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ABSTRACT: The Chu circuit model provides the basis for analyzing the minimum radiation quality factor,Q, of a given spherical mode.
However, examples of electrically large spherical radiators readily demonstrate that thisQ limit has limitations in predicting bandwidth.
Spherical mode radiation is reexamined, and an equivalent 1D transmission line model is derived that exactly models the fields. This
model leads to a precise cutoff frequency of the spherical waveguide, which provides a clear boundary between propagating and evanes-
cent fields. A new delineation of ‘stored’ and ‘radiated’ electromagnetic energy is postulated, which leads to a new definition of spherical
mode Q. Next, attention is turned to the Harrington bound on the directivity-bandwidth tradeoff of an antenna with an arbitrary size.
Harrington derived the maximum directivity for a specified number of spherical harmonics such that the Q is not ‘large’. Here, the
method of Lagrange multipliers is used to quantify the maximum directivity for a given bandwidth. It is shown that optimally exciting
all spherical harmonics (including n > ka) enables both larger directivity and bandwidth than Harrington’s previous limit. While Chu
and Harrington’s analyses are generally good approximations for most situations, the new self-consistent theory that defines fundamental
antenna limits leads to updated results.

1. INTRODUCTION

Much of antenna theory is devoted towards understanding
the available trade space between size, bandwidth, effi-

ciency, and gain of antennas. The impact of material loss on
radiation efficiency and gain is studied in [1–5]. Our work will
instead focus on the relationships between size, bandwidth, and
directivity of a lossless antenna. The maximum available band-
width is a complicated function of the specifics of the antenna,
and the complexity of the matching network is as shown by
Bode [6] and Fano [7]. Therefore, the quality factor (Q) is typ-
ically studied to understand general frequency characteristics
of an antenna. The traditional relationship between half-power
impedance bandwidth, B3 dB, and Q given by B3 dB = 2/Q is
rigorously valid when Q ≫ 1, and there is a single resonance.
For multi-resonant designs and Q ≫ 1, the inverse relation-
ship between Q and bandwidth is approximate. When Q is on
the order of unity or less, there is even more ambiguity. In this
regime, it is only possible to state that broad bandwidth behav-
ior on the order of an octave or more is expected. The terms Q
and bandwidth will be used interchangeably here subject to the
above-mentioned limitations. TheQ of an antenna with purely
resistive input impedance is generally defined as the ratio of the
energy ‘stored’ in the electric and magnetic fields (Ws) to the
power radiated (P ),

Q =
ωWs

P
(1)

where ω is the angular frequency. However, the delineation
between ‘stored’ and ‘radiated’ energy is often ambiguous.
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In 1945 Chu derived a simple equivalent circuit that perfectly
models the wave impedance of an arbitrary spherical mode at
all frequencies [8]. He postulated that energy stored in the re-
active circuit elements corresponds to energy stored in the out-
ward propagating wave, which led to the most ubiquitous def-
inition of the minimum antenna Q. Twenty years later, Collin
and Rothschild used a field integration approach and subtracted
the portion of the energy associated with radiation to define
stored energy in their definition ofQ [9]. Collin and Rothschild
arrived at the same values for Q as Chu, which solidified this
definition [10]. Today, Chu’s circuit model for evaluating an-
tennaQ is considered to be the most rigorous with the sole lim-
itation being it is a loose bound (i.e., overly optimistic) because
the circuit only models fields external to a spherical region of
space. A myriad of work has expanded on Chu’s theory to de-
velop tighter bounds on the Q that accounts for energy stored
within the antenna or non-spherical geometries [11–14]. Van-
denbosch proposed a particularly notable definition forQ that is
commonly used to analyze arbitrarily shaped antennas [15, 16].
However, it is known that Vandenbosch’s definition sometimes
results in negative stored energy for electrically large structures,
which is unphysical [17]. Time-domain based definitions of Q
have also been proposed [18–20]. A thorough review of the
advantages and disadvantages of various definitions ofQ is re-
ported in [21].
Curiously, using the Chu circuit model to calculate the Q of

high order spherical modes leads to contradictions. It will be
shown that there are scenarios with simultaneously largeQ (i.e.,
narrowband) and wide impedance bandwidth. This contradic-
tion brings into question the circuit model’s validity for lower
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order modes, as well as all subsequent work that relies on Chu’s
result.
One such consideration is the directivity and bandwidth lim-

its for antennas with arbitrary electrical sizes [22–24]. In [25],
Harrington uses spherical modes to show that antennas with di-
rectivity,D, satisfyingD > (ka)2+2kamust have a ‘high’Q,
where k is the free space wavenumber and a is the radius of the
minimum sized sphere that circumscribes the antenna. How-
ever, inserting Chu’s definition forQ into Harrington’s analysis
suggests that antennas with near 100% aperture efficiency must
have vanishingly small bandwidths as the size increases. This
conclusion is clearly incorrect and provides further evidence
that Chu’s definition of Q needs updating. Furthermore, Har-
rington stops short of quantifying the optimal tradeoff between
Q and directivity. A directivity-bandwidth tradeoff is quanti-
fied by Fante and Geyi, who calculate the spherical mode ex-
citation that maximizes the ratioD/Q [26, 27]. However, their
optimization for D/Q tends to find an excitation that achieves
Q ≪ 1, at which point there is a tenuous relationship between
Q and bandwidth. It will be shown that using the ratio D/Q
alone to determine the maximum directivity of an antenna with
Q > 1 results in a very loose directivity bound such that it is
practically useless when the antenna has a moderate electrical
size (e.g., ka > 2). Rather than maximizing the D/Q ratio,
it is more useful to calculate the maximum possible directivity
for a specified bandwidth.
In this paper, we introduce new bounds on the bandwidth

and directivity of antennas. Like Chu and Harrington, we con-
sider an ideal hypothetical spherical antenna that does not store
any internal energy and thus realizes the optimal performance
for antennas confined to a spherical volume. This also im-
plies the bounds presented here are loose for non-spherical an-
tennas. First, we review some of the seminal works that es-
tablished fundamental limits for antennas. Example scenar-
ios are used to clearly illustrate how these analyses have self-
contradictions, which suggests these theories are only accurate
in a limited sense. Arguments explaining why these previous
analyses sometimes fail are also provided. Then, a new defi-
nition of the Q of spherical mode radiation based on a trans-
mission line model is proposed. In contrast to previous anal-
yses, this new definition of Q seems to accurately delineate
stored and radiated energy for all electrical sizes. This new
Q definition is consistent with the Chu circuit model when
ka is small enough, which suggests that most of the previous
work in electrically small antenna theory remains valid when
ka ≪ 1. However, updating Chu’s definition of Q for arbi-
trary order spherical modes is essential for analyzing antennas
with moderate to large electrical sizes (e.g., ka > 1). For ex-
ample, we study the optimal tradeoff between directivity and
Q for arbitrarily sized antennas. The method of Lagrange mul-
tipliers is used to calculate the optimal spherical mode excita-
tion that maximizes directivity for a specified Q (or minimum
Q for a specified directivity). Harrington’s definition of max-
imum practical directivity with broad bandwidth remains ap-
proximately correct since it generally produces a directivity that
is within 1.5 dB of optimal. However, it is useful to finally rig-
orously show it with the updated analysis. It should be noted
that the discussion of the optimal spherical mode excitation is

very similar to the recent results reported in [28, 29]. The main
distinction here is that we use our new Q definition rather than
Chu’s Q definition, which leads to modified results.

2. ISSUES WITH PREVIOUSQ BOUNDS
It is helpful to quickly review issues with some of the seminal
work that has established commonly used definitions of antenna
Q. There exists a large body of subsequent research that builds
upon these foundational papers. However, the subsequent work
is generally consistent with the work that is reviewed here, such
that it also generally suffers from the same self-inconsistencies.

2.1. Chu
In [8], Chu derives an equivalent circuit model that has the ex-
actly same wave impedance as a spherical mode. Others ex-
panded on Chu’s theory to develop tighter bounds on theQ that
accounts for energy stored within the antenna or electrically
small non-spherical geometries [11, 12, 2, 13, 14]. Chu postu-
lates that energy stored and dissipated in the circuit model has a
one-to-one relationship with energy stored/radiated by electric
and magnetic fields. However, such an equivalent circuit rep-
resentation for an impedance is not unique. For example, using
a transmission line to connect the radiation resistance to the rest
of the circuit gives an identical input impedance. As pointed out
by Kuester [30], replacing the transmission line with an equiv-
alent LC ladder network causes the energy stored in reactive
elements to increase proportionally to the length of the trans-
mission line. In other words, two different circuit models can
provide an identical input impedance and vastly different qual-
ity factors, which contradicts the notion that impedance band-
width and Q must be inversely proportional. Clearly, the en-
ergy stored in the reactive transmission line LC ladder network
should be interpreted as radiated rather than stored in this ex-
ample. However, this distinction between radiated and stored
energy in a reactive circuit network is not generally obvious.
Consider radiation from the transverse magnetic spherical

mode of ordern = 100 (i.e., TM100,m) around the regionwhere
kr = 150, where r is the radius. The real and imaginary parts
of the input impedance vs. kr are shown in Fig. 1(a). Around
kr = 150, the reactance is practically 0, which suggests there
should be broadband properties for themode. Fig. 1(b) plots the
reflection coefficient when a small series inductance cancels the

(a) (b)

