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ABSTRACT: This paper proposes a novel knowledge-based neural network approach that, in the absence of specific device SPICE mod-
els, can utilize the measured data of actual diode devices to map the existing diode coarse model to a more accurate packaged model
through neural network mapping techniques, thereby achieving precise and efficient modeling of the small-signal characteristics of diode
devices. A knowledge-based neural network model for packaged diodes is proposed, which enhances modeling accuracy by learning the
discrepancies between the diode coarse model and the actual device data. A training method for rapid parameter adjustment is suggested,
where the neural networks within the input and output package modules automatically learn and adjust, continuously optimizing their
internal parameters to enhance modeling efficiency. Modeling experiments conducted on the measurement data of the MA4AGFCP910
diode show that the proposed packaged diode model can effectively and accurately match the small-signal characteristic data of the diode

device.

1. INTRODUCTION

In the field of semiconductor device modeling, the research
on diode modeling has been continuously attracting atten-
tion [1-3]. Traditional modeling methods based on semicon-
ductor physics are widely used due to their strong interpretabil-
ity and adaptability. The equivalent circuit modeling method
models the behavior of diodes by optimizing the values of cir-
cuit components, and its advantages lie in simplicity, low com-
putational cost, and the ability to handle high-frequency is-
sues [4-6] effectively. However, in the face of increasing de-
sign complexity and shorter design cycles, traditional methods
may fall short in terms of efficiency and accuracy. Therefore, it
has become necessary to develop new diode modeling methods
to improve accuracy and efficiency.

Knowledge-based neural network modeling technology is an
application of artificial intelligence in the field of microwave,
utilizing neural networks to simulate the behavior of microwave
components or systems [7-9]. Unlike traditional microwave
modeling techniques that rely on mathematical formulas and
physical laws, this method involves training neural networks
to learn the input-output relationships of microwave devices.
By using a large amount of experimental or simulated data to
train the neural network, it can accurately predict the output of
unknown data, drastically improving efficiency in device de-
sign and reducing the time required for modeling and testing
processes, accelerate the design process, and reduce reliance
on physical prototypes [10—-12]. The knowledge-based neural
network modeling technology [13, 14] offers a fast and flexible
alternative to traditional microwave modeling methods, signif-
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icantly improving design and analysis efficiency while main-
taining a certain level of accuracy.

To improve the accuracy and efficiency of diode modeling,
this paper proposes a novel knowledge-based neural network
approach for the small-signal modeling of packaged diodes.
This approach integrates the package module into a neural net-
work model, thereby enabling the transformation of the existing
coarse diode model into a more accurate packaged model.

2. THE PROPOSED KNOWLEDGE-BASED NEURAL
NETWORK MODELING TECHNIQUE FOR PACKAGED
DIODES

2.1. Proposed Diode Model Structure

To accurately fit the small-signal characteristics of devices, a
diode neural network model structure is proposed in Figure 1.
The proposed model consists of four main modules: input pack-
age module, diode coarse model module, output package mod-
ule, and overall S-matrix analysis module. This design aims
to simultaneously consider the combined impact of the diode
coarse model module and the package modules on small-signal
characteristics. By learning the differences between the diode
coarse model and the actual device data, the neural network
model can improve the accuracy of the modeling. The diode
coarse model module is the core, representing the small-signal
characteristics of the diode. In addition, two package modules
are proposed to represent the behavior of the input and output
package circuits, respectively. The constructed S-matrix anal-
ysis module is used to calculate the S-parameters of the over-
all packaged diode. S-parameter, also known as scattering pa-
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rameter, iS an important parameter that describes the energy
transmission characteristics between the ports of microwave
devices. It can comprehensively reflect the device’s insertion
loss, return loss, and other characteristics.

In the proposed model shown in Figure 1, both the input and
output package modules consist of an Artificial Neural Net-
work (ANN) and an S-parameter calculation module. ANN is
a multi-layer perceptron neural network that captures the be-
havior of the package circuit and represents the relationship
between the frequency f and the five outputs. Specifically,
when ANNI receives the unique input signal frequency f, the
natural variable B! and phases 0{,, 67,, 61,, and 61, of the
S-parameters are obtained. Meanwhile, through ANN2, natu-
ral variables BC and phases 6, 6, 65}, and 05, of the S-
parameters are obtained. B’ and B are used to determine the
amplitudes of the sub-S parameters, such as .S; and S72, which
describe the network’s input reflection and gain characteristics.
The amplitudes of the sub-S parameters reflect the intensity of
these characteristics as they vary with frequency f. The sub-
scripts denote the port numbers of the input/output package cir-
cuit, and superscripts I and O represent the input package and
output package, respectively.

Vectors w; and wo contain all the synaptic weights in neural
networks fann1 and fan neo, respectively. These weights rep-
resent the connections between neurons and are key parameters
for processing input information. During the training process,
the PALSO algorithm is used to continuously adjust and update
vectors wy and ws to optimize network performance. The key
part of the sensitivity analysis of the proposed ANN model is
to analyze the first-order partial derivatives of the output func-
tions fanyn1 and fanno with respect to the weights wy and
wo [15]. The functioning of these two neural networks can be
described as

(B',01,,015,0%,,05,) = fanni(f,w1) (1)

(30’9?170?279513052) = fANN2 (fv WZ) (2)

where fanyn1 and fan o represent multi-layer feedforward

neural networks, and w; and ws are vectors containing all in-

ternal synaptic weights within the neural networks f4 1 and
fAN N2, respectively.

