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ABSTRACT:Optimal placement of wireless base stations in urban areas allows formaximum coverage and performancewhilst maintaining
minimal cost. In this paper, we propose a novel machine learning approach to place base stations rapidly in an urban environment for
5G communications and beyond. This is a noteworthy approach as 5G, especially those that involve millimeter wave frequencies tend
to require significantly higher number of base stations for any particular area, unlike their counterpart low frequencies where a small
number of base station is sufficient to cover a good geographical area. Our machine learning empowered path loss model is developed
to tackle this change in gameplay head-on, and it bridges the gap between empirical and ray tracing methods where we achieve accuracy
closer to ray tracing yet at a significantly lower computation cost. Promising preliminary results are obtained, with a minimum coverage
area of 80% with potential for future improvements.

1. INTRODUCTION

Base station placement in urban areas has become crucial
in recent times due to the use of higher frequencies in re-

cent telecommunications technology such as Fifth Generation
(5G) and beyond 5G. At higher frequencies, there is a higher
amount of signal loss due to distance, penetrations, and reflec-
tion, which causes cellular coverage area per base station to de-
crease [1]. This in turn increases the number of base stations in
an area, which demands better planning of base station place-
ments. At high frequencies, path loss in Line-of-Sight (LoS)
scenarios is more predictable than non-Line-of-Sight (NLoS)
scenarios. As such, features such as building height, densities,
and materials tend to influence base station coverage more [2].
An optimal base station plan should ensure acceptable Quality
of Service (QoS) to user devices especially in the current era
where Internet of Things (IoT) is rampant across agriculture,
healthcare, and manufacturing industries. These industries rely
on critical data from sensors where low QoS could cause man-
ufacturing or medical problems. With better base station plan-
ning, the coverage in an area where base stations are already
deployed could be updated with new base stations should the
need arise. The world is witnessing a rapid increase of IoT
and higher bandwidth requirements of mobile devices used by
the general population. This is due to the requirement of cater-
ing to the increasing amount of video streams especially after
the Coronavirus disease 2019 (COVID-19), which has forced
businesses and education institutions to resort to teleconferenc-
ing software that can be seen by Zoom’s rapid growth over
2019 to 2021 [3]. In view of this, we propose a base station
placement technique that can intelligently decide the number
and locations of base stations in a given urban environment.
Our model is trained based on Geographic Information System
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(GIS) data that was acquired from open source databases and
purchased from GIS vendors. This data came in 3-dimensional
space but was converted to 2.5 dimensions in order to simplify
the machine learning process whilst maintaining maximum in-
formation. We previously developed a machine-learning based
path loss model for propagation prediction in [4]. This path loss
model is a prelude to the current paper, in that the path loss data
generated from the model, along with additional data generated
from other models such as empirical and ray-tracing models are
now used to train the base station placement model. While the
benchmark used in the previous path loss model is the standard
deviation, in the current paper, we have used other benchmarks
such as accuracy, coverage, and the number of base stations.

2. MODEL TRAINING
We performed our model training on an AMD Ryzen 5600 and
NVIDIA RTX 3090, and it requires roughly 24 hours to train
on our dataset size. We have selected a batch size of 32 as it
provides the best accuracy and convergence and applies regu-
larization and dropouts at different stages of the model. Fig. 1
shows the path loss data we plotted at 28GHz and 60GHz for
Munich city, compared against the ray-tracing results obtained
from MATLAB.
Consider that the maximum Equivalent Isotropic Radiated

Power (EIRP) at 60GHz for fixed base stations for mmWave is
set to 82 dBmwhereas onmobile devices, it is set to 45 dBm [5].
Our Reference-Signal-Received-Power (RSRP) values are set
as follows where −105 dBm is set as our minimum acceptable
received signal as shown in Table 1 according to a performance
study conducted by the Federal Communications Commission
(FCC) [6].
Using −105 dBm as our minimum signal strength, 82 dBm

as the transmitter power, and 45 dBm for receiver power, we
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FIGURE 1. Path loss data at 28GHz and 60GHz for Munich City.