FIGURE 1. (a) TM polarized wave impedance of the n = 100 order
mode normalized by the free spacewave impedance, η0. (b) Reflection
coefficient when the wave impedance is matched at kr = 150 with an
ideal series inductor.
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wave impedance reactance to create a broadband resonance at
kr = 150. However, evaluating the energy stored and dissi-
pated in reactive and resistive elements using the Chu circuit
model suggests that Q = 39 (i.e., only a 5% half power band-
width). Clearly, Chu’s theory is not self-consistent because Q
has no relation to the impedance bandwidth. Further inspection
of the TM100,m Chu circuit model reveals that when the circuit
is operated above cutoff, it is well represented by the dual of a
conventional transmission line (series capacitors and shunt in-
ductors). In this regime, most of the energy stored in this trans-
mission line should be regarded as radiated rather than stored
energy. Again, there is not a clear distinction between stored
and radiated energy in the reactive circuit elements, which leads
to ambiguity in calculating Q.
It is also worth noting that Chu’s Q definition is most com-

monly applied to electrically small radiators with ka ≪ 1
such that the reactive elements are clearly in cutoff. There is
less ambiguity in defining stored and radiated energy in this
regime than when ka > n. This could explain why the self-
inconsistency of Chu’s definition ofQ has not been reported to
date.
In [8], Chu also introduces a mathematically convenient ap-

proximate formula for calculating Q based on modelling the
spherical mode wave impedance as a series RLC circuit. It is
interesting that this approximate analysis providesmore reason-
able values of Q for ka > n than the more rigorous definition
based on Chu’s ladder network. However, there is no physical
justification as to why replacing Chu’s ladder circuit network
with a series RLC circuit provides a more accurate estimate
for antenna Q. In fact, the series RLC circuit approximation
for calculating Q is only valid when the input resistance is ap-
proximately constant (i.e., d[Re(Zin)]/dω ≪ d[Im(Zin)]/dω).
This relation is not generally true when Zin represents the
wave impedance of a spherical mode and ka is on the order
of n. For example, d[Re(Zin)]/dω = 1.4d[Im(Zin)]/dω when
ka = n = 100 and Zin equals the TM spherical mode wave
impedance tuned to resonance with a series inductor. It should
be emphasized that the region around ka ≈ n is particularly
important for understanding directivity-bandwidth tradeoffs of
electrically large antennas since this is the region where most
of the power is radiated when directivity is maximized. How-
ever, this is precisely the region where the series RLC circuit
approximation is invalid.

2.2. Collin and Rothschild

In [9], Collin and Rothschild derive the spherical mode Q
through a fields-based approach rather than an equivalent cir-
cuit model. Collin and Rothschild subtract the energy density
associated with power flow from the total energy density to de-
lineate ‘stored’ and ‘radiated’ components of energy. Their def-
initions of Q were later refined by Fante [31], McLean [32],
and Geyi [14]. Their analysis yields the exactly same spherical
mode Q as the Chu circuit model, which provides supporting
evidence for the validity of both approaches [10]. However,
Collin and Rothschild’s analysis assumes that radiated energy
propagates at the speed of light, which is an unproven hypoth-
esis [33, 34]. While this assumption is true for TEM waves in

free space, it is not generally valid when there exists a field
component along the direction of propagation (i.e., TE or TM
modes) such as an individual spherical mode.
Applying Collin and Rothschild’s logic to some other canon-

ical problems leads to clearly unphysical results. For example,
consider modes within a rectangular metallic waveguide oper-
ating above cutoff. The wave impedance is purely resistive,
which provides a wideband performance (40% fractional band-
widths are typical). Rectangular waveguide modes all have a
group velocity (or equivalently energy velocity here) less than
the speed of light, which causes Collin and Rothschild’s method
to underestimate the portion of energy that is radiated and over-
estimate the stored energy. In fact, their analysis suggests the
stored energy (non-propagating) within the waveguide above
cutoff is directly proportional to the length of the waveguide.
However, in practice, the bandwidth of microwave systems em-
ploying rectangular waveguides is not generally impacted by
the length of the waveguides.
The same issue is found when considering radiation from

the TM100,m spherical mode again. The field on the surface
at kr = 150 is an interference pattern represented by the Leg-
endre Polynomial. Over most of the surface, the field is analo-
gous to two interfering plane waves propagating at angles±42◦

relative to the normal direction. Therefore, the radiative energy
should propagate radially outwards at a velocity of 0.74c, where
c equals the speed of light in free space. Of course, as the radius
increases, the fields approach a TEMwave that only propagates
in the radial direction. Davis et al. [35] calculated an updated
Q = 1/(ka)3 for the TM10 spherical mode that also observed
radiative energy travels less than the speed of light near the an-
tenna because power propagates at an angle relative to the nor-
mal direction. Manteghi provided a simplified derivation of
Davis’ Q in [36]. However, Davis and Manteghi define stored
energy as the difference between the total electric and magnetic
energy which is problematic because this results in Q = 0 for
any self-resonant antenna [30]. In summary, assuming that the
radiative component of energy propagates at the speed of light
results in an overestimation of stored energy, which overesti-
mates the radiation Q.

2.3. Yaghjian and Best
In [30], Yaghjian and Best consider a couple different methods
of defining Q of arbitrary antennas. A rigorous definition of Q
is defined in Eq. (80) of their paper. However, this expression is
simplified to Collin and Rothschild’s result when applied to the
fields external to a sphere, which we argue should be updated.
Yaghjian and Best also introduce a simple approximation

of the antenna Q based on the frequency derivative of the
impedance at resonance,

QYaghjian =
ω0 |Z ′

0|
2R0(ω0)

(2)

where ω0 corresponds to the resonant frequency where the in-
put reactance is 0, R0(ω0) the input impedance at resonance,
and |Z ′

0| the absolute value of the derivative of the impedance
with respect to frequency. Yaghjian and Best show that this
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expression for Q can always predict the fractional bandwidth
provided the specified drop in accepted power is small enough.
For example,QYaghjianmay accurately predict the−20 dB band-
width, but not the −3 dB bandwidth. This expression is partic-
ularly attractive because its definition is directly related to the
impedance bandwidth, which is typically the end goal of cal-
culating Q. Thus, the definition circumvents the challenge of
dividing energy into stored and radiated components to calcu-
late Q. Furthermore, QYaghjian is easily evaluated for arbitrary
antennas, which has led to its widespread adoption.
However, there is ambiguity in using (2) to calculate the Q

of multi-resonant antennas, as discussed in [37, 38]. For ex-
ample, consider an antenna that has an input impedance given
by the equivalent circuit in Fig. 2(a). The input impedance
for Qs = Qp = 100 is plotted in Fig. 2(b). At resonance
(ω = ω0), taking the ratio of the stored to radiate energy sug-
gests Q = 100, which is roughly twice as large as would be
expected for a single resonant antenna with fractional band-
width shown in Fig. 2(c). This agrees with the notion that there
is an approximate relationship between Q and bandwidth for
multi-resonant designs. However, Fig. 2(b) shows that the fre-
quency derivative at resonance is 0 which leads toQYaghjian = 0
in (2), which is unphysical. Clearly QYaghjian overestimates
the impedance bandwidth in this particular scenario. In fact, a
matching network can always be added to an arbitrary antenna
to force QYaghjian = 0 at a particular frequency.

(a)

(b) (c)

FIGURE 2. (a) Example double resonant circuit model. (b) Circuit input
impedance when Qs = Qp = 100. (c) Circuit reflection coefficient.

The fact thatQYaghjian can fail to provide a meaningful value
for multi-resonant antennas is particularly problematic for cal-
culating directivity and bandwidth limitations of antennas. For
example, [39] maximizes the directivity of an ideal spherical
antenna that radiates the TE10 and TM10 modes using a feed
network that excites the TE10 and TM10 modes with equal am-
plitude and phase. The feed automatically forces the antenna
into a multi-resonant regime with QYaghjian near 0 even though
the fractional bandwidth can be exceedingly narrow (<1%).
Furthermore, QYaghjian can have limitations in predicting

achievable bandwidth even when QYaghjian ≫ 1. For example,
consider a simple rectangular waveguide with wave impedance

ZRec
TE10, which behaves similar to the wave impedance of the

spherical TE100,m mode. Intuitively, let us for the moment
consider a fields-based definition of Q. We might expect the
fields-based Q be 0 at all frequencies above cutoff because
the fields are purely propagating and there is no stored en-
ergy. However, the impedance based definition, QYaghjian,
approaches infinity as the operating frequency approaches
cutoff, fc, as shown in Fig. 3(b) because the wave impedance,
ZRec
TE10 = η0/

√
1− (fc/f)2, varies rapidly with frequency. A

natural question to ask is whether a fields-based or impedance-
based definition more accurately predicts the achievable
bandwidth? If the waveguide is simply excited with a port
impedance equal to the wave impedance at say 1.002fc (i.e.,
Zport = 5969Ω), the -20 dB bandwidth is very narrow (0.16%)
which agrees with QYaghjian = 125. However, consider instead
feeding the rectangular waveguide with a lossless gradually
tapered double-ridged waveguide, as shown in Fig. 3(a). The
characteristic impedance at Port 1 is 100 Ω, whereas the
traditional rectangular waveguide impedance at Port 2 varies
rapidly with frequency near cutoff. As shown in Fig. 3(c),
the reflection coefficient is less than -20 dB at all frequencies
above 1.002fc (i.e., wideband behavior). In fact, a long enough
double-ridged taper can provide an excellent impedance match
to a rectangular waveguide at all frequencies arbitrarily close
to cutoff, which is consistent with a Q = 0. In other words,
both Q definitions can be useful in this case. While QYaghjian
predicts the bandwidth when there is no matching network
besides a resonating inductor or capacitor, the fields-based Q
more accurately predicts the achievable performance with a

(a)

(b) (c)

FIGURE 3. (a) Dual ridge taper for wideband matching a rectangular
waveguide to a 100Ω feed. (b) QYaghjian of the wave impedance di-
verges as the operating frequency approaches cut-off. (c) Simulated
reflection coefficients of the structure shown in (a) that includes a
matching network (blue curve) and the scenario where the waveguide
is simply fed with a port that has input impedance equal to the wave
impedance at f = 1.002fc (red curve).
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matching network present, at least for this example. It should
be emphasized that it is currently unclear how the fields-based
Q relates to achievable bandwidth for an arbitrary structure in
general.

