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ABSTRACT: In this paper, we propose some suggestions for unsolved problems in classical and quantum electromagnetics. We aim to
explain these problems in the simplest way possible. Some issues like the quantum computer may need a lot more work. The subject
matter is interdisciplinary needing international collaboration in many different areas such as physics, math, engineering, and material
science.

1. INTRODUCTION

We approach the writing of this paper with some trepida-
tion as what is unsolved is very much in the eyes of the

beholder. There must be umpteen unsolved problems in the
history of science and technology. What we are covering is
a tiny subset that is confined to the field of electromagnetics.
Electromagnetics is important as it has an enduring legacy that
has impacted our lives for close to 200 years. Modern electro-
magnetics began with the works of Faraday, Ampere, Gauss,
Coulomb, plus the works of many unsung heroes [1, 2]. In the
early days, it was driven by our communication needs, e.g., in
the quest for better telegraphy systems. The simple invention of
the voltage cell [3] allowed one to communicate through long
distances using two wires. By closing and disrupting the con-
nection of the two pieces of wire to a voltage source, one could
send signals along thewires usingMorse code [1]. For instance,
Queen Victoria of England was able to send a signal from Eng-
land to the far reaches of the British Empire as far as HongKong
via submarine cables made of copper wires [4].
However, the propagation of electrical signals on these sub-

marine cables was not well understood. In particular, it was
noted that loss on the cables due to the finite conductivity of
the copper wire distorted the electrical signals. The need for
a quantitative way of describing these signals was obvious: a
mere heuristic understanding of the signals was insufficient. In
the early days, these signals were described by telegrapher’s
equations. The electromagnetic field was not well understood,
and researchers did a humongous amount of experiments to
quantify these fields as laws. In those days, electromagnetics
was quantified in terms of Ampere’s law, Faraday’s law, Gauss’
law, and Coulomb’s law.1

* Corresponding author: Weng Cho Chew (wcchew@purdue.edu).
1These laws, though motivated by experimental observations in the early

days, can actually be derived fromHamiltonian theory and energy conservation
arguments [5].

It was James Clerk Maxwell, in 1865, who quantified these
laws in terms of mathematics and augmented Ampere’s law
with the concept of displacement current [6]. Subsequently,
the four main equations of electromagnetics have been known
as Maxwell’s equations.

2. LOW-FREQUENCY BREAKDOWN PROBLEM 2

The well-known Maxwell’s equations, reported in many text-
books, in the time domain are [7, p. 81]

∇× E = − ∂

∂t
B, (1)

∇×H =
∂

∂t
D+ Jim, (2)

∇ · D = ϱim, (3)
∇ · B = 0, (4)

where Jim and ϱim are impressed current and charge sources.
The above four equations are not all independent. By taking the
divergence of the first two equations, it can be shown that the
third and the fourth equations can be arrived at after using the
current continuity equation;

∇ · Jim = − ∂

∂t
ϱim. (5)

It has the physical meaning of charge conservation.
By assuming time-harmonic dependence of the form

exp(−iωt), Maxwell’s equations can be written in the
frequency domain as

∇× E = iωB, (6)
∇×H = −iωD+ Jim, (7)

2This problem is largely solved. But we will report this problem for com-
pleteness. We shall explain this problem in the simplest way possible using
Einstein’s dictum.
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∇ · D = ϱim, (8)
∇ · B = 0, (9)

where the charge conservation (the continuity equation) can be
derived by taking the divergence of (7) and using (8), viz.,

∇ · Jim = iωϱim. (10)

Again, the third and the fourth equations can be derived from
the first two by taking their divergences, and then invoking the
current continuity equation or charge conservation.
The above equations are not independent, since the third and

the fourth equations are derivable from the first two, oftentimes,
only the first two equations are solved. In mathematics, the
sources in these equations, Jim and ϱim need to be stipulated
or are known. Together, they form the driving terms for the
equations of motion. But there are four unknowns inMaxwell’s
equations E, B, H, and D. Since the above has only two inde-
pendent equations with four unknowns, two more equations are
needed. For linear problems, these additional equations are the
constitutive relations, viz.,

