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ABSTRACT: The rate at which powerline communication (PLC) impulsive noise arrives and lasts in the channel determines the severity of
signal degradation, with impulsive noise bursts capable of causing complete signal loss. Consequently, the PLC impulsive noise requires
an appropriate description to enhance the reliability and effective utilisation of the PLC channel. This paper employs the queuing theory
approach to analyse andmodel the PLC impulsive noise inter-arrival and service time distribution, where the impulsive noise is categorised
into single-impulse noise events and burst-impulse noise events. The Erlang-k distribution is proposed for modelling both the inter-arrival
and service time distributions for the PLC impulsive noise with the process viewed as an infinite queue with a single server. The impulse
noise events are assumed to traverse k stages before entering the PLC network and also pass through k stages before leaving the PLC
network, with each of the stages following an exponential distribution. The proposed models are then validated through measurements
from different indoor environments and compared to the exponential distribution model, commonly employed in modelling inter-arrival
and duration of PLC impulsive noise. The Ek/Ek/1 queue model is determined to adequately model the burst-impulse noise events.
In regards to the single-impulse noise events, the exponential distribution is observed to provide a suitable fit for the inter-arrival time
distribution. The occurrence of PLC impulsive noise events is also found to achieve a state of equilibrium for all the measurement data
under study.

1. INTRODUCTION

PLC impulsive noise has been the subject of sustained re-
search through the years, yet still, a standard unified model

that describes its characteristics has not been established. This
is due to the adverse effect of this erratic noise on the trans-
mitted signal that may even lead to burst errors resulting in a
complete signal loss. As a result, significant efforts are still
in progress to fully explain PLC impulsive noise character-
istics so as to design mitigation strategies that will improve
the electrical network’s reliability and efficiency. Despite the
harsh channel characteristics exhibited by the PLC network,
PLC technology has been able to attain high data rates with
speeds up to 2Gbps [1]. Additionally, the PLC network pro-
vides a cost-effective yet ubiquitous infrastructure as compared
to other data transmission technologies such as optical fibre and
Ethernet. Moreover, with the increasing demand for communi-
cation in recent years, PLC provides an attractive solution to
bridge this gap. Therefore, to realise the benefits of PLC tech-
nology in data transmission, its reliability and efficiency must
be addressed.
A significant contribution to the use of this cost-effective

and vast infrastructure is the development of statistical mod-
els that fully describe the impulsive noise characteristics of the
PLC network. Due to the intricate nature of the electrical net-
work, most of the PLC noise models proposed are stochastic,
where measurements are first performed, and then statistical
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models are developed to fit the data. Accordingly, extensive
measurements have been carried out [2–8] and still need to be
carried out in order to develop models that perform well and
are consistent for different measurement data. The PLC impul-
sive noise model can be broadly categorized into frequency do-
main models, which capture the average noise spectrum, and
time domain models, which capture the impulse amplitude,
inter-arrival time, and duration, depending on the measurement
method employed. The majority of the proposed models are
based on the time domain, which can be further classified as
those that focus on the amplitude distribution of the PLC impul-
sive noise and those that model the temporal correlation of the
impulsive noise. Among the predominantly usedmodels for de-
scribing the amplitude distribution are those based on Gaussian
mixtures, such as the Bernoulli-Gaussian and the Middleton
Class A models [9–12], with recent models in [13–18], apply-
ing machine learning to develop models that adapt to measure-
ment. The Bernoulli-Gaussian model is limited to the impul-
sive and impulse-free states where the probability of either of
the states occurring follows a Bernoulli distribution. The Mid-
dleton Class A model improves the Bernoulli-Gaussian model
by assuming a finite number of states that occur according to
the Poisson distribution. However, it was determined that the
Middleton Class Amodel does not accurately describe PLC im-
pulsive noise because it was designed for man-made impulse
interference [3]. As for the model in [13], the amplitude of the
PLC noise is assumed to be a superposition of various Gaus-
sian mixture components, and the mixture weights are directly
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derived from the data through unsupervised learning while the
generative adversarial networks are employed in [14]. The oc-
currence of bursts in PLC impulsive noise implies that there is
a correlation between the past and future PLC events. As such,
various PLC impulsive noise models have been developed to
describe the temporal correlation. In [8], the multi-fractal anal-
ysis is investigated where the PLC impulsive noise is found
to exhibit long-range dependence and multi-fractal scaling be-
haviour with varying strengths, based on the measurement lo-
cation. The stochastic nature of the time-varying PLC noise
process is also studied in [19, 20] and is observed to exhibit
volatility clustering and seasonal behaviour.
The Markov chain model has been widely utilised in