2.4. Vandenbosch
In [15], Vandenbosch reformulated Yaghjian and Best’s rig-
orous definition of Q in terms of integrals of the volumet-
ric current density. Vandenbosch’s analysis can also be inter-
preted as an extension of Geyi’s definition from small anten-
nas to electrically large structures [14]. Vandenbosch’s defi-
nition, QVandenbosch, is particularly attractive because it can be
efficiently calculated for arbitrary geometries using the method
of moments. Ref. [17] then showed that QVandenbosch can be
used to bound the minimum Q for an arbitrarily shaped ob-
ject through convex optimization. Many studies have extended
these bounds to consider various tradeoffs between size, shape,
Q, efficiency, gain, and directivity [2, 40–43, 5].
However, Vandenbosch’s formula for Q suffers from a few

known deficiencies when ka is large. As with previously
mentioned definitions, it assumes that energy propagates at
the speed of light, which is not generally true. Crucially,
QVandenbosch is often negative for electrically large struc-
tures, which brings into question its applicability for such
structures [17, 44]. A physical explanation for negative
QVandenbosch values is discussed in [16]. For spherical geome-
tries,QVandenbosch subtracts a radiative component of the energy
from the energy stored on the interior of the antenna. This is
unintuitive since there is no time-averaged power flow inside
the sphere. Thus, QVandenbosch has an uncertainty on the order
of ka [16]. While this uncertainty might be insignificant for
electrically small antennas, it reveals itself when analyzing
electrically large structures.
For example, consider a spherical shell supporting electric

currents that radiates the TM10 spherical mode. QVandenbosch
using the maximum of the electric or magnetic stored energy
is analytically calculated in [16] and plotted in Fig. 4. For
comparison, QHansen derived by Hansen and Collin in [12] is
also plotted. Note that QHansen is identical to Collin and Roth-
schild’s definition, but QHansen also accounts for energy stored
within the spherical current shell. The two formulas (QHansen
and QVandenbosch) agree sufficiently well near small electrical
sizes but diverge at large values of ka. QVandenbosch takes on
increasingly negative values as ka increases, whereas QHansen
increases with ka. Ref. [16] suggests that the issue of neg-

ka

FIGURE 4. Comparison of Vandenbosch’s definition for Q [15] and
Hansen andCollins definition forQ [12] of a spherical shell supporting
electric current (i.e., spherical wire antenna) radiating the TM10 mode.

ative QVandenbosch can be dealt with by artificially increasing
QVandenbosch to 0, but this is rather arbitrary and neither phys-
ical nor valid for electrically large structures.
With respect to engineering relevancy, [17] usesQVandenbosch

to calculate a bound for the maximum directivity/Q ratio for
antennas with arbitrary shape and size. This result is ex-
tended in [40] to also consider other tradeoffs between Q, di-
rectivity, radiation pattern, and placement of structures next to
the antenna. Material losses are added in [2] to identify the
maxim possible gain for various shapes. Ref. [5] extends [2]
by decomposing the optimal currents into characteristic modes,
which lends significant design/implementation insight. Set-
ting aside the fact thatQVandenbosch is unphysical for electrically
large structures, [2, 40, 17, 5] have another potential limitation.
These previous works limit the electric current distribution onto
a specified surface bounding a given volume. Forcing currents
to only flow on the bounding surface of a 3D object generally
leads to optimal performance for electrically small structures
because this maximizes the antenna size. However, forcing
electric currents to only flow on the outside boundary does not
always optimize performance for electrically large structures.
In other words, there is no reason to believe this current dis-
tribution is optimal for antennas confined to the volume within
the bounding surface.
For example, the infinite values of Q in Fig. 4 correspond

to resonances where the inward directed wave impedance is
0Ω. If the goal is to maximize bandwidth of the TM10 mode,
it is better to use a ka = 1.5 sized sphere compared to say
ka = 100. In other words, the bounds reported in [2, 40, 17, 5]
should be interpreted as the optimal performance for a class
of antennas that only support electric currents on the specified
surfaces. This should not be confused with bounding the per-
formance of arbitrary antennas confined to the volume within
the surface.

2.5. Comparison ofQ Definitions

Table 1 highlights the differences between the various Q defi-
nitions by comparing their values for the TM100,m mode at dif-
ferent values of ka. QL Match

Yaghjian corresponds to (2) when a series
inductor is used to match the TM100,m wave impedance to a re-
sistive load while QMatch Net.

Yaghjian uses a matching network between
the load and TM100,m wave impedance to minimize itsQ. Note
thatQVandenbosch corresponds to a spherical shell of electric cur-
rents that supports internal stored energy, which is a different
scenario than QChu. QPfeiffer denotes the new Q definition that

TABLE 1. Comparison of different Q definitions when applied to the
TM100,m spherical mode.

ka 95 101 110
QChu [8] 173 87 65
QCollin [9] 173 87 65

QL Match
Yaghjian [30] 90 10 2.4

QMatch Net.
Yaghjian [30] 0 0 0

QVandenbosch [15] 118 1.7 −20

QPfeiffer 98 1.3 0.01
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will be introduced in Section 4. Intuitively, we expect a high
Q when ka < 100 and a low, but positive Q when ka > 100.
Only QPfeiffer satisfies these crucial criteria at all tabulated val-
ues of ka.

3. ISSUES WITH PREVIOUS DIRECTIVITY-Q TRADE-
OFFS
Next, we quickly review issues with previous analyses that in-
vestigate tradeoffs between antenna directivity and bandwidth.

3.1. Harrington
In [25], Harrington calculates the maximum directivity of an
antenna that supports N modes by deriving the modal coeffi-
cients that maximize the directivity. He also calculates the cor-
responding antenna Q, which is a function of the quality factor
of each spherical mode derived using the Chu circuit model.
Harrington states that when N < ka, the radiation quality fac-
tor is on the order of unity and the directivity equals N2 + 2N
(i.e., approximately 100% aperture efficiency). This suggests
it is possible to realize approximately 100% aperture efficiency
antennas with broad bandwidth. However, Harrington approx-
imated the spherical mode quality factor using Chu’s approx-
imate series RLC circuit, which is not generally accurate for
all spherical modes. If the ‘rigorous’ version of spherical mode
QChu from the Chu circuit model is used instead, the quality fac-
tor grows without bound as ka increases. For example, Fig. 5
plots the directivity and QChu when Harrington’s optimal com-
bination of spherical modes are excited. Fig. 5 suggests that
high directivity antennas with approximately 100% aperture ef-
ficiency must be extremely narrowband, which defies conven-
tional wisdom.

FIGURE 5. Directivity and Q of the spherical mode excitation as cal-
culated by Harrington when the Chu circuit model is used to calculate
Qn of the nth order mode.

Undoubtedly, the definition ofQ needs updating for Harring-
ton’s analysis to provide a correct understanding of the trade-
offs between antenna directivity and bandwidth. But beyond
this, Harrington’s restriction on the number of spherical modes
employed for radiation is arbitrary and leads to a poorly de-
fined limit. Constraining the number of spherical modes to be
N ≤ ka creates a staircase expression for the (D = N2+2N)
andQ that abruptly jumps in a non-physical wave whenever ka
is an integer. Furthermore, Harrington calculates that the ‘op-
timal’ power distribution across all spherical modes increases
with mode order, n, as 2n + 1 and then abruptly reduces to 0
when n > ka, which will be shown to be unnecessary. Surely,
a smoother relationship between radiated power and spherical

mode index could result in both larger directivity and band-
width. This insight has led to heuristic definitions of the max-
imum practical directivity [45, 46]. In fact, calculating a rig-
orous limit on the maximum achievable directivity for a speci-
fied bandwidth was only recently solved in [28, 29] for the gen-
eral case when the antenna is not electrically small. However,
[28, 29] should be updated to use the new definition of Q that
is proposed here to ensure physically meaningful results when
ka ≫ 1.

3.2. Fante and Geyi

In [8], Chu calculates the spherical modal coefficients that max-
imize the ratio D/Q (i.e., directivity-bandwidth product) for
omnidirectional antennas that have azimuthally symmetric ra-
diation in the θ = 90◦ plane. In [26], Fante extends this anal-
ysis to consider pencil-beam antennas. In [27], Geyi points out
an error in Fante’s analysis and derives a simple updated ex-
pression for the spherical modal coefficients that maximize the
D/Q ratio. Today, the D/Q ratio remains a commonly em-
ployed metric for characterizing antennas [2, 40].
However, maximizing D/Q tends to yield a spherical mode

excitation with Q ≪ 1 for antennas that are not electrically
small. Using this D/Q limit to estimate the maximum achiev-
able directivity for antennas with moderate sizes (e.g., ka > 2)
and Q (e.g., Q > 1) results in a loose bound in the sense that it
significantly overestimates the achievable directivity. Further-
more, previous results all rely on Chu’s definition forQ, which
should be updated. It will be shown that the D/Q limit be-
comes even looser when the spherical modeQ is updated using
our updated definition.

4. NEW Q FACTOR DEFINITION FOR SPHERICAL
MODES

In this section, a new definition of antennaQ based on spherical
mode radiation is postulated. The delineation between stored
and radiated energy follows naturally from an exact transmis-
sion line model that represents the fields.