D = εE (11)
B = µH. (12)

Now, the above system, (6) to (9) can be solved. To this end, we
can proceed to eliminate B and H from the first two Maxwell’s
equations using the constitutive relations to arrive at

∇× 1

µ
∇× E− ω2εE = iωJim. (13)

In the low-frequency case, the second term on the left-hand side
of (13) is less important than the rest of the equation because
when ω → 0, O(ω2) ≪ O(ω). In the spirit perturbation anal-
ysis [8], the leading order approximation to the above equation
is

∇× 1

µ
∇× E ≈ iωJim. (14)

The curl operator does not have a unique inverse because it has
a null space. In other words,

∇×∇Ψ ≡ 0. (15)

The above equation, (14), cannot be solved uniquely for this
reason. If the above is converted to a matrix equation by the
subspace projection method [9, Chap. 36, Sect. 36.1.1], or by
finite-difference [9, Chap. 37], the corresponding matrix equa-
tion is also singular and not invertible.

3. REMEDY TO LOW-FREQUENCY BREAKDOWN
The remedy to low-frequency breakdown is to seek a solution
that satisfies all fourMaxwell’s equations. This can be achieved
by using the vector-scalar potential formulation or theA-Φ for-
mulation [10]. To this end, we have

B = ∇× A (16)
E = −∂tA−∇Φ. (17)

Consequently, it can be shown that, for the homogeneous
medium case, after using the Lorenz gauge that ∇ · A =

−µε∂Φ
∂t , Φ and A satisfy the following equations [7, p. 66]

∇2Φ− µε∂2
tΦ = −ϱ/ε (18)

∇2A− µε∂2
tA = −µJ. (19)

When the frequency ω → 0, ∂t = 0, and the above becomes

∇2Φ = −ϱ/ε (20)
∇2A = −µJ. (21)

The above is the Poisson’s equation, and the vector Poisson’s
equation, respectively [11]. The important point is that the
Laplacian operator ∇2 is a negative definite operator. In a
word, if the Laplacian operator is converted to become a matrix
operator, it has eigenvalues that are always less than zero, but
never identically equal to zero. Or the Laplacian operator does
not have a null space or the A-Φ formulation removes the null
space.
Even though the Laplace problem is solvable, it is still

ill-conditioned as the discretization density of the mesh in-
creases [12, 13]. Iterative solvers are in vogue these days be-
cause they can be made matrix-free greatly reducing memory
requirements [14, p. 59]. The challenge here is to develop an
iterative solver that has a uniform convergence rate from statics
to optics.

4. ELECTROMAGNETIC THEORY AND GEOMETRY
Even though electromagnetics fields live in the 3D space, it is
not a simple extension of the 1D space. In some communities of
scholars, the electromagnetics fields that live in this space can
be divided into curl conforming type as well as divergence con-
forming type [15, 16]. In another community, electromagnetic
theory can be intimately related to geometry. This has been
noted by a number of researchers. Rumor has it that Maxwell
himself was aware of it [17]. For instance, Yang-Mills the-
ory is known also as a generalized electromagnetic theory [18].
Electromagnetic theory can also be expressed using differen-
tial geometry language as in differential forms [19]. De Rham
complex and Whitney forms are concepts that grow out of this
community of scholars [20].
At this juncture, it may be of interest to introduce differential

forms, concepts derived from differential geometry to describe
electromagnetic theory [21]. According to this theory, space
has texture (or structure) that are often ignored in old calculus
that assumes space is infinitely divisible. But in differential
geometry, space has texture: In this space, different kinds of
vector fields live in it. Some fields live on a line or a contour,
and they form mutually exclusive field lines, called one-forms,
that are intertwined.
The fluxes B are two-forms that are associated with an incre-