analysing the PLC impulsive noise temporal correlation.
In [21], the exponential distribution is employed in modelling
the impulse noise inter-arrival time and service time, where the
Markov chain with two states is employed. From the impulsive
noise measurements conducted in the PLC communication
networks, it has been established that the durations and
inter-arrival time of the impulses result from a superposition
of a number of exponential distributions [2]. As such, further
analysis is performed in [2, 5], where a partitioned Markov
chain approach is employed to model the impulsive noise
duration and inter-arrival time distribution. In this case, the
impulse noise is divided into two groups, impulse-free and
impulsive states, each group comprising transition states that
are exponentially distributed. To find the elements of the
transition matrices, curve fitting techniques are employed. The
complementary probability distributions of the impulsive and
impulse-free times are then determined as the sum of weighted
exponentials. The Hidden Markov model was utilised to
describe PLC impulsive noise in [22]. However, since the
state transition could not be observed directly, a different set
of stochastic processes was used to determine the impulse
noise inter-arrival time and duration in the PLC network. To
represent the burst events present in the PLC noise, a Markov
Middleton model was employed in [10, 22]. In the models
discussed, the transitional probabilities for the various states
are not observable, and the limiting distributions were not
taken into consideration. As such, the connection between the
Markov chain and the PLC statistical properties is investigated
in [6]. The methods discussed in [5, 10, 21–23] also do not
take into account the type of noise whether single-impulse
or burst-impulse. Further, the duration and inter-arrival
time distribution for the various impulsive noise events are
modelled in [6], where the log-normal, Gamma, and Weibull
distributions are proposed for the duration, and exponential
distribution is proposed for the inter-arrival times.
In this work, an alternative method based on the queueing

theory approach is proposed for modelling the inter-arrival and
service time distributions of impulsive noise in the PLC net-
work. The queueing theory approach fully describes the PLC
impulsive noise time series characteristics including the in-
terconnection between the PLC noise characteristics and the
Markov chain. The Erlang-k distribution is employed in this
work in modelling both the service and inter-arrival time char-
acteristics for single-impulse (SI) and burst-impulse (BI) noise
events. The appropriate number of stages corresponding to

the number of exponentials is determined from the mean and
variance of the measured data. As such, the model adapts to
the measurement data under study such that depending on the
degree of variation of the time domain characteristic, a corre-
sponding number of exponentials that best suit the data is de-
fined. The queuing theory model proposed also enables the
evaluation of the steady-state distribution of the impulse noise
events through the utilisation of the traffic intensity of the PLC
queueing system. The next sections are organised as follows.
A detailed overview of the previous research on the PLC noise
and a brief introduction of the PLC queueing system is given
in Section 2. The procedure and equipment used for data ac-
quisition are discussed in Section 3, while Section 4 describes
in detail the proposed queue models for the impulsive noise.
The results for the proposed models are validated through mea-
surements discussed in Section 5 while Section 6 concludes the
study.

2. PREVIOUS WORK
PLC noise in indoor networks can be broadly categorised
as background noise, narrowband interference, and impulsive
noise. Background noise emanates from a combination of sev-
eral low-power noise sources and thereby characterised by a
comparatively low power spectral density (PSD) that fluctu-
ates with frequency. It occurs for long periods of time, from
minutes to even hours. Narrowband interference, on the other
hand, is present across virtually the entire frequency spectrum
and is caused by broadcast transmitters in the short and medium
wave frequency bands. This noise is characterised by sinu-
soidal signals with modulated amplitudes [5, 7, 24]. PLC im-
pulsive noise is further classified as either periodic or asyn-
chronous. Periodic impulsive noise with a repetition rate be-
tween 50KHz and 200KHz is primarily produced by switch-
ing power supplies, whereas impulses with a repetition rate of
50Hz or 100Hz are produced by power supplies that operate
synchronously with the mains cycle. Thus, the PSD of this
type of impulsive noise decreases with frequency and occurs
for a short duration [5]. The asynchronous impulsive noise is
characterised by a high PSD that can reach 50 dB above the
background noise and also occurs sporadically and in bursts.
Switching transients in the PLC network are the primary source
of this troublesome noise [3, 5, 7].
Different models have been proposed for the various noise