4.1. Equivalent Transmission Line Model

Consider an arbitrary antenna with sources contained within the
spherical region r < a. The field external to r = a can be
written as a superposition of TEnm and TMnm spherical modes
where n is the order of the spherical Bessel function and m is
the azimuthal variation [47]. The radiated and stored energy is
the sum of the contributions from each mode since all spherical
modes are orthogonal. Furthermore, TE radiation is simply the
dual of TM. Therefore, it is sufficient to analyze the stored and
radiated energy in the TMnm modeswith the understanding that
the analysis can be extended to all other modes through duality
and/or symmetry.
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Outward propagating TMnm waves have fields given by,

Eθ=Cnm
jη0
rk

dPm
n (cos θ)
dθ

d
[
krh

(2)
n (kr)

]
dr

g(mϕ)

Eϕ=Cnm
jη0

rksin(θ)
Pm
n (cos θ)

d
[
krh

(2)
n (kr)

]
dr

dg(mϕ)

dϕ

Er=Cnm
jη0
k

n (n+1)

r2
Pm
n (cos θ)

[
krh(2)

n (kr)
]
g(mϕ)

Hθ= −Cnm
Pm
n (cos θ)
rsin(θ)

[
krh(2)

n (kr)
] dg(mϕ)

dϕ

Hϕ=Cnm
1

r

dPm
n (cos θ)
dθ

[
krh(2)

n (kr)
]
g(mϕ)

(3)

where η0 =
√

µ0/ε0 is the free space wave impedance; g(mϕ)
is either cos(mϕ) or sin(mϕ); Pm

n is the associated Legendre

polynomial; h(2)
n is the spherical Hankel function of the second

kind; Cnm is an arbitrary constant with units of ampere; and an
ejωt time convention is used.
It is known that these spherical modes can be viewed as prop-

agating within a waveguide [47], which in turn has a model
based on transmission line theory. The wave impedance of a
mode (Eθ/Hϕ) corresponds to the outward looking impedance
on the transmission line, which in general is a function of r,
but not θ or ϕ. However, the transmission line’s propagation
constant, β(r), and characteristic impedance, Z0(r), are yet
to be determined. The propagation constant and characteris-
tic impedance are calculated by first defining a complex volt-
age, Vnm, and complex current, Inm, that are proportional to
the electric and magnetic fields, respectively. As discussed
in [48, 49], while there is some arbitrariness in normalizing the
voltage and current in terms of the waveguide fields, the impor-
tant principle is to ensure that there is consistency between the
complex power and impedance in the transmission line model
and in the waveguide. The voltage and current are normalized
here as [48],

VnmI∗nm =

∫
4π

Ē × H̄∗ · r̂r2dΩ

(
Vnm

Inm

)
H̄ = r̂ × Ē

(4)

where the limits of integration are over the unit sphere; r̂ is the
radially directed unit vector; and ∗ denotes the complex conju-
gate. Thus, it can be verified by inspection that (4) is satisfied
when the voltage and current are given by,

Vnm=jCnmαnm
η0
k

d
[
krh

(2)
n (kr)

]
dr

Inm = Cnmαnm

[
krh(2)

n (kr)
] (5)

whereαnm is a normalization factor that enforces power carried
by the equivalent transmission line voltage and current equals

power flowing through the waveguide cross section (i.e., spher-
ical shell with constant r),

αnm =

√√√√√∫
4π

(
dPm

n (cos θ)g
dθ

)2

+

(
dPm

n (cos θ)g
dϕ

)2
sin (θ)2

dΩ

=


√

4πn(n+1)
2n+1 m = 0√

2πn(n+1)
2n+1

(n+m)!
(n−m)! m ̸= 0

(6)

Differentiating Inm and Vnm with respect to r leads to the
following coupled differential equations,

dInm
dr

= − jk
η0

Vnm

dVnm

dr
= − jη0

k

(
k2 − n (n+ 1)

r2

)
Inm

(7)

where the second derivative of the spherical Hankel function
is replaced with itself using the definition of the Riccati-Bessel
functions [50],

d2
[
krh

(2)
n (kr)

]
dr2

+

(
k2−n (n+1)

r2

)[
krh(2)

n (kr)
]
=0 (8)

Comparing (7) with the conventional telegrapher’s equations of
a lossless transmission line,

dI
dr

= −jωCV

dV
dr

= −jωLI
(9)

allows for defining a radially varying waveguide with propaga-
tion constant and characteristic impedance given by,

βn (r) = k

√
1− n (n+ 1)

(kr)
2 = ω

√
LC (10)

ZTM
0 (r) =

η0βn (r)

k
=
√

L/C (11)

Thus, the fields of spherical mode propagation can be exactly
modelled using a nonuniform 1D waveguide with voltage and
current that propagate in the forward and backward directions
as exp (±jβnr). Note that the propagation constant and charac-
teristic impedance of the transmission line are independent of
the azimuthal variation,m. In the following, we use traditional
transmission line theory to relate the characteristic impedance
and total fields (Ē, H̄) to forward (+) and backward (−) prop-
agating field components (Ē+,−, H̄+,−).
Strictly speaking, the fields in a waveguide only propagate as

exp (±jβnr) when the waveguide does not vary with position.
However, this does not restrict the analysis. Traditional mode
matching techniques commonly solve for the transverse fields
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of nonuniform waveguides by discretizing the waveguide into
short uniform sections [47, 51], each of which has differential
length equal to dl, as shown in Fig. 6. Unambiguously, once
the transverse fields are solved, the radial components can be
readily evaluated by taking the curl of the transverse fields. The
propagation constant and impedance of each waveguide section
are given by (10) and (11), where r is evaluated at the midpoint
of the waveguide section. In the limit that dl → 0, the fields in
the discretized waveguide are exactly equal to those in spheri-
cal mode radiation. In other words, our transmission line model
can be thought of as an infinitely precise mode matching anal-
ysis since spherical mode radiation is analytic.

... ...

FIGURE 6. Discretized transmission line model for calculating spheri-
cal mode Q. ZTM

0 corresponds to the characteristic impedance of the
transmission line section while ηTMn is the wave impedance.

The transmission line model provides insight into how a
spherical mode propagates. Like propagation in a conventional
waveguide, there is a transverse wavenumber that satisfies the
boundary conditions and determines the propagation constant
through the dispersion relation. Comparing the propagation
constant in (10) with that of a conventional waveguide suggests
the term,

√
n(n+ 1)/r, should be interpreted as the transverse

wavenumber at the radius, r. Previously, spherical modes were
thought to have an ambiguous cutoff frequency near kr ≈ n
because this is roughly where the wave impedance transitions
from being primarily reactive to resistive [47]. In contrast, the
equivalent transmission line model introduced here provides
a precise cutoff frequency when the transverse wavenumber
equals the free space wavenumber, k =

√
n(n+ 1)/r. It

might seem counterintuitive that power can flow (not necessar-
ily propagate) through a waveguide section below cutoff. How-
ever, waveguide filters commonly tunnel energy through finite
sections operating below cutoff to reach a propagating region.
Conceptually, our analysis suggests the propagation of a

spherical mode is analogous to propagation through a tapered
rectangular waveguide. The outward looking wave impedance
is in general different than the characteristic impedance at any
given location. Therefore, forward and backward directed
waves exist at every position [47]. In the region where kr <√
n(n+ 1) the analogous tapered waveguide is below cutoff

with a superposition of evanescently decaying/growing fields.
As we move outwards, the waveguide walls widen and the
mode propagates above cutoff when kr >

√
n(n+ 1). As

we continue to move outwards, the waves bend toward the nor-
mal direction and the reflected/inward propagating wave am-
plitude decreases. In the limit that kr → ∞, the mode tran-
sitions to a TEM mode outwardly propagating in the radial di-

rection. Note that the tapered rectangular waveguide analogy
is only conceptual and there is not a rigorous one-to-one rela-
tionship between spherical modes and a tapered waveguide. A
rectangular waveguide taper couples mode together, whereas
spherical modes all propagate outwards independently of one
another [51].
This transmission line model also provides a straightforward

interpretation of stored (Us) and radiated (Ur) energy density,

U = Us + Ur (12)

where the total energy density, U , can also be decomposed into
electric (U e) and magnetic (Um) energy components,

U = U e + Um =
ε0
∣∣Ē∣∣2
4

+
µ0

∣∣H̄∣∣2
4

(13)

The total energy (W ) is simply the integral of the energy density
(U) over all space. We define the radiated energy at any given
section to be the component of the energy that carries power
outward through a propagating wave (above cutoff). The stored
energy is everything else.
When the differential transmission line segment is below cut-

off, the fields exponentially decay/growwith position, and there
is no radial ‘propagation’. Thus, there is no radiative or propa-
gating component of the energy such that stored energy equals
total energy.
A key consequence of modelling a spherical wave using a

transmission line is the ability to consider the effect of cutoff
and reflections at each differential section of the transmission
line in a novel but intuitive way. Above cutoff, the fields are
composed of known forward and backward propagating TM
polarized waves as depicted in Fig. 7. As with every waveg-
uide above cut-off, the ratio of the tangential electric field of
the backward to forward propagating wave at any point on the
transmission line can be represented by a reflection coefficient
Γ(r) that is a function of the transmission line characteristic
impedance and the input impedance. We therefore define Γ(r)
as,

Γ(r) =
ηTMn (r)− Re

(
ZTM
0 (r)

)
ηTMn (r) + Re

(
ZTM
0 (r)

) (14)

where Re denotes the real part of the argument,

ηTMn (r) =
jη0

krh
(2)
n (kr)

d
[
rh

(2)
n (kr)

]
dr

(15)

FIGURE 7. Decomposition of a TMn0 polarized propagating wave into
incident (Ē+, H̄+), reflected (Ē−, H̄−), and transmitted (Ēt, H̄t)
components.
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is the wave impedance of the outward propagating spherical
TM mode, and ZTM

0 (r) is the characteristic impedance defined
in (11). The reflection coefficient in (14) is defined using the
real part of the transmission line impedance, which is uncon-
ventional. The reflection coefficient is typically only defined in
the context of propagating fields above cutoff where the char-
acteristic impedance, ZTM