TABLE 1. RSRP Table.

Signal Strength RSRP(dBm) Description
Excellent −80 to −60 Strong signal, Ideal for High-Speed Data
Good −90 to −80 Reliable signal, Ideal for Normal Speed Data
Fair −105 to −90 Weaker signal, degraded performance in data transfer
Poor −105 and below Very weak signal, with potentially frequent disconnects with slow speed

can calculate our Maximum Allowable Path Loss (MAPL) as
shown below [7]:

MAPL = powertx − minimumsignalstrength− powerrx
which results in an MAPL of 187 dB.
Path loss values below the MAPL of 187 dB are considered

reachable by our transmitter, and values above that are con-
sidered unreachable and not measurable in real life due to sig-
nal loss. This allows our model to discern locations which
are reachable and unreachable for base station placement. In
Fig. 1, the LoS points are accurately predicted, and our model
can also predict accurate values in nLoS areas where diffraction
occurs. However, our model still attempts to predict values in
nLoS areas that are unreachable resulting in path loss values
above 187 dB as our path loss prediction is performed without
the model knowing which locations are reachable and unreach-
able. This allows our model to determine locations which are
unreachable and which are reachable.
As the path loss prediction values go above 187 dB, the sig-

nal is unreachable in both ray tracing and in measurements us-
ing standardized equipment on both transmitter and receivers
across the entire scenario.
The RootMean Squared Error (RMSE) value comparison be-

tween our 28 and 60GHz models is 5.96 dB for LoS scenario,
and 18.09 dB for NLoS scenario after removing sparse data lo-
cations which are unreachable via raytracing simulation. This
removal of data is justified as these locations are unreachable
in our training data, yet our model is attempting to predict lo-
cations which are unreachable and unmeasurable in raytracing

simulations and in real life. This LoS value is close to the calcu-
lated free space path loss (FSPL) values, which is 6.61 dB, but
we note that for the NLoS scenario, the recorded RMSE value
is less desirable.

3. BASE STATION PLACEMENT MODEL
In this section, we present our machine-learning empowered
base station placement model.

3.1. Factors Affecting Placement
There are several major factors that affect base station place-
ment, namely, coverage, cost, quality, and capacity [8]. The
quality factor is defined by the signal-to-interference-plus-
noise ratio (SINR). As the path loss value increases, the SINR
value at the receiver location will be significantly affected lead-
ing to a reduced level of connection quality [9]. In our tests,
LoS is a major factor that is highly weighted. Taking 60GHz
for instance, the base stations are essentially LoS locked in or-
der to maintain connectivity in cases of bad weather as frequen-
cies above 10GHz is affected by water vapor and oxygen par-
ticles [10–12].

3.2. Location Preparation
In order to generate a map of optimized base stations, we first
have to prepare the map for locations where it is possible to
place base station. This can be adjusted depending on the pref-
erence of the supplier and radio equipment as different frequen-
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cies have different expectations in base station height where 5G
picocells operate at a height of 5 to 10 meters whereas 3G base
stations require a taller transmission tower. The accuracy level
should also be set at this stage. For example, an accuracy of
1 meter should have receivers 1 meter away from each other,
providing us with 1 meter grid. The accuracy level can be set to
be higher or lower depending on the requirements. In our tests,
this accuracy level is set to 3 meters. We decided on 3 meters
in order to accelerate the tests whilst still having high enough
accuracy that we can simulate path loss along roadways and
pathways capable of pedestrian traffic. This generation proce-
dure draws us a grid map of valid transmitters and receivers
locations in an area. This generated grid map is then used to
create our paired image dataset. This grid map allows us to
place transmitters and receivers rapidly as we can look up grid
coordinates that are relevant to a transmitter location. This im-
proves our base station optimization system as all the image
information has already been prepared prior to optimization.
With every different frequency band, we set an expected hard
limit distance in order to improve the optimization time. This
limit is set if the FSPL value increases over the acceptable limit
where the SINR does not allow for reliable communication be-
tween the transmitters and receivers. This is checked using the
transmitter and receiver parameters that are described next in
the model description.