categories. Nakagami and Rayleigh distributions have been
proposed in [25], for modelling of the background noise. Ex-
tensive noise measurements were carried out on narrowband
interference in low-voltage indoor networks in [26, 27] with a
3D Markov chain model proposed in [28]. As for the periodic
impulsive noise, [29] describes the noise as a cyclostationary
Gaussian process given by the combination of simple and typ-
ical noise waveforms, whereas in [30], the cyclostationary be-
haviour of the periodic impulsive noise is observed to exhibit
self-similarity. The spectral density of background noise in-
creases rapidly at low frequencies below 1MHz, contrary to
the attenuation of the transmitted signal, which decreases as
frequency increases. As a result, to limit the effect of back-
ground noise, a trade-off between path loss and background
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noise in the transmission frequency band must be identified.
In PLC, this trade-off is determined to be at a frequency range
of 1MHz–20MHz [7]. Transmission schemes such as spread
spectrum techniques, discrete modulation tone, and orthogonal
frequency division multiplexing can help cope with the distur-
bance caused by narrowband interference [7, 31]. As for the
periodic impulsive noise, modelling of the service and inter-
arrival time is straightforward due to its deterministic nature [2].
On the contrary, the asynchronous impulsive noise is the most
difficult to describe due to the random nature of the time do-
main characteristics. The type of impulsive noise determines
the extent of distortion of the signal transmitted. Thus, impul-
sive noise in the electrical network is commonly classified as
either a single-impulse or burst-impulse noise event depend-
ing on the duration, frequency content and shape of the im-
pulse. However, no restriction is placed on the shape of the
pulse [2, 7, 23]. The SI noise events are often similar in shape
to a damped sinusoid, while a BI noise event takes the form
of superimposed damped sinusoids [2, 6]. Extensive research
has been conducted on the amplitude distribution of the asyn-
chronous impulsive noise in the previous works [13, 17], hence,
the primary focus of this study is to model the impulsive noise
events service and inter-arrival time distribution.
Impulsive noise levels vary based on the electrical devices

plugged into the PLC network. As a result, each indoor envi-
ronment will display distinct PLC impulsive noise behaviour.
The impulsive noise sources on the PLC channel are numerous
and can thus be deemed infinite due to the numerous electrical
devices that have been built and are still under development.
The demand for electrical power is endless as there are elec-
trical devices that require power to operate, and must therefore
be fully plugged in for extended periods. Furthermore, while
some of the PLC network’s electrical devices are unplugged,
others are connected. As a result, the PLC impulsive noise
can be viewed as an infinite queue. The time series analysis
of the occurrence and duration of the impulsive noise events
can be fully described as a queueing system. The main param-
eters of a queueing system are the inter-arrival and service time
distributions, the number of servers, system capacity, the size
of sources that generate impulsive noise, and queue discipline.
These characteristics can be represented by the Kendall nota-
tion as X/Y /Z/D/E/F . If the queue discipline is first-in-
first-out, and the system capacity and size of the sources are
infinite, as the case with PLC, the last three terms are omitted
as they are automatically implied. Consequently, a PLC queue-
ing system can be represented as an X/Y /Z queue, denoting
the inter-arrival time, service time, and the number of servers,
respectively.
Significant research with regard to the PLC impulsive noise

service and inter-arrival time explores the implementation of
the exponential distribution due to the random behaviour ex-
hibited by this noise [2, 6, 21, 32–34]. Preliminary results on
the implementation of the queueing approach of PLC impulsive
noise are discussed in [32] and also employ the exponential dis-
tribution, where the BI noise events are observed to occur as the
overlap of SI noise events. The M/M/1 queue for the inter-
arrival times and theM/M/1 andM/Ek/1 queue models for
the service time distribution were examined. The analysis of