0 (r), is purely real. Therefore, taking
the real part of ZTM

0 (r) does not affect the current discussion
because ZTM

0 (r) is purely real above cutoff anyway. Below
cutoff, ZTM

0 (r) is purely imaginary and the reflection coeffi-
cient in (14) is unity. It will be shown that this definition for
the reflection coefficient forces the stored energy to be equal to
the total energy as we discussed previously. In other words, the
definition for the reflection coefficient in (14) simplifies sub-
sequent expressions for stored and radiated energy by allowing
them to be valid below and above cutoff.
Referencing Fig. 7 above cutoff, the incident and reflected

voltages (V +,−
0 (r)) and currents (I+,−

0 (r)) on the transmission
line have the conventional relationship with the total voltage
and current,

V = V +
0 + V −

0 = V +
0 (1 + Γ)

I = I+0 − I−0 = I+0 (1− Γ) = V +
0 (1− Γ)/ZTM

0

(16)

Analogous definitions exist for the incident and reflected
components of the tangential electric (E+,−

θ,ϕ ) and magnetic
(H+,−

θ,ϕ ) fields. In other words, Eθ,ϕ = E+
θ,ϕ(1 + Γ) and

Hθ,ϕ = H+
θ,ϕ(1− Γ). Furthermore, the incident and reflected

components of the radially directed field (E+,−
r ) are also

uniquely defined by referencing Fig. 7,

Er = E+
r − E−

r = E+
r (1− Γ) (17)

where Er is given by (3).
It is important to note that forward propagating waves on all

conventional waveguides above cutoff have equal electric and
magnetic energy components when the corresponding energy
densities are integrated over the waveguide cross section. Ap-
pendix B demonstrates that the same is true here for outward
or inward propagating waves on the effective spherical mode
waveguide,

µ0

4

∫
4π

∣∣H̄+
∣∣2 r2dΩ

=
ε0
4

∫
4π

∣∣Ē+
∣∣2 r2dΩ

=
µ0

4

∫
4π

(∣∣∣∣ Hϕ

1− Γ

∣∣∣∣2 + ∣∣∣∣ Hθ

1− Γ

∣∣∣∣2
)
r2dΩ

=
ε0
4

∫
4π

(∣∣∣∣ Er

1− Γ

∣∣∣∣2 + ∣∣∣∣ Eθ

1 + Γ

∣∣∣∣2 + ∣∣∣∣ Eϕ

1 + Γ

∣∣∣∣2
)
r2dΩ

(18)

It is the interaction between forward propagating and re-
flected waves that results in the TM mode storing more elec-
tric energy than magnetic energy. An analogous example is the
energy on a mismatched transmission line oscillates between

predominately electric and magnetic as the observation plane
moves along the line. Eq. (18) being true provides some val-
idation that both the transverse and radial components of the
field are accurately captured in the derived transmission line
model.

FIGURE 8. Diagram representing energy propagating in the forward
(blue circles) and backward (red circles) directions along a waveguide
section above cutoff. The stored energy density is defined as the sta-
tionary portion of energy that does not carry power. The radiative en-
ergy is the remainder that carries power in the forward direction. This
is analogous to a resonant transmission line section.

Next, consider the diagram in Fig. 8 representing the super-
position of forward and backward propagating waves in the
waveguide above cutoff. The net time-averaged power flow
(P (r)) at all r is related to powers of outward (P+(r)) and in-
ward (P−(r)) propagating waves as,

P (r) = P+ (r)− P− (r) = P+ (r)
(
1− |Γ (r)|2

)
=

1

2

∫
4π

Re
(
Ē × H̄∗) · r̂r2dΩ (19)

where

P+,− (r) =
1

2

∫
4π

Re
(
Ē+,− × H̄∗+,− · r̂

)
r2dΩ (20)

Each blue and red circle in Fig. 8 corresponds to a unit of energy
flowing in the forward (i.e., to the right) and backward (i.e., to
the left) directions, respectively. Despite the spatial variation,
power is conserved. The blue circles are divided into two seg-
ments: (a) those that cancel red circles and (b) the remaining
circles that carry energy forward. Since the lower segment of
blue and red circles do not carry any net energy in the forward or
backward directions, we denote these as ‘stored’ energy, akin to
the physics of a standing wave. The upper section of blue cir-
cles that carry net energy forward are thus ‘radiative’ energy.
More precisely, the radiative energy density within a differen-
tial spherical shell at r is written as,∫

4π

Ur(r)r
2dΩ =

(
P+(r)− P−(r)

P+(r) + P−(r)

)∫
4π

U(r)r2dΩ

=

(
1− |Γ(r)|2

1 + |Γ(r)|2

)∫
4π

U(r)r2dΩ (21)

and the stored energy density within the shell is given by,∫
4π

Us(r)r
2dΩ =

(
2P−(r)

P+(r) + P−(r)

)∫
4π

U(r)r2dΩ
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=

(
2 |Γ(r)|2

1 + |Γ(r)|2

)∫
4π

U(r)r2dΩ (22)

Note that (21) and (22) are also valid below cutoff since all
energy is stored due to Γ(r) = 1. When the waveguide is
impedance matched such that P− = 0, all of the energy is
radiative. When, P− = P+ there is no energy propagation,
and all energy is stored. A diagram summarizing the differ-
ent regions of interest for analyzing spherical mode radiation is
shown in Fig. 9.

FIGURE 9. The different regions of interest for spherical mode radia-
tion.

A natural interpretation follows. Energy in each waveguide
section propagates in the forward and backward directions with
equal speeds but opposite directions. The speed of this propa-
gating energy at each position is equal to the total power di-
rected toward that region divided by the total energy density in
the same region,

vr (r) =
P+ (r) + P− (r)∫

4π
U(r)r2dΩ

=
P∫

4π
Ur(r)r2dΩ

(23)

We define this velocity, vr, as the ‘radiative energy velocity’.
An intuitive discussion on how this new radiative energy ve-
locity definition is related to more commonplace group and en-
ergy velocities is provided in Appendix A. Since the net power
is carried only by the component of energy that is radiative, the
net power can also be expressed in terms of the stored energy
as,

P = vr(r)

∫
4π

[U(r)− Us(r)] r
2dΩ (24)

Rearranging (24), the energy density stored within a differ-
ential spherical shell at r can be represented as,∫

4π

Us(r)r
2dΩ =

∫
4π

U(r)r2dΩ− P/vr(r) (25)

This expression has the same form as that given by Collin and
Rothschild [9], but with the speed of light replaced by the more
representative radiative energy velocity.
The present analysis also offers insight into discussion re-

lated to the reactive near field region, radiative near field re-
gion (i.e., Fresnel region) and far-field region surrounding an

antenna. For a given sphericalmode, n, the fields are below cut-
off when kr <

√
n(n+ 1). Thus, we could also interpret this

region as the reactive near field since energy doesn’t propagate,
but rather it tunnels outwards. However, the definition for the
reactive near field remains ambiguous for a general antenna that
simultaneously excites multiple spherical modes, since some
modes are below cutoff and others are above cutoff. The trans-
mission line model also provides insight into how the far-field
components of the field should be interpreted. Appendix A
demonstrates that electromagnetic energy generally propagates
slower than the speed of light near the antenna where the fields
are not TEM. The energy velocity asymptotically approaches
the speed of light as kr goes to infinity. When considering
radiation from a Hertzian dipole, the term that decays as 1/r
is typically associated with the radiative far field [35]. How-
ever, this interpretation is overly simplistic since the increasing
energy velocity with radius results in the outward propagating
portion of the field to decay faster than 1/r even in the region
well above cutoff where a very small portion of the energy is
stored.
Thus far, only the total stored energy (i.e., sum of the elec-

tric and magnetic energies) has been considered. However, the
same logic is used to define stored electric and magnetic energy
by simply replacing U with U e,m in (22). This fact will be used
to define the Q of the non-resonant TE or TM modes in the
following subsection. There is no assumption that the radiated
electric and magnetic energy densities are equal for all r (both
above and below cutoff), in contrast to Collin and Rothschild’s
analysis [9].

4.2. Spherical ModeQ Definition
Now that stored and radiated energy is defined, the quality fac-
tors for various spherical modes can be evaluated. The Q is
typically defined as,

Q =
2ωmax (W e

s ,W
m
s )

P
(26)

where the superscripts e and m denote electric and magnetic
components of the energy. The stored energy (W e,m

s ) is defined
as,

W e,m
s =

∫ ∞

a

∫
4π

U e,m
s r2dΩdr (27)

It is straightforward to show that the stored electric energy
density within every differential spherical shell is greater than
the stored magnetic energy density for TM radiation, which im-
plies that W e

s > Wm
s for each mode. To derive Q, the fields

from (3) are inserted into (22). The result is inserted into (27)
and (26) to provide the quality factor of the TMnm mode,

QTM
n = QTE

n =

∫ ∞

ka

n (n+1)
∣∣∣h(2)

n (ρ)
∣∣∣2+

∣∣∣∣∣∣
d
[
ρh

(2)
n (ρ)

]
dρ

∣∣∣∣∣∣
2


(
2 |Γ(ρ)|2

1 + |Γ(ρ)|2

)
dρ (28)
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(a) (b)

FIGURE 10. Different definitions of Qn for radiation from (a) the non-resonant TM (or TE) modes in isolation and (b) the resonant combination of
TEnm and TMnm modes.

where ρ = kr, and Γ(ρ) is given by (14), which in turn de-
pends on ηTMn (r) from (15) andZTM

0 (r) from (11). TE spherical
modes have an identical Qn as TM due to duality.
The n = 1mode is of particular interest for electrically small

antennas. The integral in (28) can be evaluated by replacing
h
(2)
1 (ρ) with e−jρ(j− ρ)/ρ2 and carrying out the integration.