3.3. Model Description

Previous literature shows that base station planning models can
be performed heuristically or via integer linear programming
(ILP) [13, 14] using techniques described below:
1. Greedy Addition
2. Binary Integer Linear Programming (BILP)
3. Convex Linear Programming
Our model is a mix of Greedy Addition and Binary Integer

Linear Programming where we have set receiver grids across
the entire scenario map, and they are marked as being covered
by base stations or not. These grids are updated additively it-
eration by iteration after our model predicts the best possible
location to place the next base station given the location of al-
ready placed base stations as well as currently covered receiver
locations.
However, previous literature mostly only includes base sta-

tion placement with only using formula-derived path loss mod-
els which rely mainly on distance as a parameter. Whilst dis-
tance is one of the parameters that hold the most weight in cal-
culating path loss, other factors in these models are simplified
into constants, resulting in higher RMSE values in path loss
calculation than ray-tracing and being able to take into account
different transmission properties in an urban environment. Al-
though at 28GHz and 60GHz, mainly nLoS path loss values
are used as shown in [15], there are non-negligible transmis-
sion path loss values in nLoS areas which are not utilized by
previous literature.
Our proposed model has the potential to optimize base sta-

tions using a more versatile path loss prediction method that
takes into account more site-specific information such as fo-

liage, minor obstructions, and major obstructions and accounts
for more than only distance-based LoS path loss values.

3.4. Model Process

The model that we use for base station optimization has a rel-
atively simple goal, which is to minimize the amount of blank
space in a scenario map grid of receiver locations while main-
taining a minimal number of transmitters. The model will pri-
oritize placing transmitters that can provide the most coverage
adjacent to previous transmitters while maintaining a minimal
overlap. The initial placement of the first base station in our
scenarios can be determined by the model or set by the user to
overlap currently existing infrastructure. Both methods have
their advantages and disadvantages where a randomly placed
primary base station might have a better optimization result
than the manually placed version. However, using a manually
placed base station offers other advantages. After the place-
ment of the first base station, our optimization process begins
by adding a second transmitter location and predicts the path
loss values for the area around it. This process repeats itself by
adding more transmitters until the desired coverage is achieved.
The placement of the subsequent transmitter locations is deter-
mined by our model, and the coverage level is checked on every
transmitter addition. A dataset of current coverage is updated
for every transmitter addition. This allows us to determine
coverage overlaps and determine whether to update the newly
added transmitter location or to remove the previous transmit-
ters. Over time, the model will maximize coverage within the
specified scenario area. As it is impractical for the model to end
on a single solution, we will accept any base station placement
solutions that fulfill the set target coverage criteria. Every re-
ceiver grid coordinate from our grid map dataset is marked in
our database, it either is empty indicating no coverage yet or
includes path loss values from the various transmitter locations
if it is covered. As an example, a receiver location at a partic-
ular coordinate x and y has 3 valid path loss values, 119 dB,
99 dB, and 95 dB, with each of them being linked to transmit-
ters 1, 4, and 6, respectively. This indicates that transmitters
that were generated during the 6th epoch are capable of provid-
ing maximum performance to this location. Then, transmitter
6’s coverage is analyzed where the coverages prior and post ad-
dition are compared. Our performance metric for base station
optimization is such where we calculate the coverage score out
of the whole scenario map starting at 0% coverage consisting of
total possible receiver units in the area spaced regularly, which
is 3 meter grids in our test at 1.6 meters of height. If a receiver
location is covered by any transmitter, the coverage score in-
creases by 1 unit. If a receiver location receives an improve-
ment by a new transmitter, the score is compared to determine
whether the new addition is an upgrade or a waste of resources.
As an example scenario, if a single transmitter is capable of
reaching 200 receiver locations, and the whole map consists of
15000 receiver locations, we update our global coverage score
as 1.3% covered after the first epoch relative to 0% covered
prior. Every single receiver location that has never been cov-
ered before, and covered by a new transmitter increases our
coverage score by 1 unit; however on any following epochs,
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FIGURE 2. Base station optimizer crop.