mental surface. In a textured space, B and H are two different
forms, and they cannot be connected point-wise as in the old
continuum calculus. They live in different parts of the textured
space. Some B field lives as fluxes which are measured by the
number of field lines that passes through an incremental area.
There have been lots written about this subject, and we

will not delve into the details here [19, 21–24]. Consequently,
Maxwell’s equations can be represented in differential forms
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as [21, 25, 26]:

dE = iωB, (22)
dH = −iωD + J, (23)
dD = ϱ, (24)
dB = 0, (25)

where E and H are 1-forms representing the electric field and
magnetic field, respectively;D andB are 2-forms representing
the generalized electric flux density and magnetic flux density,
respectively; the impressed current density J is a 2-form and the
impressed charge density ϱ is a 3-form. Note that ϱim in (8) is
the impressed charge density in classical vector calculus, while
ϱ in (24) is the impressed charge density in differential geome-
try. They are related quantities.
We can imagine 1-forms to be field lines that live on line

contours in a 3D space; 2-forms to be fluxes associated with in-
cremental areas in a 3D space where flux field are linked. The
scalar quantity like charge density is associated with incremen-
tal volumes in a 3D space. (The scalar potential is not used
in this section, and it is associated with a point in space, and is
considered to be a 0-form.) Hence, we can visualize a 3D space
as more richly textured with different kinds of fields living in
it: scalar fields, vector fields, and flux fields, and charge den-
sity. Associated with these fields, there are sources that are like
line currents J which are the 2-forms and sources that are like
charges ρwhich are the 3-forms. More discussion can be found
in [27, 28].
With the above picture in mind, we see that field lines live in

a different “space” compared to fluxes. Hence, fluxes cannot
be directly related to field lines locally: they have to be related
by Hodge-star operators:

D = ⋆(1)ϵ E, (26)

H = ⋆
(2)
µ−1B, (27)

where ⋆(1)ϵ and ⋆(2)µ−1 are called the Hodge star operators. They
can be thought of as an operator that maps fields that live on
curved lines to fields that link incremental surfaces.

5. DISCRETE EXTERIOR CALCULUS
In the discrete, computational world, the field lines are approx-
imated by their average values on incremental line segments,
and the fluxes are replaced by their average values at cross-
sectional incremental surface segments. Since they live in dif-
ferent spaces, a primal mesh and a dual mesh have to support
them in the discrete world (see Figure 1). More discussions can
be found in [25, 26, 29–31].
It has been shown that the A-Φ formulation does not have

low-frequency breakdown [32–36], and hence, we will use this
formulation here. For inhomogeneous media, the A-Φ formu-
lation gives the following partial differential equation to be
solved [10]:

∇× 1

µ
∇× A− ω2ϵ̃A− ϵ̃∇[χ−1∇ · (ϵ̃A)] = Jim,(28)

∇ · (ϵ̃∇Φ) + ω2χΦ = −ϱim, (29)

FIGURE 1. The primal and dual mesh based on the centroids of the
primal mesh in the 2D case. More details are discussed in [28].

where χ = αµϵ̃2. Here, α is arbitrary and nonzero.
Upon discretization using discrete exterior calculus [26, 29],

we arrive at (
d(1)

)T

⋆
(2)
µ−1d

(1)
A− ω2⋆(1)ϵ A

+ ⋆(1)ϵ d(0)⋆(3)χ−1

(
d(0)

)T

⋆(1)ϵ A = J , (30)

−
(
d(0)

)T

⋆(1)ϵ d(0)Φ+ ω2⋆(0)χ Φ = −ϱ. (31)

In the above, Φ and A are the cochain vectors defined
in [25, 28], respectively; ϱ is the cochain vector in [25, 28]; J
is dual 2-cochain vector for the impressed current density.
The subspace projection method [9, Chap. 36, Sect. 36.1.1]

can be used to find the matrix representation of the Hodge-star
operators. In other words,[

