported here, an
array of 2× 2 unit elements, each with dimensions of 50mm×
50mm, is utilised. Fig. 3 depicts the RFID tag array fabricated
on an FR-4 substrate.

(a) (b)

(c) (d)

FIGURE 3. The tag fabricated on FR4 material as a 2× 2 unit elements
array. (a) Represents the 1-1111 encoded tag: All five octagonal rings
contribute to resonance, representing the binary code 1-1111. (b) Rep-
resents the 1-0001 encoded tag: Short-circuits are added between adja-
cent rings to suppress the response, with the remaining rings contribut-
ing to resonance. (c) Tag corresponds to 1-0001 binary combination.
(d) Tag corresponds to 0-1010 binary combination.

For the Radar Cross Section to be sufficiently diverse, the
bit sequence in the RFID tags is chosen to have a maximum
Hamming distance (dH) between them. Table 2 shows the bit
combinations selected and the Hamming distance between in-
dividual tags. The tags exhibit a Hamming distance between 2
and 4.

TABLE 2. Hamming distance (dH) between selected Tags.

Tag 0-1010 1-0001 1-1100 1-1111
0-1010 0 4 3 3
1-0001 4 0 3 3
1-1100 3 3 0 2
1-1111 3 3 2 0

3.2. Experimental Setup

The block diagram of the tag positioning system is shown in
Fig. 4, and the realisation of the actual experimental setup is
showcased in Fig. 5. The measurement setup involves a tag
holder, an interrogator, a controller, and a computer running a
Python program. The tag holder is made of Acrylic sheet and
a light weight dielectric foam and is attached to two servo mo-
tors at the bottom. These motors enable precise control over
the tag’s roll (ϕ) and yaw (ψ) orientations. The motors are
strategically positioned away from the tag to eliminate poten-
tial reflections from their coils or shafts. A motor connected to
the tag holder’s axis directly controls the yaw movement, while
a belt-driven mechanism facilitates roll motion. Pitch angle (θ)
adjustments are achieved by inserting precisely angled dielec-
tric foam cutouts between the tag and its holder.
A Rohde & Schwarz ZVB 20 Vector Network Analyser

(VNA) [25] is employed as a 2–8GHz microwave source, with
two wide-band horn antennas operating in the 2–18GHz fre-
quency band serving as the interrogators. To ensure seamless
data acquisition, a Python script interfaces the network analyser
and servo motor controller. Communication between the VNA
and PC is established via socket communication through port
5020. This setup allows the user to initialise various network
analyser parameters by exchanging SCPI (Standard Commands
for Programmable Instruments) commands. Amicro-controller
board supervising the servo motors communicates via UART,
facilitating precise positioning of the tag for each measurement.
The temporal lag associated with manoeuvring the servo motor
to position the tag and configuring the analyser for executing
the frequency sweep has been minimised to less than two sec-
onds. This optimisation aims to enhance time efficiency be-
tween successive measurements.
The network analyser is configured with 201 data points per

measurement, resulting in 201 distinct reflection values for the
scattering parameter S21, with intervals of 0.0348GHz in the
2–8GHz frequency span. To compensate for the potential limi-
tations of the tag’s size, which could lead to received backscat-
tered power falling below the receiver’s sensitivity threshold,
the VNA’s transmitted power is configured slightly higher at
5 dBm. Finally, to simulate a realistic operational environment
and capture data that reflects real-world scenarios, the entire
setup is positioned outside the confines of an anechoic cham-
ber.
Determining the response of a CRFID tag (σtag) involves a

detailed procedure, as described by Betancourt et al. [24]. The
Network Analyzer is configured with proper time gating to iso-
late the reflections specifically from the RFID tag, eliminating
other noise sources. The reflection coefficient (S21) of the tag
is then measured, indicating the amount of incident electromag-
netic wave reflected by the tag. Subsequently, the Radar Cross
Section is computed by subtracting the background noise from
the measured reflection coefficient and normalising it using a
known reference RCS as in Equation (2) [24], ensuring that
the computed RCS is accurate and comparable across different
measurements.
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FIGURE 4. Block diagram illustrating the RFID data acquisition setup. The Python script serves as an intermediary, enabling communication between
the network analyser and the servo motor via SCPI and Serial interfaces, respectively.

FIGURE 5. Experimental setup in a microwave lab for collecting RFID
backscattered signals at varying distances and orientations.