steady-state characteristics is investigated in [34], where fur-
ther research on the PLC queueing system is studied. The PLC
impulsive noise events are observed to achieve a steady-state,
and theM/M/1 queue parameters at steady state were deter-
mined. However, it has also been observed to be insufficient
in approximating the service and inter-arrival time characteris-
tics of impulsive noise of different PLC measurement data [2].
Therefore, this work proposes an Erlang-k model, which offers
greater modelling flexibility for the data under consideration,
while taking advantage of the exponential distribution proper-
ties. Accordingly, the standard deviation for an Erlang-kmodel
ranges between 0 and 1/ku, such that when the value of k is 1,
it reduces to the exponential distribution, and when k is ∞, it
becomes a degenerate distribution. As a result, data with a high
variation will have a lower number of stages (exponential dis-
tributions) than data with a less variation, and as k → 1 repre-
sents a high fluctuation and as k → ∞, the change in the service
time or inter-arrival time is constant. The PLC impulsive noise
measurements in this work are carried out at the receiver using
a digital storage oscilloscope, hence, the number of servers in
this work is limited to one.

3. MEASUREMENT SETUP
Presently, stochastic models are employed in modelling the
PLC impulsive noise characteristics which employ the top-
down approach. As a result, extensive measurement campaigns
need to be performed to develop statistical models that provide
an accurate description of the actual behaviour of the PLC im-
pulsive noise. This work, like other stochastic models, employs
a top-down method in which the parameters for the proposed
models are obtained from measurement data for various low-
voltage indoor locations. Fig. 1 shows the setup used to perform
PLC noise measurements in the 1–30MHz frequency band.

Electrical Network

Coupler Oscilloscope Computer

FIGURE 1. Measurement set-up.

In order to filter out low-voltage frequency signals and pro-
tect the oscilloscope from damage from the high-voltage mains
supply, a high-pass filter coupler was used as an interface be-
tween the oscilloscope and electrical network. This is achieved
by capacitors, a 1 : 1 broadband transformer and Zener diodes
present in the coupling circuitry. Galvanic isolation is provided
by the transformer, while Zener diodesmaintain the output volt-
age at 5 v to protect the equipment from power surges. The se-
ries capacitor on the other hand prevents the transformer from
saturation and filters out the low-frequency signals. It has been
established that the passive filter components present in cou-
plers also generate a ringing effect that distorts the time do-

159 www.jpier.org



Chelangat and Afullo

(a) (b)

(c)

FIGURE 2. Sample PLC Noise Measurements. (a) Second-year Laboratory. (b) Postgraduate Office. (c) Computer Laboratory.

main characteristics of the impulse signal. This is due to the
excitation of resonance points as the PLC noise traverses the
coupling circuit [35]. In this work, the PLC noise is measured
at the receiver, and thus the impact of the coupling circuit is
not taken to consideration. For each of the measurements car-
ried out, Rigol DS2202A was used to perform measurements,
where the sampling rate was configured to 1Giga samples/s,
measuring 14 million samples with a window length of 14ms.
The computer is then used for analysis and storage of the mea-
sured data. The Second-year Laboratory (SYL), Post-graduate
office (PGO), and Computer Laboratory (CL) at the Univer-
sity of KwaZulu-Natal are the locations for measurement in this
study. Except for the various loading conditions, these loca-
tions serve as a representation of the actual PLC channels.
The loading conditions for the SYL include four air con-

ditioners, thirty-six fluorescent lamps, and forty-two work-
stations each comprising the following: an electronic trainer
board, a function generator, a simple 10MHz oscilloscope, a
DC power supply, a digital multimeter, and a board of pas-
sive components. The room dimension for the SYL is approxi-
mately 26m by 13m. The PGO is connected to the same elec-