⋆(1)ϵ

]
i,j

=
⟨
W1

i , ϵ̃ ·W1
j
⟩
, (32)

[
⋆
(2)
µ−1

]
i,j

=
⟨
W2

i , µ
−1 ·W2

j
⟩
, (33)

[
⋆(0)χ

]
i,j

=
⟨
W 0

i , χ ·W 0
j
⟩
, (34)

whereW1
i is the Whitney 1-form associated with primal edge

li;W2
i is the Whitney 2-form associated with primal face Si. ϵ

and µ are piecewise constant parameters within each tetrahe-
dron. Note that the Galerkin Hodge star operators are highly
sparse, but not diagonal. Moreover,W 0

i is the Whitney 0-form
associatedwith primal node pi defined inχ; it can be considered
as a piecewise constant parameter within each tetrahedron.
The holy grail is to construct Hodge-star operators that are

diagonal. Given the overlapping nature of the basis functions,
the above operators are not diagonal. If we think of FDTD as
a special case of DEC, the corresponding Hodge-star operator
in FDTD is diagonal. Desbrun’s group has a way to make the
Hodge-star operators diagonal [37]. The remaining question is
if a simpler approach exists.
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This problem has plagued the CSE community. Often, these
operators are called mass operators, and the lumped-mass ap-
proximations have been used to seek their diagonal form [38].
The diagonal forms of these operators will make their inversion
easy. It is to be noted that when FDTD [39] is used to find the
matrix representation of Maxwell’s equations, the matrices are
all diagonal, including the analog of the Hodge-star operators.

6. THE ELLIPTIC PDE PROBLEMS
The Laplace equation is important in many technologies. It is
encountered in low-frequency electromagnetics as the wave-
length becomes very long. Following the classification of PDEs
from eons ago [40], these are classified as elliptic PDEs. Very
simply put, the Laplace equation is

∇2Φ(r) = S(r) (35)

whereΦ(r) is the scalar field, whileS(r) is a scalar source term.
We compare the above with the Helmholtz equation which is(

∇2 + k2
)
Φ(r) = S(r) (36)

where k = ω/c where c is the velocity of the wave. The
Helmholtz equation is termed the hyperbolic partial differen-
tial equation [40] because, in the time domain, it can support
the propagation of singular fields [41, p. 528].
One sees that the Helmholtz equation reduces to the Laplace

equation when c → ∞. This implies that in the Laplace equa-
tion, the information travels at infinite speed across the simula-
tion domain. This fact can be used to speed up the convergence
of iterative solvers for elliptic equations. This means that if a
coarse grid is used to solve these equations, the approximate
solution is aware of the entire simulation domain. To obtain a
refined solution, the mesh is refined, but using the coarse grid
solution as an initial guess for the fine-mesh solution. If an iter-
ative solver is used to solve the matrix equation, a good initial
guess can speed up its convergence.
This is the spirit of the multi-level multi-grid method where

coarse grid solutions are used to initial-guess the fine grid so-
lutions [42, 43]. This allows the solution to converge quickly
irrespective of the size of the simulation domain. In a word, the
iterative solution converges in C steps where C is independent
of domain size. Such iterative solvers are known to converge
in O(1) steps.
Another characteristic of the Laplace solution is that it is in-

finitely smooth away from source regions. This can be appre-
ciated by observing the Green’s function of the Laplace solu-
tion [44]. In three dimensions for Laplace’s equation, Green’s
function (also called the fundamental solution by themath com-
munity) is given by

G(r, r′) =
1

4π|r − r′|
. (37)

Observing this Green’s function on the x-axis, or letting |r −
r′| = x, and taking its derivatives, we have

∂

∂x

1

|x|
= − 1

|x|2
→ 0, x → ∞ (38)