σtag =

[
Stag
21 − Sno-tag

21

Sref
21 − Sno-tag

21

]2

σref (2)

where Sno-tag
21 is related to the measurement performed with-

out tag. The Sref
21 represents a reference value obtained from

a known measurement setup, and σref corresponds to the simu-
lation results obtained for this reference.

The RCS values computed through this approach at differ-
ent positions are shown in Fig. 6(a) through Fig. 6(e). The re-
sponse for each bit level is distinguishable across most posi-
tions and orientations. As the distance or orientation of the tag
changes, the response is also affected, impacting the system’s
performance, as shown in Fig. 6(b) through Fig. 6(e).
In practical scenarios, estimating the Radar Cross Section

by extracting background information and applying time-gating
techniques may not be feasible due to operational constraints.
One significant challenge is the dynamic nature of environ-
ments such as warehouses or production facilities, where con-
tinuous movement of personnel, machinery, and goods cre-
ates variability that complicates the establishment of a stable
background reference for RCS estimation. Additionally, many
CRFID applications require real-time data processing to make
timely decisions, and the time needed for comprehensive back-
ground extraction and time-gating implementation often does
not align with these urgent operational demands, leading to po-
tential delays. Furthermore, the limitations of portable or hand-
held CRFID devices, which may lack the computational power
necessary for complex algorithms, affect the ability to carry out
accurate background noise subtraction and precise time gating.
Figure 6(f) displays the raw S21 data considered without ap-

plying time gating or background noise subtraction. In this
raw form, the CRFID tag’s responses are not distinctly iden-
tifiable. Despite this, a comparison with a metal plate reveals
differences in the tag’s responses, indicating that some identi-
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6. Response characteristics of RFID Tag 1 under various conditions: (a) Comparison of responses for two tags under identical conditions,
(b) RCS at varying distances, (c) RCS at different yaw angles (ψ), (d) RCS at different pitch angles (θ), (e) RCS at different roll angles (ϕ), (f) Raw
S21 compared with a metal plate..

fiable characteristics are still present. Identifying the underly-
ing pattern with traditional approaches remains difficult due to
overlapping signals and noise that obscure distinct responses.
To overcome this, ML techniques can be applied to decode the
tag data effectively. These techniques can discern patterns and
correlations not easily detectable with conventional methods.
However, for ML to be successful in this context, a sufficient
amount of data is necessary. To address this, a methodology
as shown in Fig. 7, focuses on creating a rich dataset that cap-
tures the key variables affecting RFID measurements. By care-
fully controlling various elements, the data acquisition method-

ology ensures the creation of a comprehensive and informative
dataset that encompasses the diverse factors influencing RFID
measurements.
At each position, S21 measurements are taken both with

(Stag
21 ) and without (Sno-tag

21 ) the tag to confirm the influence
of external noises or variations in tag holder placements. The
dataset includes a total number of 4,480 measurements per tag
as shown in Table 3 with the following variables; 1) distance
(d) from 40 cm to 100 cm in steps of 10 cm, 2) roll (ϕ) from 0◦

to 180◦ in steps of 20◦ 3) pitch (θ) from 0◦ to 70◦ in steps of
10◦ and 4) yaw (ψ) from 0◦ to 70◦ in steps of 10◦.
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FIGURE 7. Flowchart outlining the procedural steps involved in con-
ducting measurements for database generation, from initial setup to
data recording and analysis.

TABLE 3. The range of parameters (distance, yaw, pitch, roll) consid-
ered for preparing the dataset for training the model.

Variable Range
Number of

measurements/tag

Distance (d)
40 cm to 100 cm in
steps of 10 cm

7

Roll (φ)
0◦ to 180◦ in
steps of 20◦

10

Pitch (θ)
0◦ to +70◦ in
steps of 10◦

8

Yaw (Ψ)
0◦ to +70◦ in
steps of 10◦

8

Total 4480

4. ML METHODS
RFID tag recognition is a multi-class classification problem,
with the primary goal of categorising tags into predeter-
mined classes using distinctive characteristics retrieved from
backscattered data. The nature of S21 data, which typically
involves high-dimensional feature vectors representing the
magnitude values of reflected signals, aligns well with the
capabilities of ML algorithms. In the realm of RFID tag
recognition, researchers have explored both traditional ML
techniques and deep neural network (DNN) models. However,
when being confronted with comparatively small datasets,
ML methods have demonstrated more reliable classification
performance. This preference stems from the inherent risks
associated with employing deep learning approaches on lim-