The integral simplifies when ka <
√
2 (below cutoff),

QTM
n=1{ka<√

2}

= QTE
n=1{ka<√

2} =
1

(ka)
3 +

1

ka
− ka

+
π

4

(√
99 + 47

√
3 +

√
99− 47

√
3− 12

√
2

)
≈ 1

(ka)
3 +

1

ka
− ka+ 0.51 (29)

This expression forQ agrees with the definition fromChu to the
first two leading orders, which suggests that the well-known
Chu limit, is valid when ka ≪ 1. However, when ka ap-
proaches unity, there is a notable difference. For example,
Chu’s definition for Q is 32% larger than the definition in (29)
when ka = 1.
Next, theQ is analyzedwhen equal powers are radiated in the

TEnm and TMnm modes such thatW e
s = Wm

s . This is another
important scenario because this excitation provides the mini-
mumQ and maximum directivity [25]. From duality, the stored
electric energy when TE and TM modes are radiated with the
same power equals the sum of the electric and magnetic energy
of only the TM radiation. Integrating this energy density over
the unit sphere provides the following definition of QTE+TM

n ,

QTE+TM
n =

∫ ∞

ka

(1+n (n+1)

ρ2

)∣∣∣ρh(2)
n (ρ)

∣∣∣2+
∣∣∣∣∣∣
d
[
ρh

(2)
n (ρ)

]
dρ

∣∣∣∣∣∣
2


(
|Γ(ρ)|2

1 + |Γ(ρ)|2

)
dρ (30)

where the superscript TE+TM denotes the case with equal
power radiated by the TE and TM modes. Again, consider the

lowest order mode, n = 1,

QTE+TM
n=1 {ka<√

2} =
1

2 (ka)
3 +

1

ka
− ka

+
π

2

(√
6+2

√
3+

√
6−2

√
3−3

√
2

)

≈ 1

2 (ka)
3 +

1

ka
− ka+ 0.67 (31)

The definitions ofQ in (28) and (30) are similar to the result
from Collin and Rothschild [9], with the primary difference be-
ing the energy density is modified by the Γ(ρ) term. Unfortu-
nately, a simple closed form solution to the integrals in (28)
and (30) was not found, so they are computed numerically.
The numerical integration is trivial though since the stored en-
ergy density rapidly converges to 0 when ρ >

√
n(n+ 1)

(above cutoff). Note that the integrand has a discontinuity in
the first derivative at cut-off, so we break the integral over ρ
into two segments when ka <

√
n(n+ 1): [ka,

√
n(n+ 1)]

and [
√
n(n+ 1),∞] to improve numerical convergence.

Figures 10 and 11 plot some of the spherical mode quality
factors as a function of ka. The Q based on the transmission
line model proposed here is denoted as QPfeiffer. The curves
have a clear knee when the antenna size is larger than the cutoff
frequency, ka >

√
n(n+ 1). The quality factor using the cir-

cuit model defined by Chu (QChu) and the impedance derivative
defined by (2) (QYaghjian) are also plotted for reference. The in-
put impedance forQTE+TM

Yaghjian assumes that a hypothetical antenna

(a) (b)

FIGURE 11. Different definitions of Qn = 1 of the lowest order mode
for radiation from (a) the non-resonant TM (or TE) modes in isolation
and (b) the resonant combination of TE1m and TM1m modes.
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excites the TE and TM mode wave impedances in series. An
ideal transformer at the input of the TE wave impedance en-
sures that equal power is radiated by the TE and TM modes.
All three Q definitions agree when ka ≪ n. However, QChu
derived from the Chu circuit model is much larger thanQYaghjian
andQPfeiffer when ka is on the order of n or larger, as expected.
The fact that theQ based on the frequency derivative of the in-
put impedance (QYaghjian) is generally in close agreement with
the Q based on stored energy (QPfeiffer) for moderate to large
values ofQ is a satisfying result since it suggests that the field-
based QPfeiffer is closely related to the impedance bandwidth.
There is disagreement between QPfeiffer and QYaghjian near

cutoff when ka and n increase. For example, when only the
TEn=100 mode is radiated and ka = 101, QTE

Pfeiffer = 1.3
while QTE

Yaghjian = 10.0. This discrepancy between QTE
Pfeiffer and

QTE
Yaghjian can be understood by referring to the rectangular

waveguide analogy previously discussed in Section 2.3. The
wave impedance of the TEn=100 mode closely resembles the
wave impedance of a rectangular waveguide. Slightly above
cutoff, the wave impedance rapidly changes with frequency.
Therefore, there is a relatively narrow bandwidth if the wave
impedance is matched to a resistive load using a single induc-
tor or capacitor, which is in agreement with QTE

Yaghjian = 10.0.
However, if we allow ourselves to use a more complicated
matching network using a combination of a parallel LC res-
onator and the dual ridge tapered waveguide from Fig. 3(a), it
is possible to impedance match the TEn=100 mode to 100Ω
with better than 20 dB mismatch loss at all frequencies above
ka = 101 (details are omitted for brevity). This very wideband
matching behavior is consistent with the low QTE

Pfeiffer = 1.3.
Thus, QPfeiffer seems to provide better insight into the achiev-
able bandwidth with an elaborate matching network, but addi-
tional research is needed to evaluate whether this is a general
result or a special case. In contrast,QYaghjian is expected to bet-
ter accurately represent the bandwidth for scenarios where there
exists a simple resonating inductor/capacitor and a single reso-
nance [37].

5. OPTIMAL TRADEOFF BETWEEN DIRECTIVITY AND
Q
Attention is now turned to find the maximum directivity of an
arbitrary antenna that has a fixed size and bandwidth. This is an
immediate application of applying the updated spherical mode
Q’s.
As previously discussed, Harrington’s analysis arbitrarily

truncates the number of spherical harmonics, which results in
a suboptimal ‘bound’ relating antenna size to directivity and
bandwidth [25]. Geyi addresses this deficiency by showing the
maximum D/Q ratio equals [27],

max
D

Q
=

∞∑
n=1

2n+ 1

QTE+TM
n

(32)

This correct expression allows for the participation of modes
that were previously truncated, but it nonetheless is depen-
dent on the definition of Q. When Chu’s definition for spher-
ical mode QTE+TM

n is used, this maximum D/Q ratio seems

to provide a useful bound for ka > 1. For example, when
ka = 5 the maximum D/QChu = 35, which suggests the
maximum antenna directivity must be less than 15.4 dB when
QChu = 1. For reference, this value of directivity is compa-
rable to that of an antenna with ka = 5 and 100% aperture
efficiency (D100% eff = 14 dB). However, we argue that Chu’s
definition for Q should be updated. When our updated defini-
tion of QTE+TM

n from (30) is inserted into (32), we find that the
D/Q limit imposes a maximum possible antenna directivity of
50 dB when QPfeiffer = 1. It is immediately apparent that this
directivity bound is not particularly useful because it turns out
to be too loose (i.e., overly optimistic) when the updated Q is
applied. Armed with the new definition for Q, we thus seek
to formulate a new way to look at the relationship between an-
tenna size, directivity, and bandwidth. Rather than optimizing
the D/Q ratio, we specify a desired Q and maximize directiv-
ity, which is a much more practical metric.
As shown in [25], the antenna directivity is maximized when

the nth order TEn1 and TMn1 modes are radiated with equal
amplitude denoted as an. By properly phasing each mode so
that they add constructively in the far field, the antenna direc-
tivity can be simplified as,

D(|an| ) =

(∑
n
|an|

)2

∑
n
|an|2 /(2n+ 1)

(33)

while the overall antenna Q is a weighted average of the qual-
ity factors of the constituent nth-order spherical modes given
by (30),

Q(|an|) =

∑
n
|an|2 Qn/(2n+ 1)∑
n
|an|2 /(2n+ 1)

(34)

The goal then is to simply find the magnitude of the modal
coefficients, |an|, that maximize D for a specified Q. This op-
timization problem is straightforward to solve using the method
of Lagrange multipliers [28, 29],

L( |an| ) =D(|an|)− µ1Q(|an|) (35)

where µ1 is the Lagrange multiplier (not to be confused with
permeability). Differentiating (35) results in,

dL
d |an|

=
dD
d |an|

− µ1
dQ
d |an|

(36)

where,

dD
d |an|

=

2
∑
m

|am|∑
m

|am|2
2m+1

−

(∑
m

|am|
)2

(∑
m

|am|2
2m+1

)2

[
2 |an|
2n+ 1

]
(37)

dQ
d |an|

=

[
2 |an|
2n+1

]
Qn∑

m

|am|2
2m+1

−

∑
m

|am|2Qm

(2m+1)(∑
m

|am|2
2m+1

)2

[
2 |an|
2n+ 1

]
(38)
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(a)

(b)

(c)

FIGURE 12. (a) Directivity and Q for different spherical mode excitations. Optimal curves correspond to the excitation that minimizes Q for the
specified directivity. Harrington curves corresponds to the optimal excitation when the number of spherical harmonics,N , is truncated toN ≤ ka.
(b) Comparison of modal coefficients between Harrington’s excitation and the optimal excitation that achieves minimumQ and the same directivity
as Harrington’s excitation. (c) Maximum directivity normalized by normal directivity as a function of antenna electrical size, ka, and specified Q.