The S-parameter calculation module converts the obtained
natural variables and S-parameter phases into specific S-
parameter values, including the real and imaginary parts of
S11, S12, and Sog. S is not chosen as an output because the
dual network has the relationship S3; = S12, which reduces
the output dimensionality of the input/output modules and
simplifies the model structure. The output of the input package
module is represented as Re(S};) and Im(S};), and the output
of the output package module is similarly represented as
Re(Sg) and Im(Sg). The real and imaginary parts of the S-
parameters are denoted by the prefixes Re and Im, respectively,
with subscripts ij (where ij = 11, 12, 22) indicating the port
numbers of the input/output package circuit, and superscripts 1
and O representing the input and output package, respectively.
According to [13], this paper derives the relationship between
the amplitude and phase, and the real/imaginary parts of

the S-parameters obtained from the S-parameter calculation
module can be described by Formulas (3) and (4).

For the diode coarse model module, the input signals con-
sist of the bias current /. and frequency f, and the output sig-
nals are represented as Re(Sf;T ) and [ m(Sg ). In subscripts ij
(whereij = 11, 12, 21, 22), i represents the incident port of the
signal, while j indicates the port for signal reflection or trans-
mission. Superscripts I and O represent the input package and
output package, respectively.

The overall S-matrix (Scattering Matrix) analysis module is
essential for calculating the S-parameter matrices correspond-
ing to the input package module, diode coarse model module,
and output package module. The module’s output signals,
expressed as Re(S[;) and Im(S})), form the S-parameters
of the modeled object. In subscripts ij (where ij = 11, 12,
21, 22), i represents the incident port of the signal, while
j indicates the port for signal reflection or transmission.
Therefore, the model can perform packaged modeling of
diodes solely through terminal signals, without the need for an
in-depth understanding of their internal and physical structures.

Re(S};) :W%B, x cos (0)), Im(S)) :1+e1*31 xsin (0f;) i=j
I 1 2 I I 1 2 o (3)
Re(sl]) =4/1— (1-‘1—67751) X COS (013)7 Im(S”) =4/1-— (14—67731) X sin (9”) 1 # Vi
and
Re(S9) = 1+e1—BO x cos (09), Im(ST) = 1+61—BO xsin(07) i=j
4)

O 1 2 O o) 1 2 . o) . .
Re(S5;) =4/1 - <1+e7—BO) x cos (0;7), Im(S;;) =4/1— (ﬁ> xsin (05) i #

2.2. Proposed Training Method

To accurately simulate the packaged diode, the proposed
knowledge-based neural network model needs to learn the
device data. Therefore, in the model development, the training
of the neural network is crucial. During the training process,
the system automatically adjusts the weights in the neural

10

14+e

network to achieve precise correspondence between the model
output and actual device data. The training error is the standard
for measuring the learning effect of the model, revealing
the discrepancy between the model output and actual data.
The training process will continue until the errors calculated
from both training and testing data meet the preset accuracy
standards. The error function for the S-parameters of the
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FIGURE 1. The structure of the proposed packaged diode model.
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FIGURE 2. MA4AGFCP910 diode physical appearance.

packaged diode is given in Equation (5).

N
1 n n
E (W)= 5 Y IS, freq” . wiwa) =SBl (5)

n=1

where Sp s represents the S-parameters of the fine model, and
S (+) refers to the S-parameters of the packaged diode model.
Superscript “n” is used to denote the nth set of training or test-
ing data, while superscript “/N” is used to indicate the total
number of training or testing data sets. w; and ws represent
the weight parameters of the input package circuit module and
output package circuit module, respectively, and are the key pa-
rameters that need to be adjusted when using the neural network
to optimize the model.

To improve the efficiency of model optimization, we pro-
pose a novel construction and training method for the pack-
aged diode model. This method is characterized by modular
modeling, which allows different parameters to control differ-
ent characteristics. In the first stage of training, we adjust the
weights w; and wy of the neural network within the package
module, to align the small-signal model with the device data
in S-parameter simulations. In the second stage, we further
train the packaged diode module and package module using S-
parameter data, to improve the overall accuracy of the model-
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FIGURE 3. NSR201 diode internal model structure.

ing. Once training is complete, the proposed model surpasses
existing models in terms of accuracy and is capable of replacing
actual devices for the design and simulation of original circuits.