∂2

∂x2

1

|x|
= − ∂

∂x

1

|x|2
=

2

|x|3
→ O

(
1

x3

)
, x → ∞ (39)

∂3

∂x3

1

|x|
=

∂

∂x

2

|x|3
= − 6

|x|4
→ O

(
1

x4

)
, x → ∞. (40)

From the above, notice that the higher-order derivatives of the
kernel3 actually become smaller the further one is from the
source point. This implies that the field is becoming smoother
as one gets away from the source point. Because of the smooth-
ness of the field, elliptic equations are noted for their inability
to propagate singularity (or information) in the time domain.
In contrast, we look at the wave (Helmholtz) equation next

which is a hyperbolic equation [40].(
∇2 + k2

)
G(r, r′) = −δ(r − r′). (41)

For the point source located at r′, the Green’s function in 3D is

G(r, r′) =
eik0|r−r′|

4π|r − r′|
. (42)

Observing the Green’s function on the x-axis as before, the
higher-order derivatives of an oscillatory kernel behave as fol-
lows:

∂

∂x

eik|x|

|x|
=−e

ik|x|

|x|2
+ik

eik|x|

|x|
→ O

(
1

x

)
, x→∞ (43)

∂2

∂x2

eik|x|

|x|
: −k2

eik|x|

|x|
+H.O.T. → O

(
1

x

)
, x→∞ (44)

∂3

∂x3

eik|x|

|x|
: −ik3

eik|x|

|x|
+H.O.T. → O

(
1

x

)
, x→∞ (45)

where H.O.T . stands for ‘higher-order terms’. Notice that ir-
respective of the number of derivatives, there is always a resid-
ual O(1/x) term regardless of how far we are from the source
point. Moreover, the higher-order derivatives become larger
with increasing frequency. Hyperbolic equations are noted for
their ability to propagate information over long distance. Elec-
tromagnetic waves, manifesting themselves as photons, can
send information across the galaxy.
The unsolved problem in wave physics is that there a com-

putational, error-controllable method to solve these problems in
O(1) iterations. One way is to have a quantum computer where
the math operations can be executed in parallel using quantum
parallelism. But we have yet to build a quantum computer.
At this point, it is prudent to mention that fast integral equa-

tion solvers (IES) have been actively researched. The advan-
tage of IES is that information is send across a computational
domain using the Green’s function. The information can be
sent across the domain per every matrix-vector product. Using
stationary-phase method, oscillatory integrals can be evaluated
efficiently. In this manner, O(1) iterations can achieve con-
vergence. This idea has been promulgated by Bruno and his
team [45, 46].

3A term to mean the Green’s function in the math community.

82 www.jpier.org



Progress In Electromagnetics Research, Vol. 180, 79-87, 2024

7. LEAST ACTION OR ENERGY CONSERVATION?

7.1. Least Action Principle
The Lagrangian formulation is based on the least action. Taking
a simple pendulum as an example, the Lagrangian of the system
is [47, p. 8]:

L(q̇, q) = T − V (46)
where q̇ is the velocity. For a fixed t, q and q̇ are independent
variables, since q̇ cannot be derived from q if it is only known
at one given t. The equations of motion are derived from the
principle of least action which says that q(t) that satisfies the
equations of motion between two times t1 and t2 should mini-
mize the action integral

S =

∫ t2

t1

L(q̇(t), q(t))dt. (47)

Assuming that q(t1) and q(t2) are fixed, then the function
q(t) between t1 and t2 should minimize S, the action. In other
words, a first-order perturbation in q from the optimal answer
that minimizes S should give rise to a second-order error in S.
Hence, taking the first variation of (47) should be zero. Thus,
we have [47, 48]

δS= δ

∫ t2

t1

L(q̇, q)dt=

∫ t2

t1

L(q̇+δq̇, q+δq)dt−
∫ t2

t1

L(q̇, q)dt

=

∫ t2

t1

δL(q̇, q)dt=

∫ t2

t1

(
δq̇

∂L

∂q̇
+ δq

∂L

∂q

)
dt = 0. (48)