The optimal modal coefficients |an| are then found by setting
dL

d|an| = 0 and solving for |an|,

|an|=
2n+ 1

2

2
∑
m

|am|∑
m

|am|2
2m+1



×

 µ1Qn∑
m

|am|2
2m+1

−
µ1

∑
m

|am|2Qm

(2m+1)(∑
m

|am|2
2m+1

)2 +

(∑
m

|am|
)2

(∑
m

|am|2
2m+1

)2


−1 (39)

Eliminating arbitrary constants results in a simple expression
for the optimal modal coefficients,

|an|=
2n+ 1

Qn + µ
(40)

The desired antenna Q and modal coefficients from (40) are
inserted into (34), and the Lagrange multiplier, µ, is solved
numerically. Solving for µ is numerically trivial since the an-
tenna Q monotonically increases with µ, which leads to a sin-
gle variable convex optimization problem. Once µ is solved,
the maximum directivity for the specified Q is calculated by
inserting (40) into (33). Alternatively, the same process can
calculate the minimum Q for a specified directivity by insert-
ing (40) into (33), solving for µ, and then inserting the optimal
modal coefficients into (34). The lowest order mode has the
lowest quality factor, Q1 < Qn for all n > 1. Therefore, µ
must satisfy µ ≥ −Q1 to ensure the magnitudes of all modal
coefficients are positive, |an| ≥ 0. Thus, setting µ = −Q1

results in the minimum possible Q and directivity. Taking the
limit µ → ∞ recovers the modal coefficients that maximize
directivity found by Harrington, which provide infinite Q and
directivity when the number of modes,N → ∞. Letting µ = 0

results in Geyi’s modal coefficients that maximize theD/Q ra-
tio [27]. Letting µ = 1 generates the heuristic expression for
the maximum ‘practical’ directivity that was proposed in [45].
As an illustration, some optimal spherical mode excitations

are computed that either maximize directivity for a specifiedQ,
or minimize Q for a specified directivity. The solid blue curve
in Fig. 12(a) plots the minimum antennaQ vs. ka when the di-
rectivity equals the ‘normal directivity’ defined by Harrington,
D = (ka)2 + 2ka. Harrington defined the normal directivity
to represent the maximum directivity such that the antennaQ is
not ‘large’. Our analysis makes the definition explicit by quan-
tifying the minimum Q for this specified directivity. The dot-
ted green curves correspond to the directivity andQ that results
from using Harrington’s modal coefficients, |an| = 2n+ 1 for
n ≤ ka. The dotted green curves jump when ka is an integer
due to Harrington’s truncation n ≤ ka. Finally, the dashed red
curves in Fig. 12(a) correspond to directivity and Q that result
from using the optimal modal excitation that achieves the min-
imum Q with the same equivalent directivity as Harrington’s
excitation. For this same staircase directivity, the new excita-
tion given by (40) always results in a lowerQ than Harrington’s
excitation.
Figure 12(b) compares the optimal modal coefficients

from (40) to those calculated by Harrington for the cases with
antenna sizes ka = 5, 10, 15, and 20. Our optimal coeffi-
cients generate the same directivity as Harrington’s analysis
(D = (ka)2 + 2ka), but with minimum Q (i.e., the blue
and red curves of Fig. 12(a) at the specified ka values). The
optimal coefficients tend to excite the lower radiating modes
with higher power when compared to Harrington’s excitation.
Near n = ka, the optimal coefficients have a more gradual
reduction in power with respect to n compared to the abrupt
truncation for Harrington’s excitation. Thus, by judiciously
employing several modes beyond n = ka via the method of
Lagrange multipliers, a lower Q previously not known can be
obtained.
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Using the new definition ofQ, Fig. 12(c) plots the maximum
antenna directivity vs. ka when Q = 1, 3, 10, and 100. The
directivity is normalized to Harrington’s definition of normal
directivity. The maximum normalized directivity of the Q = 1
curve is within a factor of 1.4× compared to Harrington’s direc-
tivity (i.e., 1.5 dB) for all values of ka > 1. This fact suggests
Harrington’s simple expression for normal directivity is indeed
a decent estimate of the maximum directivity for Q = 1. It
is also worth noting that the Q = 3 curve intersects the point
ka = 6.75 andD = 19.7 dB (i.e.,> 200%aperture efficiency).
This means that the effective area of an antenna can be twice
as large as the projected area while still achieving a moderate
directivity and bandwidth, which is a promising fact for super-
gain research. This is once again due to the use of modes with
n > ka, which provides a measurable improvement for inter-
mediately sized antennas.

1 2 3

FIGURE 13. Maximum aperture efficiency vs. ka when the stipulated
overall Q = 20. Different curves correspond to using different defi-
nitions for Qn in (40).

Figure 13 plots the maximum possible aperture efficiency
when Q = 20 at larger values of ka. The different curves
correspond to using different definitions for Qn in (40). The
new field-based QPfeiffer closely matches the impedance-based
QYaghjian. The maximum aperture efficiency is always above
unity which agrees with intuition. In contrast, [28, 29] use
Chu’s definition for Qn, which gives in an unphysical result
that suggests the maximum aperture efficiency asymptotically
approaches 0 as ka increases. This is another example showing
that Chu’s definition for Qn can be problematic when applied
to larger antennas since commonplace dish antennas with direc-
tivities > 40 dB, 50% aperture efficiency, and operating over a
waveguide band surpass the derived upper bound on directivity
and/or bandwidth.
The optimal excitation that radiates modes with n > ka

risks reducing the radiation efficiency for practical antennas
that have finite conductivity [25, 2, 5]. Thus, the impact of
material loss could significantly influence the gain-bandwidth
tradeoff that is analyzed here. A relevant data point is to com-
pare our results to [2, 5], which calculates the maximum pos-
sible gain from a spherical wire antenna that is limited only
by material loss (i.e., no bandwidth limitation). For example,
when ka = 6.75 and the surface resistance is 0.01Ω/□ (i.e.,
copper at 1.5GHz), [2] calculates a maximum achievable gain
of 21.6 dB (i.e., 320% aperture efficiency). Our analysis sug-
gests that the minimum possibleQ equals 130 when ka = 6.75
and D = 21.6 dB, which is quite narrowband. This is an ex-
ample where bandwidth limitations might be more of a concern
than material losses, depending upon the application.

6. CONCLUSION
Limitations of previous definitions of antennaQ are discussed.
It is shown that the well-known Chu limit for spherical mode
propagation can dramatically underestimate the impedance
bandwidth, which motivates an updated analysis. Spherical
mode radiation is reexamined, and a new transmission line
model is derived that exactly models the fields. The novel
transmission line model demonstrates that spherical mode
radiation is analogous to wave propagation through a tapered
waveguide with cutoff frequency kr =

√
n(n+ 1). At smaller

radii the waveguide is below cutoff, and the fields do not prop-
agate, but instead evanescently grow/decay. At larger radii,
the waveguide supports propagating modes in the forward and
backward directions. In contrast to Collin and Rothschild’s
analysis [9] as well as many works [15, 30, 31, 27], our model
accounts for the fact that electromagnetic energy generally
propagates slower than the speed of light near the antenna
when the fields are not TEM polarized, and the energy velocity
asymptotically approaches the speed of light in the limit
r → ∞. Transforming radiation into a transmission line
problem provides a precise and intuitive definition for stored
and radiated energy, which in turn leads to a new definition of
Q that is valid for arbitrary spherical mode orders and electrical
size. The updated energy-based Q agrees with the achievable
bandwidth for the wide range of relevant scenarios that are
considered here (e.g., small/large ka and n, non-resonant, self-
resonant, waveguides). This is conceptually attractive since Q
is typically defined in terms of stored and dissipated energy.
In contrast, QYaghjian is a popular complementary definition of
Q that circumvents the notion of stored energy and is instead
defined in terms of impedance bandwidth itself [30].
Next, antenna directivity and bandwidth bounds are consid-

ered. The method of Lagrange multipliers is used to calculate
the first ever definition of the maximum achievable directiv-
ity for a specified Q that is valid for arbitrarily large radiators,
which reconciles previous bounds as special cases. This analy-
sis provides further evidence thatQChu needs updating since the
maximum aperture efficiency asymptotically approaches 0 as
ka increases when Chu’s definition forQ is employed. In con-
trast, the updatedQPfeiffer definition introduced here behaves as
expected with the maximum aperture efficiency approaching
unity as ka increases.
A natural extension of this work is to consider extending the

analysis to non-spherical geometries to provide a tighter bound
for arbitrarily shaped antennas that could also include internal
stored energy. These updated bounds could be used as a ground
truth to compare to more general definitions of Q [21] such as
those relying on the notion of recoverable energy [52, 53] or
Brune circuit synthesis [16].
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APPENDIX A. DISCUSSION ON VARIOUS VELOCITY
DEFINITIONS
The radiative energy velocity defined in (23) complements the
more conventional waveguide group velocity and total energy
velocity. The group velocity, vg, is the speed that a narrowband
pulse propagates along a waveguide and is defined as,

vg =

(
dβ (ω)

dω

)−1

(A1)

The total energy velocity, ve, is the speed at which the total
electromagnetic energy (stored plus radiative) moves along a
waveguide and is typically defined as [54],

ve =
P∫∫

S
UdS

=
1/2

∫∫
S
Re
(
Ē × H̄∗) · n̂dS∫∫
S
UdS

(A2)

where S corresponds to the waveguide cross section and n̂ is
the unit vector normal to the surface. Intuitively, the radiative
energy velocity, group velocity and total energy velocity are all
equal when there is only a forward propagating wave. How-
ever, this is not true when there are two counter-propagating
waveguide modes. For example, the three differently defined
velocities vs. radial position on the spherical waveguide for the
n = 1 mode are plotted in Fig. 14. The three different veloci-
ties diverge near the waveguide cutoff frequency when |Γ| = 1.
However, when kr > 2 the reflection coefficient is vanishingly
small (|Γ|2 < 0.01) and all three velocities converge to a value
that is less than the speed of light.
When the radiative energy propagates at less than the speed

of light, the total energy density exceeds that of a plane wave in
free space carrying the same amount of power. Previous anal-
yses interpreted this increased energy density as stored energy,
which in turn resulted in an increased Q. There is a small win-
dow near cutoff where the radiative energy velocity asymptot-
ically approaches infinity. This creates a continuous transition
in stored energy above and below cutoff since Ur(r) = 0, when
radiative energy velocity is infinite (vr → ∞). While the radia-
tive energy velocity is infinite at cutoff, the total energy velocity
(ve) remains less than the speed of light.
These velocity definitions can readily be applied to arbitrary

waveguides. Therefore, let us also consider a conceptually sim-
pler scenario of the lowest order TE10 mode within a uniform
rectangular metallic waveguide to gain physical insight (see

FIGURE 14. Energy velocities vs. radial position of the TM1m mode.

mode

(a)

(b)

(c) (d)

FIGURE 15. (a) TE10 mode in a rectangular waveguide above cutoff.
(b) Different energy velocity definitions vs. longitudinal position on
the waveguide for the case where |Γ|2 = 0.5 and a =

√
2λ. (c) Total

energy velocity vs. group velocity for different reflection coefficients.
(d) Radiative energy velocity vs. group velocity for different reflection
coefficients.