3. EXAMPLES

In this experiment, to verify the accuracy and effectiveness of
the proposed model, we selected the gallium arsenide (AlGaAs)
inverted chip diode MA4AGFCP910 as the research object,
which is a P-type-Intrinsic-N-type (PIN) diode, and the selec-
tion range of training and testing data is detailed in Table 1.
The frequency range is from 2 to 50 GHz with a step size of
1 GHz. The current range is from 5 to 15 mA with a step size
of 1 mA. Figure 2 shows the physical appearance of the diode
device. The Schottky barrier diode NSR201 model is selected
as the first coarse model. The internal model structure of the
NSR201 Diode is shown in Figure 3. Tests revealed that the
error between the NSR coarse model and actual device data
was 270.58%. Subsequently, a PIN diode model identical to
the MA4AGFCPI10 diode type in Advanced Design System
(ADS) was selected as the second coarse model, and the error
of the PIN coarse model was 164.09%. The mismatch between
the above two coarse models and the device data is not negli-
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FIGURE 4. Comparison of S-parameter measurement data and model at the operating bias point of the MA4AGFCP910 diode (/4. = 5 mA).

TABLE 1. Training data and test data for S-parameters modeling.

Data type Frequency (GHz) Current (mA)
Training data 2:1:50
Test data 2.5:1:49.5

S-parameter simulation

5:5:15
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FIGURE 5. Comparison of insertion loss and return loss values

MA4AGFCP910 diode ({4 = 5mA).

TABLE 2. The parameters for NSR coarse model and PIN coarse model.

Parameter NSR_Value PIN_Value Parameter NSR_Value PIN_Value
IS 123nA 10mA Ibv 7.65 nA 10 A
N 1.28 1 EG 0.69eV 1.11eV
BV 5.338V 50V XTI 2 3
RS 12.2 0hm 0.75 Ohm \2 05V 0.85V
CJO 0.1pF 0.23 pF FC 0.5 0.5

TABLE 3. Training and test errors between diode model and device data.

of various diode models based on NSR at the operating bias point of the

Model type Coarse Model Parameter Optimization Model Proposed Model
NSR Training error (%) 270.58 79.31 0.93
Test error (%) 270.60 79.31 1.03
PIN Training error (%) 164.09 4435 0.90
Test error (%) 164.12 44.36 1.03

gible. The main parameters of the two diode coarse models are
detailed in Table 2.

In the process of model construction, we trained the data for
the two coarse models based on the neural network structure
proposed in Subsection 2.1 and the training method described
in Subsection 2.2. We automatically optimized the neural net-
work parameter weights within each model’s package module
to ensure that the model’s outputs closely approximate the de-
vice data. The construction and training of the proposed model
are carried out in the NeuroModelerplus software, and the val-
idation of the proposed model is implemented in the ADS soft-
ware. Following the training phase, we exported the outputs
of the package modules from the neural network structure to
ADS, where we constructed the NSR packaged model and PIN
packaged model separately for model validation. To assess the
accuracy of the models, we utilized test data that was distinct
from the training set, a step that ensured the model to maintain
a strong generalization capability on unseen data.

By comparing the trained proposed model with the actual de-
vice data, we evaluated the training and testing errors of the
proposed model, with the results presented in Table 2. The
study found that our proposed knowledge-based neural network
method, by considering the impact of encapsulation on device
performance and integrating the encapsulation effect into the
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neural network model, effectively reduced the error between
the coarse model and actual device data, achieving precise fit-
ting of the target device’s small-signal behavior in actual cir-
cuits.

In another study, we compared various modeling methods.
Within the ADS software, we utilized a parametric model-
ing approach to optimize the two previously mentioned coarse
models, namely the NSR Parameter Optimization Model and
the PIN Parameter Optimization Model. The error rate of the
NSR coarse model was reduced to 77.31%, and the error rate of
the PIN coarse model was reduced to 44.35%, as detailed in Ta-
ble 3. Although parametric optimization reduced the model er-
ror, the error was still relatively high. In contrast, our proposed
packaged diode modeling method has achieved more signifi-
cant results in terms of diode device modeling accuracy.

As shown in Figure 4, under a 5-mA bias current, we com-
pared the device data with several different diode models, and
it can be seen that our proposed model is highly consistent with
the device data. Figure 5 illustrates a comparison of insertion
loss and return loss values for various models based on the
NSR diode at a working bias point of 5-mA. Similarly, Fig-
ure 6 presents a comparison of these values for different models
based on the PIN diode under the same bias current condition.
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FIGURE 6. Comparison of insertion loss and return loss values of various diode models based on PIN at the operating bias point of the MA4AGFCP910

diode (g = 5mA).

4. CONCLUSIONS

This paper has proposed a knowledge-based neural network ap-
proach for small-signal modeling of packaged diodes, offer-
ing a new perspective in the field of diode modeling. Com-
pared to traditional parameter optimization methods, the pro-
posed model has significantly reduced the error between coarse
diode models and actual device data, enhancing the modeling
accuracy. Furthermore, the proposed model has integrated the
package module in the neural network to assess its impact on
device performance, which is crucial for precise modeling of
packaged diodes and is often overlooked by traditional meth-
ods. Lastly, the proposed model relies solely on terminal sig-
nals without needing internal structural and physical informa-
tion of the packaged diode. In future work, we intend to refine
the proposed model by integrating the characteristics of diodes
such as transient behavior and noise properties. Meanwhile,
we will also explore the development of modeling methods for
other types of diodes.
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