trical network as the other offices in the building with a dimen-
sion of approximately 10.8m by 4.8m. The PGO consists of
two air conditioners, eight fluorescent lights, one heavy duty
printer, and eight workstations — each consisting of either a
desktop computer with its screen or a laptop computer and a
phone charger. The CL, with a dimension of 16m by 12m, has
the following loads connected to the PLC line: three air condi-
tioners, twenty fluorescent lights, and sixty desktop computers
with computer screens. The measurements were conducted as
the students carried out their practicals.
Sample measurement data from the SYL, PGO, and CL are

depicted in Figs. 2(a), 2(b), and 2(c), respectively. The PLC
noise data for the various locations is observed to exhibit dis-
tinct time domain characteristics; in comparison with CL, the
amplitudes of PLC noise are higher in the PGO as well as SYL.
This can be attributed to devices connected to the PLC network,
such as electronic trainer boards and electric kettles, which are
composed of silicon-controlled rectifiers and thermostats that
generate high impulsive noise levels [3, 4, 36]. Moreover, for
each sample measurement at each location, the impulsive noise
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occurrence varies. Therefore, developing a statistical model to
describe this unpredictable behaviour is a daunting task.

4. PROPOSED QUEUEING MODELS FOR PLC
Let the PLC impulse noise events arrive at time instants tm
(m = 0, 1, 2, . . .) and that the service time for themth impulse
noise event be sm (m = 1, 2, . . .). Assuming that the inter-
arrival and service times are independently and identically dis-
tributed (i.i.d) according to the Erlang-k distribution given by
(1) and (2) respectively as [37, 38]:

a(m) =
kϕ(kϕm)k−1 exp(−kϕm)

(k − 1)!
(1)

s(m) =
kψ(kψm)k−1 exp(−kψm)

(k − 1)!
(2)

whosemeans and variance for the inter-arrival times are defined
by [37, 38]:

E[M ] =
1

ϕ
(3)

V ar[M ] =
1

kϕ2
(4)

The service time means and variance are similarly defined as in
(3) and (4), with the ϕ replaced by ψ. 1

ϕ and 1
ψ thus denote the

mean arrival time and mean service time of the impulse noise
events, respectively. k is limited to be a positive integer rang-
ing from 1 ≤ k ≤ ∞ and represents the degree of variation
of the data to the mean. From (1) and (2), it can be shown that
when k = 1, the Erlang distribution is reduced to an exponen-
tial distribution given by [32, 37]:

a(m) = ϕ exp(−ϕm), m ≥ 0 (5)
s(m) = ψ exp(−ψm), m ≥ 1 (6)

for the inter-arrival and service time distribution respectively.
As k → ∞ the variance → zero, the Erlang-k distribution be-
comes deterministic. Accordingly, the Erlang-k distribution
becomes more symmetrical and more closely centred around
its mean as k increases. Since the Erlang distribution is com-
posed of k i.i.d exponential distributions, each having amean of
1
kϕ for inter-arrival times or 1

kψ for service times, k can also be
considered as the number of exponentials in the Erlang distribu-
tion [34, 37]. Due to its relationship with the exponential distri-
bution, the Erlang model is more flexible in fitting the distribu-
tion to actual data than the exponential distribution and is thus
beneficial in queueing analysis. Four queue models can there-
fore be derived from the Erlang-k distribution for modelling
the PLC impulsive noise events, namely M/M/1, M/Ek/1,
Ej/M/1, and Ej/Ek/1 queues due to their memoryless prop-
erty and are considered in this work.
In order to ascertain that the proposed queue models are

tractable, it is of paramount importance to determine if a steady
state exists for the PLC impulsive-noise events under study.

To achieve this, the traffic intensity is determined and defined
by [34, 37, 38]:

θ =
ϕ

ψ
(7)

If θ < 1, then a steady state exists where the occurrence of an
impulse noise event at a future time tm as tm → ∞ is inde-
pendent of the original state of the system. Consequently, the
arrival or service process of the impulse noise events can re-
turn to any state with a probability of 1 with a mean return time
< ∞. θ = 1 indicates that the arrival and service process of
the PLC impulsive noise events returns to any state with a prob-
ability of 1 both with a mean return time of ∞. Accordingly,
the PLC system queue will increase over time, and the queue
will grow indefinitely. For θ > 1, the probability of the arrival
and service process returning to the finite states is zero for the
impulse-noise events, resulting in an infinite queue [34, 37, 38].