an improvement to an already covered unit only increases our
score by partial amounts. This allows us to determine whether a
new transmitter overlaps a previous transmitter minimally or is
majorly overlapping causing wasted resources. If the coverage
score does not improve significantly enough, the latest trans-
mitter addition is removed, and a new transmitter is placed in a
different location, and the coverage score is rerun again. This
process is looped continuously until our required specifications
are achieved, which is set to be a minimum of 80% coverage
with minimal overlap between transmitters and minimal base
station count. Our generative model is an optimization model
where we use the current coverage map as our score metric. For
example, in Fig. 2, our entire scenario map encompasses a total
of 1132560 coordinate points which are equal to a coordinate
point every 3 meters on the x and y axes.
In Fig. 2, an illustration of the base station optimizer crop

is shown. The gap between these coordinate points can be ad-
justed depending on the accuracy of which the optimizer will
run at the cost of increased computation time when the gaps are
decreased. In order for a transmitter to be placed, it has to ful-
fill several conditions especially at mmWave frequencies. First
of all, these nodes have to be in a range of another transmit-
ter under the assumption that it will perform backhaul services
for the network whilst servicing user devices. If the proposed
node has more than 1 link to a different transmitter, the node is
scored higher in our model as it allows for more redundancy if
a single backhaul link fails. This interconnectivity is shown in
Fig. 2 via the red lines connecting between transmitters.
In Fig. 3, the placement method per iteration is shown. The

distance between transmitters has to be outside of a certain dis-
tance in order to prevent overcrowding of transmitters in a sin-
gle point. To determine the potential base stations locations,

several steps are performed, where transmitter A is the first base
station placed, and transmitters B and C indicate 2 other possi-
ble positions for transmitters. In Fig. 3, transmitter C is selected
as the next base station to be placed since it achieves a better
score than transmitters D or B. Our placement method is de-
scribed as follows:

1. The base station dataset begins with 0 base stations and is
only provided by the scenario map. The current coverage
score in this scenario is 0%.

2. Transmitter A is placed by the model randomly, or its po-
sition can be specified to currently deployed base stations
for 3G/4G as existing infrastructure. When being placed
randomly by the model, it will prefer areas which have
a higher probability of LoS paths to surrounding areas. In
this example scenario, transmitter A has improved the cov-
erage score by 30%, resulting in a scenario score of 30%
coverage.

3. The second base station can only be placed within the
shaded area of the ring surrounding transmitter A. A
minimum distance limit is set in order to prevent over-
crowding of transmitters during placement thus reducing
the amount of iterations of correcting these overlapping
locations. The maximum distance limit is set based on
the distance where transmission at the set frequency is no
longer feasible due to attenuation in free space without ac-
counting for path loss due to obstruction and diffraction.
This is set in order to reduce the number of base stations
that qualify to be placed as the link to transmitter A. Our
possible transmitter locations are B, C, D, and E.

4. In consideration that we are optimizing for mmWave pic-
ocells with expectations of them performing backhaul,
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FIGURE 3. Placement method per iteration.

LoS is required between base stations, disqualifying trans-
mitters B, E. In cases where backhaul is not performed,
this limitation can be removed, allowing for optimization
for maximum coverage without regard to LoS in between
base stations. Frequencies that are LoS-dependent such as
mmWave have a significantly higher weight to LoS avail-
ability leading to each transmitter requiring a LoS of at
least one other base station.