ited data volumes, where over-fitting becomes a pronounced
concern, potentially compromising the model’s ability to gen-
eralise effectively [26, 27]. Traditional ML techniques, such as
SVM, Random Forest (RF), and k-NN, have proven robust and
effective in handling small datasets [28–30]. These algorithms
are less susceptible to over-fitting, as they inherently prioritise
simplicity and regularisation.
Figure 8 shows the proposed machine learning classification

stages, illustrating each phase from data preprocessing tomodel
evaluation and deployment. To select the best model which can
effectively distinguish the tag under various conditions, an Au-
toML framework is employed [31]. These frameworks offer a
systematic approach to model selection, hyper-parameter tun-
ing, and model evaluation, making the process more efficient
and accurate. As mentioned earlier, background noise data, in
the absence of the original tag, is also included in the database
for each RFID tag position. This enables more robust train-
ing of each model, enabling them to learn from both scenar-
ios: when background noise is present and when it has been
removed. The AutoML framework includes a variety of mod-
els such as SVM, k-NN, DT, LR, and Naive Bayes. It is sup-
plied with two distinct datasets: one where background noise
has been subtracted and the other containing raw S21 readings
without any background noise subtraction. This approach en-
sures that the models can learn to distinguish the tag under both
noisy and clean conditions, thereby improving their real-world
applicability. The framework then optimises and trains each

Training 
Dataset

Test Dataset Model Training

Model Evaluation

DT

SVM

KNN

LR

Naive Bayes

Data 
Preprocessing

Hyper Parameter 
Tuning

AUTO ML Framework

Evaluating 
Performance 

Matrices
Final Model

Best Model

Model Launching

Real Time Samples

Tag 4

Tag 3

Tag 1 Tag 2

Tag 3 Tag 4

FIGURE 8. The proposed machine learning classification stages, illus-
trating each phase from data preprocessing to model evaluation and
deployment.
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TABLE 4. Division of validation data across various combinations of yaw, pitch, roll, and distance parameters.

Combinations Selected (Ψ, θ, φ, d)
Validation Set 1 Ψ [0◦, 40◦], θ [0◦, 40◦], φ [0◦, 70◦], d [40 cm, 70 cm]
Validation Set 2 Ψ [0◦, 40◦], θ [0◦, 40◦], φ [0◦, 180◦], d [40 cm, 70 cm]
Validation Set 3 Ψ [0◦, 40◦], θ [0◦, 40◦], φ [0◦, 180◦], d [70 cm, 100 cm]
Validation Set 4 Ψ [0◦, 40◦], θ [0◦, 60◦], φ [0◦, 180◦], d [40 cm, 70 cm]
Validation Set 5 Ψ [0◦, 60◦], θ [0◦, 40◦], φ [0◦, 180◦], d [40 cm, 70 cm]
Validation Set 6 Ψ [0◦, 70◦], θ [0◦, 70◦], φ [0◦, 180◦], d [40 cm, 70 cm]

TABLE 5. Accuracy achieved with various validation sets across multiple ML models.

With background
Subtraction

Without background
Subtraction

KNN SVM DT LR Naive Bayes KNN SVM DT LR Naive Bayes
Batch 1 87.72% 95.51% 86.30% 86.10% 44.26% 83.23% 93.47% 87.64% 81.02% 56.39%
Batch 2 91.91% 97.31% 90.47% 89.08% 45.14% 87.20% 94.11% 88.78% 80.07% 55.44%
Batch 3 71.11% 47.31% 30.47% 39.08% 47.14% 67.25% 40.11% 38.12% 47.63% 48.28%
Batch 4 70.11% 78.49% 46.88% 55.45% 50.76% 72.57% 76.80% 47.07% 52.23% 31.19%
Batch 5 47.23% 78.60% 67.56% 65.08% 38.17% 40.71% 75.69% 66.93% 66.76% 32.21%
Batch 6 43.27% 74.27% 56.98% 34.97% 33.74% 44.91% 72.30% 64.85% 55.77% 41.10%

model on these provided datasets, ultimately selecting the best-
performing model based on their performance metrics.
To evaluate the trained ML models, the validation dataset

which contains variables such as yaw (ψ), pitch (θ), roll (ϕ),
and distance (d) is divided into multiple subsets as shown in
Table 4. These subsets encompass various combinations of the
aforementioned variables, generating multidimensional infor-
mation. Each of Sets 1 through 6 underwent individual val-
idation using distinct models, and the resulting outcomes are
outlined in Table 5. Fig. 9 compares the accuracy achieved by
various models on the training dataset for Batch 2, which is
identified as the best-classified batch. Upon analyzing the re-
sults obtained from various datasets, it is evident that the SVM
classifier consistently exhibits satisfactory performance across
Set 1 and Set 2.