4.1. M/M/1 Queue
For the M/M/1 queue, the exponential distribution is em-
ployed in modelling the impulse noise events inter-arrival and
service time distribution in the PLC network. Equations (5) and
(6), respectively, define the density distribution (PDF) of the
inter-arrival and service times. The birth-death process can then
be used to model the steady-state probabilities of theM/M/1
queue as in [34]. As such, the rate at which the impulse noise
events arrive and depart at the PLC network is equal as t→ ∞.

4.2. M/Ek/1 Queue
The arrival process of the PLC impulse noise events are as-
sumed to follow an exponential distribution in the M/Ek/1
model, whereas the impulse noise events are considered to pass
through k stages each with a rate kψ before departing the PLC
network, and hence the service time follows the Erlang-k dis-
tribution. It follows that if there are m impulsive noise events
in the system, and the impulsive noise currently at the receiver
is in stage j(j = 1, 2, . . . , k) where k is the initial stage of ser-
vice and j = 1 the final stage of service such that when stage 1
is completed, the impulse noise event leaves the electrical net-
work, then state of the PLC system can be completely described
by (m, j). Thus, for a system in statem, j, there arem− 1 im-
pulse noise events in the queue, each requiring k stages, as well
as an impulse noise event at the receiver having j additional
stages yet to be completed. Therefore, the total count for the
number of stages in the PLC system will be (m− 1)k+ j. Ac-
cordingly, the state of the service process can be regarded as
Markovian, and to derive the queue parameters, the knowledge
of the number of impulse noise events and the current stage of
service is sufficient. Consequently, (5) and (2), respectively,
give the density functions of the inter-arrival time and service
times.

4.3. Ej/M/1 Queue
The assumption in this model is that the impulsive noise
event passes through k stages prior to entering the PLC
network, with each stage having a mean of 1

kϕ , while the
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FIGURE 3. Sample single-impulse noise event. FIGURE 4. Sample burst-impulse noise event.

service time distribution follows a Poisson process. This
model can be similarly described as a bivariate Markov
process (m, j), with the first variable representing the number
of impulse noise events in the PLC system and the second
variable representing the number of completed stages as
{(0, 0); (1, 1), (1, 2), . . . , (1, k); (2, 1), (2, 2), . . . , (2, k); . . . .}
[37]. In this case, m represents the number of PLC impulsive
noise events, each with k completed stages, and j represents
the number of completed stages corresponding to the arrival of
the next impulse noise event. The inter-arrival time PDF is thus
obtained from (1), whereas (6) gives the density distribution of
the service time.

4.4. Ej/Ek1 Queue
The arrival and service process in this queue involves k stages,
in which the PLC impulsive noise events traverse k stages be-
fore entering the PLC network and another k stages before leav-
ing the PLC system. As a result, the arrival process is analogous
to the Ej/M/1 queue model, while the service time is similar
to theM/Ek/1 queuemodel. The inter-arrival and service time
distributions are subsequently determined using (1) and (2) re-
spectively.

5. RESULTS AND DISCUSSION
The impulsive noise measurement data in Section 3 was cat-
egorised into SI and BI noise events, since their effect on the
transmitted signal varies, with BI noise events resulting in more
severe effects. A single impulse noise event is made up of one
or two noise impulses while for the PLC noise to be considered
as a burst, it should comprise the occurrence of at least 3 single
impulse noise events occurring consecutively [2, 32]. Figs. 3
and 4 show samples of a SI and BI noise event derived from
the SYL noise measurement data in Fig. 2(a).
In order to determine the density distribution of the inter-

arrival and service time, the parameters of the model first need
to be determined. These parameters also provide guidance as to
which density distribution is applicable to the data under con-