5. Our machine learning based path loss prediction model
predicts the path loss values and coverage for transmitter
locations C and D where if transmitter D is placed, an im-
provement of 3% is observed whereas if transmitted C is
placed, an improvement of 6% is observed. Thus, trans-
mitter C is placed, and the current scenario map is updated
to have transmitters in locations A and C with a coverage
score of 36%. In every base station addition, a compari-
son in path loss values in the already covered areas is per-
formed in order to determine if amore recently placed base
station can have better coverage than previously optimized
areas. An example would be the placement of transmit-
ter F, which not only covers the area that transmitter C
covered, but also improves the overall coverage score by
an extra 2%, yielding a total coverage score of 38% in-
stead of 36%. Transmitter C will be removed and replaced
with transmitter F. This results in a constantly optimizing
model removing current base stations if they are redundant
and have worse path loss quality in the area.

6. Steps 2 to 5 are repeated using the current transmitters
list which contains Transmitters A and C. New possible
transmitter locations are spawned surrounding the current
transmitters list and used in Steps 2 to 5. During this pro-
cess, the overall base station coverage score is updated ac-
cording to the current transmitters list until the required

coverage score is reached. This results in a base station
map where the number of base stations is computed and
optimized with every iteration.

4. RESULTS AND DISCUSSION

As can be seen in the left-hand side of Fig. 2, a scenario map
with the rough size of 0.42 km2 only uses 8 base stations at the
frequency of 60GHz in order to reach the minimum acceptable
coverage of 80%. Within this scenario, our model’s base sta-
tion counts for 28GHz and 60GHz are similar due to similar
transmission properties that are heavily dependent on LoS.
Our coverage score in our entire scenario yielded a coverage

of 74.08% of the entire map where the MAPL for receivers is
defined as 187 dB and an MAPL of 130 dB for base station to
base station links. This, however, includes areas which are un-
reachable because they are enclosed by walls higher than the
specified transmitter height such as transmitter E as shown in
Fig. 3. These areas cannot be reached by LoS and nLoS sig-
nals from any transmitters surrounding the area without adding
extra parameters such as antennas or base stations above the
building height. Thus, we remove these areas from our calcu-
lations as they are deemed impossible to reach, resulting in a
coverage score of 85.4% across the entire scenario map, which
is remarkable. Furthermore, the model will continue to attempt
optimizing the base station locations until the minimum cover-
age target is reached which has been defined as 70%. A higher
coverage target such as 80% and 90% will incur costs such as
longer computation time and increased base station count.
Our results corresponding to coverage score and base station

count are as in Table 2 where the maximum receiver node count
is 1524 for the entire scenario.
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TABLE 2. Base station improvement per iteration.

Base
Station
Index

Tx-specific
Average

Path Loss (dB)

Rx Nodes
Covered

(<= 187 dB)

Newly
Covered
Nodes

Overall
Nodes
Covere

Initial
Coverage
Score (%)

Actual
Coverage
Score (%)

0 83.50 515 515 515 33.79% 38.96%
1 97.85 313 88 603 39.57% 45.63%
2 88.52 423 59 662 43.44% 50.09%
3 70.67 367 88 750 49.21% 56.75%
4 77.97 213 104 854 56.04% 64.63%
5 85.46 429 24 878 57.61% 66.44%
6 102.69 663 51 929 60.96% 70.30%
7 75.52 443 75 1004 65.88% 75.97%
8 79.14 300 101 1105 72.51% 83.62%
9 89.37 16 16 1121 73.56% 84.83%
10 86.93 8 8 1129 74.08% 85.43%