SVM KNN DT LR Naive Bayes
Model

0
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40

60

80

100
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cy

 (%
)

Dataset 1
Dataset 2

FIGURE 9. Accuracy achieved by various models on the validation
dataset Batch 2, identified as the best-classified batch.

TABLE 6. Parameters of the trained SVM model with RBF Kernel.

Parameter Optimized Value
Kernel RBF

C (Penalty parameter) 10.0
Gamma 0.001

The parameters of the optimized SVM model are shown in
Table 6. The SVM model operates by creating hyper-planes
that best separate the data points of different classes with the
maximum margin. For the RFID dataset, represented as D =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi denotes the feature
vector corresponding to a tag position, and yi represents the
corresponding labels, the hyperplane can be expressed as:

w · x+ b = 0 (3)

Here, w is the weight vector perpendicular to the hyperplane,
x the input feature vector, and b the bias term. The decision
boundary is defined by:

w · xi + b ≥ 1 if yi = 1 (4)
w · xi + b ≤ −1 if yi = 0 (5)

These equations describe the margin constraints, where the
margin is the distance between the hyperplane and the nearest
data point from any class. The goal of the SVM is to maximize
this margin while minimizing classification errors.
For handling non-linearly separable data, SVMs use the ker-

nel trick. This technique implicitly maps the input features into
a higher-dimensional space where the data can become linearly
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(a) (b)

(c) (d)

FIGURE 10. Examining the impact of yaw (ψ), pitch (θ), roll (ϕ), and distance (d) parameters on the trained model.

separable. The optimized parameters suggest using the Radial
Basis Function (RBF) kernel for higher accuracy with the RFID
dataset.
The optimization problem for SVM can be formulated as fol-

lows:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

ξi (6)

subject to: (7)
yi(w · xi + b) ≥ 1− ξi, i = 1, 2, . . . , n (8)
ξi ≥ 0, i = 1, 2, . . . , n (9)

In this formulation, C is the regularization parameter that
balances the trade-off betweenmaximizing themargin andmin-
imizing classification error, while ξi are slack variables that al-
low for some degree of misclassification. By solving this op-
timization problem, SVM determines the optimal hyperplane
that separates the classes in the feature space.

5. MODEL EVALUATION
This section evaluates the performance of the optimised SVM
model using various performance matrices. The analysis fo-
cuses on examining box plots to gain insights into the model’s
behaviour across different datasets, particularly under scenarios
with and without background noise. Specific focus is placed on
the model’s classification accuracy about changes in yaw (ψ),
pitch (θ), and roll (ϕ) angles, as well as variations in the sepa-
ration (d) between the interrogator and the tag.
Figure 10(b) presents the performance of the model as the

yaw angle is incrementally increased from 0◦ to 70◦. Here,
pitch, roll, and distance samples are maintained consistently as
outlined in Validation Set 2 (see Table 4). When being tested on
Dataset 1, containing background-filtered samples, the model
achieved a mean classification accuracy of 97% across the yaw
angle range of 0◦ to 40◦. Similarly, the model maintained sat-
isfactory performance on Dataset 2, which comprises raw S21

samples, with a mean classification accuracy of 94.1%.
Similarly, in Fig. 10(c), the effect of orientation in pitch an-

gle is assessed keeping the other variables as in validation batch
2. Up to a pitch angle of 40◦, the SVM classifier reliably
recognised the tag, irrespective of the presence or absence of
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(a) (b)

(c) (d)

(e) (f)

FIGURE 11. Confusion matrix depicting the confidence of the model on each tag for different Validation Sets, utilizing raw S21 data without
background noise subtraction.