sideration. Thus, the queue parameters, for the exponential and
Erlang-k distributions, are summarised in Table 1. It is ob-
served that for SI noise events, the number of i.i.d exponential
distributions (k) in the Erlang-k model is one. As such, the ex-
ponential distribution is selected to model the impulsive noise
inter-arrival times in all the data under consideration. This in-
dicates that there is a high variation in the inter-arrival times
and can be attributed to the burst impulse noise events that last
for longer durations with varying service times. The service
time distribution of the SI noise events can be modelled using
both the exponential and Erlang-k distributions in all locations
except for the CL, where only the exponential distribution is ap-
plicable. As for the burst impulse noise events service time and
inter-arrival time distributions, both the Erlang-k and exponen-
tial distributions are applicable in the modelling of the data in
the various locations. It is again observed from Table 1 that the
mean service time in all the sample data under consideration is
less than the mean inter-arrival time. Consequently, the PLC
impulsive noise events can achieve a steady-state equilibrium.
The proposed models in Section 4 were then validated

through the sample PLC impulsive noise measurement data
in Section 3. It is observed from Fig. 5 that the SI noise
events inter-arrival times are adequately modelled using the
exponential distribution while for the BI events, the Erlang-k
distribution provides a better fit. This can be attributed to the
fact that the burst events last for longer durations that are also
random and for a single-impulse event following a burst, will
have a high variation. As regards to the SI noise events service
time distribution, there is less variation, and thus, the Erlang
distribution provides a better fit as shown in Figs. 6(a) and
6(b), though the number of exponential distributions needs
for each data sample is different. However, the exponential
distribution provides a suitable fit to the CL measurement data
as shown in Fig. 6(c). The BI noise events have been found
to comprise the largest percentage of the impulsive noise with
up to 80% in the indoor PLC networks [6]. Although the BI
noise events inter-arrival time varies, the degree of variation is
not as significant as that of the SI noise events. Consequently,
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TABLE 1. Queue model parameters.

Single-impulse Events
Inter-arrival time Service time

Second-year Laboratory
Mean 0.3563 0.119

Variance 0.3208 0.0088
K 1 2

Postgraduate Office
Mean 0.4943 0.1376

Variance 0.3418 0.0054
K 1 4

Computer Laboratory
Mean 1.0154 0.1471

Variance 1.7583 0.0157
K 1 1

Burst-impulse Events
Inter-arrival time Service time

Second-year Laboratory
Mean 0.995 0.8538

Variance 0.3227 0.3236
K 3 2

Postgraduate Office
Mean 1.0085 0.5893

Variance 0.4705 5.1984
K 2 2

Computer Laboratory
Mean 0.6917 0.6005

Variance 0.0886 0.0488
K 5 7

(a) (b)

(c)

FIGURE 5. Single-impulse noise events inter-arrival time distribution. (a) Second-year Laboratory. (b) Postgraduate Office. (c) Computer Laboratory.
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TABLE 2. Error analysis.

Single-impulse Events

Inter-
arrival time

Service
time

Second-year Laboratory

RMSE Erlang_k x 0.7688
Exponential 0.4248 1.0459

χ2 Erlang_k x 2.7272
Exponential 1.074 5.7712

SL 15.5073 14.0671

Postgraduate office

RMSE Erlang_k x 0.7185
Exponential 0.3267 1.8717

χ2 Erlang_k x 1.2508
Exponential 0.4833 10.1326

SL 15.5073 14.0671

Computer Laboratory

RMSE Erlang_k x x
Exponential 0.2347 0.708

χ2 Erlang_k x x
Exponential 0.6363 2.8478

SL 15.5073 14.0671

Burst-impulse Events

Inter-arrival
time

Service
time

Second-year Laboratory

RMSE Erlang_k 0.226 0.1293
Exponential 0.2679 0.1538

χ2 Erlang_k 0.4412 0.568
Exponential 0.5237 0.7245

SL 15.5073 14.0671

Postgraduate office

RMSE Erlang_k 0.2517 0.2322
Exponential 0.291 0.2681

χ2 Erlang_k 0.5713 0.6398
Exponential 0.604 1.1544

SL 15.5073 14.0671

Computer Laboratory

RMSE Erlang_k 0.3625 0.4176
Exponential 0.4431 0.6412

χ2 Erlang_k 0.4301 1.4386
Exponential 0.6875 4.8711

SL 15.5073 14.0671

(a) (b)

(c)