We can show that for the above to vanish, after using integration
by parts on the term that contains δq̇, it is necessary that

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (49)

The above is the Lagrange equation from which the equation
of motion of a pendulum can be derived. For this, we let the
kinetic energy T = 1

2mq̇2 and the potential energy V = 1
2κq

2

where κ is the spring constant. Using the Lagrange equa-
tion (49), we can show that

mq̈ = −κq. (50)

The above is the equation of motion of a pendulum.

7.2. Hamiltonian Theory Based on Energy Conservation
Hamiltonian theory, developed byWilliam R. Hamilton (1805–
1865), is motivated by energy conservation [49]. The Hamil-
tonian H of a dynamical system is given by its total energy,
namely that

H = T + V =
p2

2m
+

1

2
κq2 (51)

where T is the kinetic energy, and V is the potential energy of
the system. For a simple pendulum, the kinetic energy T and
the potential energy V are given by

T =
mv2

2
=

m2v2

2m
=

p2

2m
, V =

1

2
κq2. (52)

In the above, p = mv is the momentum of the pendulum
weight, and q, as before, is its position. Here, p and q are termed
independent conjugate variables.
But p(t) and q(t) time evolve together to conserve energy or

to keepH , the total energy, constant or independent of time. In
other words,

d

dt
H (p(t), q(t)) = 0 =

dp

dt

∂H

∂p
+

dq

dt

∂H

∂q
. (53)

Therefore, the Hamilton equations of motion are derived to be4

dp

dt
= −∂H

∂q
,

dq

dt
=

∂H

∂p
. (54)

Combining the two equations in above, we have

mq̈ = −κq (55)

The above is the same equation from least action and, which is
also derivable by Newton’s law.

8. THE 3 GHZ BOTTLENECK IN THE COMPUTER CHIP
The 3GHz cap (see Figure 2) is due to joule heating in the mi-
crochip [9, p. 192]. A MOSFET (transistor), driven by a power
delivery network via the interconnects can be modeled simply
as a gate capacitance (see Figure 3). The metal loss in the inter-
connects can be modeled as a resistorR in series with a voltage
source V . As the frequency increases (due to increased clock
rate), more current flows through the capacitance, and hence
through the resistor increasing the I2R loss giving rise to joule
heating. This causes the microchip to heat up, forcing the clock
rate to saturate at 3GHz.5
One way to overcome joule heating is to use microwave and

optical interconnects. They permit the increase in data rate
without the corresponding joule heating [50–52]. The deterrent
has been the cost of such interconnects.

9. WHY HAVE WE NOT BUILD A WORKING QUANTUM
COMPUTER YET?
The promise of quantum computers is tremendous: With
quantum parallelism (also called advantage or supremacy),
a fast Fourier transform has a computational complexity
of O(n logn) on a classical computer, but with quantum
computer, it has a complexity of O((logn)2) [53]. Despite
this, we have not been able to build a working quantum
computer yet. The answer is simple: we do not have yet
the knowledge base to build a quantum computer. We are
now stagnating in the era of NISQC (noisy intermediate-scale
quantum computer) [54, 55].

4Note that the Hamilton equations are determined to within a multiplicative
constant, because one has not stipulated the connection between space and time,
or we have not calibrated our clock [49].

5Some chips are operating from 5 to 7GHz in the booster mode unsustain-
ably.
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FIGURE 2. The semiconductor trends reveal the self-fulfilling prophesy of Moore’s law. Ingenious engineering and 3D architecture of the microchip
design allow the transistor and core counts to improve the performance of the microchip. Also, the clock rate (frequency) has not increased in the
last two decades due to joule heating.