In Table 2, we show the improvements after each base sta-
tion addition. Our model begins with 0 base stations, and Base
Station with Index 0 is added. Base Station 0 has 515 receiver
locations that have path loss values below theMAPL of 187 dB.
This improves our coverage score from 0.00% to 33.79%. Ev-
ery base station addition will only occur if it improves the cov-
erage % or if it improves the quality of coverage in the area, de-
picted by their average path loss value if the number of newly
covered areas is low compared to the minimum improvement
count set by the user. In this scenario, we are only looking for
the minimum number of base stations to cover 70% of the sce-
nario, and the optimization can stop at Base Station 8. If only
60% coverage is required, the optimization process will stop
after placing Base Station 6. As we can see, as the required
coverage % increases, fewer new nodes are covered as shown
in Base Stations 9 and 10. We can also note that after each Base
Station addition, it does not increase the overall covered nodes
similar to the number of receiver locations that the base station
covers. This is due to the base stations improving the path loss
of previously covered receiver nodes. An example is Base Sta-
tion 1 covering 313 nodes out of 1524 in the scenario map, but
only 88 are new nodes, and 225 are improvement to already
current nodes. This optimization will continuously occur, and
if an early base station is considered redundant, and new base
stations can have better coverage and better path loss average,
it will replace the old base station.
Furthermore, the overall coverage score also includes ar-

eas which are unreachable as explained in Section 2. In this
scenario, 203 receiver nodes are not reachable at 28GHz and
60GHz due to the areas being surrounded by buildings such
as courtyards similar to the location of transmitter F in Fig. 3.
Thus, we can remove 203 nodes from our maximum node
count, resulting in our actual coverage scores where 8 base sta-
tions fulfill our 80% coverage requirement. The optimization
model can run perpetually, whilst trying to improve the base
station count; however, improvements to coverage score will be
increasingly marginal as the number of base stations increases.

In comparison to the results of Binary Integer Linear Pro-
gramming in a previous literature where 16 base stations are
deployed in an area of 1 km2 [13] with a coverage score of
90%, our model places 8 base stations in an area of 0.42 km2

with a coverage score of 85.4%. As different cities have dif-
ferent architectural designs, path loss propagation in the area
may vary resulting in slightly differing base station numbers.
This shows that our model is comparable to previously used
models [13, 16]. However, our model has a more dynamic path
loss prediction method not limited to LoS situations with an in-
creased accuracy to nLoS situations alongside the capabilities
for base stations to be placed at any locations not limited to
building walls which allows for greater versatility in potential
base station locations.
In addition, we recorded a speed of 4ms per path loss cal-

culation assuming a similar performance computer specified
in [4]. Our model when being performed using machine learn-
ing path loss models has theoretically fastest speed of 90 sec-
onds if we assume no overhead on processing. Comparing this
to ray-tracing model, it would take significantly longer at 76
minutes if the timing is scaled linearly. However, ray-tracing
path loss model does not scale linearly and only increases in
difficulty as the distance between transmitter and receiver in-
creases in nLoS scenarios. Thus, we can expect a significantly
longer time to reach this level of optimization if a ray-tracing
path loss model is used.

5. CONCLUSION
In conclusion, machine learning can significantly improve the
speed of optimization process of base station placement when
it is paired with a machine learning-based path loss model sys-
tem. When being paired with our path loss model, a single
transmitter-receiver pair’s path loss value can be predicted in
4m/s. Empirical methods can perform this in the scale of
nanoseconds but not at the same level of accuracy. Ray-tracing,
on the other hand, requires a longer time that a full city pre-
diction becomes unfeasible without the help of powerful com-
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puter machines. The biggest advantage of our placement sys-
tem is that the prediction times are static and do not scale. For
extremely simple cases, this method might have a longer run-
time than any other method due to preprocessing overheads;
however, as the size of prediction area increases, our method
will have a lower prediction time. For future work, further im-
provement to the placement and minimization of base station
count can be done by tuning the optimization model and pos-
sible placement positions such as dynamic antenna height pa-
rameters where the antenna height can be optimally determined
by the model in order to circumvent issues such as unreachable
areas described in Section 4 and Fig. 3.
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