background noise. This indicates the model’s efficacy in han-
dling pitch variations within this specific range. However, the
model’s classification performance began to decline once either
the orientation angle yaw or pitch exceeded 40◦. As the an-
gle increases beyond this threshold, the back-scatter signal di-
rected towards the receiving antenna reduces noticeably. This
decline in signal strength poses a significant challenge to the
model’s functionality, ultimately leading to its inability to ac-
curately classify tags. The roll angle has increased from 0◦ to
180◦, as shown in Fig. 10(d). Despite this considerable adjust-

ment in roll angle, the model demonstrates reliable tag identi-
fication throughout the roll variations with both datasets. The
inherent polarisation independence nature of the tag in the roll
plane significantly contributes to this consistent performance,
ensuring that the tag’s readability is not substantially impacted
by changes in roll angle. The distance between the interrogator
and the tag is increased while keeping other variables constant,
as shown in Fig. 10(a). The model failed to classify the data
with acceptable accuracy beyond 70 cm even after subtracting
the background noise. This may be because of the small size of
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the passive tag, and the backscattered signal from the tag will
be limited and not adequate for distinguishing individual tags.
The confusion matrix of various validation batches consid-

ered in Section 4 is displayed in Fig. 11. As per Table 5, the
SVM model achieved 93.47% validation accuracy on Set 1.
Fig. 11(a) shows the corresponding confusionmatrix for dataset
1, where each tag is classified to its corresponding classes with
minimum error. In contrast, the second validation batch pre-
sented different conditions, specifically an increase in the roll
angle. Despite this change, Fig. 11(b) shows that the major-
ity of tags are still correctly identified, indicating the model’s
resilience to variations in the roll angle.
Figure 11(c) confirms that as the distance between the tag and

interrogator increases beyond 70 cm, severe misclassification
happens among tags. Increasing the interrogator power may
help in achieving higher reading ranges. In the experimental
sequences labelled Sets 4 through 6, incremental adjustments
are made to both yaw and pitch angles. Fig. 11(d) through 11(f)
vividly illustrate this, showing that despite being supplied with
the maximum available samples, the accuracy of tag classifica-
tion remained unsatisfactory. These findings are crucial for the
development of more robust RFID systems capable of accurate
performance in diverse operational environments.
Despite encountering limitations in distinguishing tags at

higher orientation angles or distances, the model exhibited con-
sistent and reliable classification within specific ranges. No-
tably, the model demonstrated proficiency in accurately classi-
fying tags positioned at distances ranging from 40 cm to 70 cm.
Moreover, it effectively discerned tags across a yaw range span-
ning from 0◦ to 40◦, Pitch from 0◦ to 40◦, and Roll from 0◦ to
180◦ showcasing its robustness in classifying tags across a con-
siderable angular span.
The precision, recall, and F1 score matrices of the model on

Set 2, regarded as the best-classified set, are depicted in the
accompanying Fig. 12. These metrics collectively signify the
model’s high levels of accuracy, thoroughness, and sensitivity
in accurately categorising tags within the dataset. Such consis-
tent and robust performance across multiple evaluation criteria
underscores the effectiveness and reliability of the classifica-
tion system employed, reflecting positively on its overall per-
formance and suitability for the intended application.

FIGURE 12. Estimation of precision, recall, and F1 score considering
validation set 1 and raw S21 data.

6. CONCLUSION
This study explores the feasibility of employingML techniques
to improve accuracy and reliability of CRFID systems in real-
world environments. The primary challenge encountered is the
limited availability of comprehensive RFID datasets. To ad-
dress this, an automated tag positioning system with an SCPI
interface is implemented to capture backscattered signals from
various tag orientations. A diverse dataset is generated by in-
terrogating the CRFID tag while varying several parameters: 1)
distance (d) from 40 cm to 100 cm, 2) roll (ϕ) from 0◦ to 180◦,
3) pitch (θ) from 0◦ to 70◦, and 4) yaw (ψ) from 0◦ to 70◦.
The generated datasets are trained and validated using SVM, k-
NN, DT, LR, and Naive Bayes approaches. Among these mod-
els, SVM model demonstrated superior overall performance.
Specifically, the model successfully extracted tag information
up to 70 cm from the interrogator, with yaw and pitch orienta-
tions ranging from 0◦ to 40◦ and roll orientations from 0◦ to
180◦. The methodology described in this study is both scalable
and generalisable, capable of adapting to any number of tags or
bits within varying environments or noise conditions.
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