Fig. 15(a)). The propagation constant of the rectangular waveg-
uide (βrec) is defined by the waveguide dimensions,

βrec(ω) =

√
k2 − (π/a)

2 (A3)

This propagation constant has the same frequency dependence
as the spherical waveguide in (10). Again, let Γ be the ratio
of the tangential electric field of waves propagating in the −z
direction and+z directions. The TE10 mode fields are inserted
into (23), (A1), and (A2) to calculate the three different ve-
locities. Fig. 15(b) compares the velocities vs. longitudinal
position of the waveguide for the case where |Γ|2 = 0.5 and
a =

√
2λ. As expected, the group velocity depends only on

the waveguide size and does not vary with longitudinal posi-
tion. However, the total energy velocity and radiative energy
are spatially dependent on z (or equivalently the phase of Γ).
In other words, electromagnetic energy must speed up and slow
down to maintain a net power flow at a constant rate along the
waveguide.
Figures 15(c) and (d) plot the total energy velocity and ra-

diative energy velocity vs. waveguide group velocity for a few
different values of the reflection coefficient. As expected, the
velocities are all equal when Γ = 0. The velocities are also
physically intuitive when vg = c (i.e., TEMmode) since the ra-
diative energy velocity equals the group velocity and the total
energy velocity is weighted by the percentage of energy flow-
ing in the forward direction. The total energy velocity is always
less than the speed of light, but the radiative energy velocity can
be much larger depending on the group velocity and reflection
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coefficient. For example, near cutoff (vg ≈ 0), when Γ → −1,
with a fixed net power flow (P+ − P−), the sum of the power
flowing in the forward and backward directions (P+ + P−)
grows while the total energy approaches zero. Thus, (23) sug-
gests the radiative energy velocity should grow to infinity. This
result is intuitive because a high energy velocity is associated
with a large power flow and low energy density. While total
energy velocity is proportional to the net power flow ‘through’
the waveguide cross section (P+ − P−), the radiative energy
velocity is proportional to the total power ‘into’ the waveguide
cross section (P+ + P−).
It is also interesting that ve, vr, and vg have a physically intu-

itive relationship when they are averaged over a spatial period
(π/βrec). More precisely, it is straightforward to show that the
TE10 mode of a rectangular waveguide satisfies the following
conditions for arbitrary waveguide size (a) and reflection coef-
ficient (Γ),

π

βrec

[∫ π
βrec

0

1

vr(z)
dz

]−1

= vg (A4)

π

βrec

[∫ π
βrec

0

1

ve(z)
dz

]−1

=

(
1− |Γ(r)|2

1 + |Γ(r)|2

)
vg (A5)

We suspect this relationship is true for arbitrary waveguides
and modes but have not proved it. The integrals on the left-
hand side of (A4) and (A5) represent the time that it takes ra-
diative and total energy to propagate a distance π/βrec, respec-
tively [55]. Therefore, the average velocity is calculated by tak-
ing the ratio of this distance to time. The averaged velocities
agree with the intuition that radiative energy should propagate
at the group velocity, while the total energy velocity equals a
weighted average of the stored energy velocity (i.e., 0m/s) and
the radiative energy velocity (vr).

APPENDIX B. ENERGY DENSITY OF OUTWARD AND
INWARD PROPAGATING WAVES
One of the key results is that the electric energy density of the
outward propagating spherical wave is identical to the magnetic
energy density. Consider any conventional waveguides above
cutoff. The energy density (J/m) in the differential volume be-
tween two adjacent arbitrary cross sections (e.g., within a spher-
ical shell in our case) of the outward propagating magnetic field
(Um+

shell) is identical to that of the outward propagating electric
field (U e+

shell). To illustrate that for spherical waves, (18) can
be derived by substituting in all previously defined quantities.
For simplicity, we will consider spherical modes with m = 0
here, but it can be readily verified that the result also holds for
m ̸= 0.
From (16), the outward propagating magnetic field is related

to the total magnetic field by,

Um+
shell =

µ0

4

∫
4π

∣∣∣H+
ϕ

∣∣∣2 r2dΩ =
µ0

4

∫
4π

∣∣∣∣ Hϕ

1− Γ

∣∣∣∣2 r2dΩ (B1)

Since Substituting Hϕ with the magnetic field for a TMn,0

mode from (3),

Um+
shell =

µ0

4

∣∣∣∣∣∣
Cn

[
krh

(2)
n (kr)

]
1− Γ

∣∣∣∣∣∣
2

2π

∫ π

0

∣∣∣∣dPn (cos θ)
dθ

∣∣∣∣2 sin (θ) dθ (B2)

Upon integration,

Um+
shell =

µ0

4

∣∣∣∣∣∣
Cn

[
krh

(2)
n (kr)

]
1− Γ

∣∣∣∣∣∣
2

4πn (n+ 1)

2n+ 1
(B3)

Above cutoff, we can substitute in the definition of the reflec-
tion coefficient, Γ, from (14),

Um+
shell =

µ0

4

∣∣∣∣∣∣
Cn

[
krh

(2)
n (kr)

] (
ηTMn + ZTM

0

)
2ZTM

0

∣∣∣∣∣∣
2

4πn (n+ 1)

2n+ 1
(B4)

Inserting the characteristic impedance from (11) into the de-
nominator and simplifying results in the magnetic energy den-
sity of an outward propagating wave,

Um+
shell =

k

η0ω

∣∣∣Cn

[
krh(2)

n (kr)
] (

ηTMn + ZTM
0

)∣∣∣2
× πn (n+ 1)

4 (2n+ 1)
(
1− n(n+1)

(kr)2

) (B5)

Likewise, the energy density of the outward propagating
electric field E+

θ,r is related to the total field Eθ,r by (16) and
(17),

U e+
shell =

ε0
4

∫
4π

(∣∣E+
θ

∣∣2 + ∣∣E+
r

∣∣2) r2dΩ

=
ε0
4

∫
4π

(∣∣∣∣ Eθ

1 + Γ

∣∣∣∣2 + ∣∣∣∣ Er

1− Γ

∣∣∣∣2
)
r2dΩ

(B6)

Substituting in the definition of the reflection coefficient above
cutoff from (14),

U e+
shell=

ε0
4

∣∣∣∣∣∣∣∣
Cnjη0

(
d[krh(2)

n (kr)]
dr

)(
ηTMn + ZTM

0

)
2krηTMn

∣∣∣∣∣∣∣∣
2

× 2πr2
∫ π

0

∣∣∣∣dPn (cos θ)
dθ

∣∣∣∣2 sin (θ) dθ
+
ε0
4

∣∣∣∣∣∣
Cnjη0n(n+1)

[
krh

(2)
n (kr)

](
ηTMn +ZTM

0

)
2kr2ZTM

0

∣∣∣∣∣∣
2

× 2πr2
∫ π

0

(Pn (cos θ))2 sin (θ) dθ

(B7)
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The wave impedance of the outward propagating spherical
TM mode (ηTMn ) from (15) and the characteristic impedance
from (11) are inserted into the denominators. In addition, the
Legendre polynomial integration is carried out,

U e+
shell =

ε0
4

∣∣∣∣∣∣
Cnη0

[
krh

(2)
n (kr)

] (
ηTMn + ZTM

0

)
2η0

∣∣∣∣∣∣
2

× 4πn (n+ 1)

2n+ 1

1 + n (n+1)

(kr)
2
(
1− n(n+1)

(kr)2

)


(B8)

The result is then simplified,

U e+
shell=

k

η0ω

∣∣∣Cn

[
krh(2)

n (kr)
] (

ηTMn + ZTM
0

)∣∣∣2
× πn (n+ 1)

4 (2n+ 1)
(
1− n(n+1)

(kr)2

) (B9)

Thus, we show the electric energy density of the outward prop-
agating spherical wave (B9) is identical to the magnetic energy
density in (B5).
It is straightforward to show that the electric and magnetic

energy density of inward propagating waves are also equal.
From (16), the inward propagating magnetic field is related to
the total magnetic field by,

Um−
shell =

µ0

4

∫
4π

∣∣∣H−
ϕ

∣∣∣2 r2dΩ
=
µ0

4

∫
4π

∣∣∣∣ Hϕ

1/Γ− 1

∣∣∣∣2 r2dΩ
=Um+

shell |Γ|
2

(B10)

The energy density of the inward propagating electric fieldE−
θ,r

is related to the total field Eθ,r by (16) and (17),

U e−
shell =

ε0
4

∫
4π

(∣∣E−
θ

∣∣2 + ∣∣E−
r

∣∣2) r2dΩ

=
ε0
4

∫
4π

(∣∣∣∣ Eθ

1/Γ + 1

∣∣∣∣2 + ∣∣∣∣ Er

1/Γ− 1

∣∣∣∣2
)
r2dΩ

=U e+
shell |Γ|

2

(B11)

which is equal to (B10) since U e+
shell = Um+

shell.
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