FIGURE 3. MOSFET driven by a power delivery network via the in-
terconnects can be modeled simply as a gate capacitance that models
the MOSFET transistor (more in the text). (This physical picture was
explained lucidly to the author (WCC) by Paul Y. S. Cheung of HKU.).

9.1. Need to Mitigate the Noise Sources and Improve the S/N
Ratio

Due to the maturity of microwave technology, most of the
NISQC relies on usingmicrowave photons via superconducting
qubits [56–58] (and references therein). Microwave photons
are about 1 million times weaker than optical photons. Super-
conducting qubits work with Cooper pairs and there are three
major sources of noise for these qubits: thermal photons [59]
from the environment, microwave photons from the phonon
baths [60], and breaking of the Cooper pairs [61–64]. Hence,
a microwave photon is very susceptible to the aforementioned
microwave noise pollution. However, an optical photon will
give us a better signal-to-noise ratio. This gives us a strong
reason to move away from using microwave photons.

9.2. Use Natural Bosons-Photons

The reason for Cooper pairs used in superconducting qubit and
many of the NISQC is that they are quasi bosons exhibiting co-
operative behaviours, and hence superconductivity. However,
photons are also quantum particles which are natural bosons.

For optical photons with high frequencies, they are easily de-
tectable. They also show the cooperative behaviour of bosons
as in optical fiber: they can propagate with loss as low as
0.14 dB per kilometer [65].
In a laser cavity, they work cooperatively to produce co-

herent radiations [66]. Furthermore, in a mode-locked laser,
which supports a short pulse which is broadband, different fre-
quency components lock their phases together to form a short
pulse [67, 68].
Further, we could use a number of noise-reduction technique

such as multi-shot averaging to improve the signal-to-noise of
the quantum system [69, 70]. We could create signal phase and
amplitude stability with mode-locked signals [67, 68].

9.3. Using Dielectric Resonators as Quantum Qubits

Given the shorter wavelengths of optical frequency, it is possi-
ble to use dielectric particles as resonators [71, 72]. They can
replace the superconducting transmons where the Josephson
junction and a capacitor act as nonlinear LC resonator circuit.
Here, nonlinear dielectrics or crystals can be investigated to
build resonators resembling the transmons but at a much higher
frequency without the need for cryogenics since these photons
have higher energy.
With these qubits operating at room temperature, they follow

the path of technology development of masers and semiconduc-
tor lasers. Masers [73] first operated with microwave photons
requiring cryogenics but was subsequently replaced by lasers
without needing cryogenics [74, 75] (see Wiki also).
Another technology that follows this pathway is the semi-

conductor laser [76, 77]. In the beginning, it needed cryogen-
ics for it to lase, but with clever design where both photons
and electron-hole pairs are confined together in a tight space, it
could operate (or lase) at room temperature. There were many
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unsung heroes and Nick Hononyak made the first visible light
laser diode (see Wiki also).

9.4. Quantum Measurements
Another challenge problem is on quantum measurements.
Quantum observables are random, and many measurements
are needed to reach a stable solution. For instance, quantum
phases are important in ascertaining the eigenvalues of unitary
operators. To be able to measure the phases accurately is
important in quantum Fourier transforms, which could be
important in electrical engineering [53]. This is an active field
of research.

10. CONCLUSIONS
The above are some incomplete suggestions for unsolved prob-
lems in classical and quantum electromagnetics. They are
meant to motivate and stimulate the thinking of young re-
searchers in this field. Hopefully, these researchers will rise
to these challenges. Moreover, some problems in the quantum
computer may need a lot more work. The subject matter is in-
terdisciplinary needing international collaboration in many dif-
ferent areas such as physics, math, engineering, and material
science.
With the advent of AI, whole sleuth of problems open up for

future research in electromagnetics. We can exploit AI in the
synthesis and analysis of modern electromagnetics technolo-
gies. An excellent book has been written by S. D. Campbell,
and D. H. Werner on this topic [78].
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