FIGURE 6. Single-impulse noise events service time distribution. (a) Second-year Laboratory. (b) Postgraduate Office. (c) Computer Laboratory.
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(a) (b)

(c)

FIGURE 7. Burst-impulse noise events inter-arrival time distribution. (a) Second-year Laboratory. (b) Postgraduate Office. (c) Computer Laboratory.

in all the various locations, the Erlang-k distribution may be
employed to model the inter-arrival times and is observed
to adequately capture the measured data as compared to the
exponential distribution with the value of k ranging from 2
to 5 as shown in Figs. 7. Moreover, the occurrence of the
BI noise events are observed to have a higher variance in the
SYL and PGO in Figs. 7(a) and 7(b), which have higher noise
levels than the CL where k = 5 for the Erlang distribution as
depicted in Fig. 7(c). Fig. 8 depicts the burst impulse noise
event service time distribution in various indoor locations. The
burst impulse noise events have a considerable variation for
the SYL and PGO, with the Erlang-2 distribution observed
to adequately fit to the measurement data. The exponential
distribution is also observed to provide an adequate fit to the
measurement data as depicted in Figs. 8(a) and 8(b). This is
due to the high noise levels in these locations, which cause
greater fluctuation. The Erlang-k distribution, on the other
hand, provides a suitable fit where the measured distribution is
found to approach a normal distribution in the CL where the
noise levels are lower.

5.1. Error Analysis and Model Validation
Error analysis was then performed to determine how well the
proposed models fit the data where the root mean square error
(RMSE) and χ2 statistic were employed to determine the good-
ness of fit of the proposed queue models. Equations (8) and (9)
give the formulations for the RMSE and χ2 statistic, respec-
tively, where a 5% threshold of significance level (SL) was set
for the χ2 statistic.

RMSE =

√∑Q
q=1(xa − xp)2

Q
(8)

χ2 =

Q∑
q=1

(xa − xp)
2

xp
(9)

where xp and xa are the proposed and measured model val-
ues, respectively, and Q is the total number of samples. Ta-
ble 2 gives a summary of the proposed models’ performance.
The Erlang-k and exponential distributions proposed for mod-
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(a) (b)

(c)

FIGURE 8. Burst-impulse noise events service time distribution. (a) Second-year Laboratory. (b) Postgraduate Office. (c) Computer Laboratory.

elling the variousmeasurement data under consideration are de-
termined to be statistically significant. The Erlang-k distribu-
tion is found to provide better accuracy as shown by the lower
RMSE and χ2 values than the exponential distribution. This
is due to the flexibility of the Erlang-k model where the value
of k varies depending on the measurement data under consid-
eration. The results of the model parameters and performance
analysis indicate that the SI noise events for the SYL, PGO, and
CL can be effectively modelled using theM/E2/1,M/E4/1,
andM/M/1 queue models, respectively. Accordingly, the ex-
ponential distribution adequately models SI noise events inter-
arrival times. As regards to the BI noise events, the E3/E2/1,
E2/E2/1, andE5/E7/1 queuemodels are determined to be the
most effective models for the SYL, PGO, and CL, respectively.
Therefore, the Erlang-k distribution is observed to adequately
model the BI noise events service time and inter-arrival times.

6. CONCLUSION
The time series characteristics of the PLC impulsive noise
events have been examined, and the queueing theory approach
has been employed to model their characteristics in this work.

Depending on the variability of the data under consideration,
appropriate parameters have been derived and the applicable
queue models employed to determine the service and inter-
arrival time distributions. For all the SI noise events under
consideration, only the exponential distribution is determined
appropriate in modelling the inter-arrival times and provides a
suitable fit, indicating a high variance. The Erlang-k distribu-
tion is observed to provide better accuracy than the exponential
distribution in modelling the BI noise events time series char-
acteristics. It is determined that the steady-state equilibrium
of the impulse noise events inter-arrival and service time dis-
tribution exists. From the performance analysis, the proposed
models are observed to provide a good correlation to the mea-
sure data with a high level of significance. The results obtained
from this work can be employed to develop a simulation tool for
the optimization of transmission schemes in the PLC system for
improved performance and reliability.
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