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ABSTRACT:Reinforced concrete plays a vital role in the construction industry. Therefore, it is necessary to evaluate the parameters such as
the number, diameter, and protective layer thickness of rebar in concrete during and after the construction process. In this paper, we take the
pulsed eddy current detectionmethod as the principle, build the relevant experimental system, collect the data samples about the parameter
information of the rebar, and propose an intelligent algorithm based on Convolutional Neural Network with Long Short-Term Memory
(CNN-LSTM) based on Convolutional Block Attention Module (CBAM), which is capable of automatically extracting the relevant
features of information-rich PECT signals, and the CBAM is introduced into CNN to enhance its feature extraction capability, which
improves the accuracy and interpretability of CBAM-CNN-LSTM in predicting rebar information. In order to verify the performance of
the method, traditional CNN, LSTM, and CNN-LSTM algorithms were used for comparison, and the prediction results were evaluated
by the decision coefficient (R2), Explained Variance Score (EVS), Root Mean Square (RMSE), and Mean Absolute Error (MAE). The
experimental results show that the method is able to accurately predict the specimen information with good prediction accuracy and
stability as the average error of the prediction of the number is reduced by 50% and the average error of diameter and thickness prediction
reduced by 20% and 3% after adding the CBAM.

1. INTRODUCTION

Reinforced Concrete (RC) structures are widely used in the
construction industry because of their high strength, design

flexibility, long service life, and low cost. Since the quality of
reinforcement in concrete plays a key role in the overall qual-
ity of the building structure, it is crucial to test the diameter,
quantity, and thickness of the protective layer of rebar during
the construction process. At present, Non-Destructive Testing
(NDT) is favoured by scholars, experts, and testing engineers
because it does not cause any damage to the object to be tested
in the testing process [1]. Instead, it involves an indirect test-
ing of the object by observing changes in physical or chemical
reactions caused by its structural abnormalities. Among them,
Radiographic Testing (RT) [2], Infrared Thermographic Test-
ing (INT) [3, 4], Radio Detection and Ranging (RADAR) [5, 6],
and Eddy Current Testing (ECT) [7] can be used as methods
for NDT of reinforcing steel. Although the former three detec-
tion methods have advantages such as high precision and visu-
alisation of detection results, they all have drawbacks such as
high detection costs, complex operation, and a certain degree
of harm to the surrounding environment and operators. Com-
paredwith thesemethods, ECT is one of themost suitablemeth-
ods for rebar measurement due to its low cost, easy operation,
and high accuracy in detecting results [8]. Pulsed eddy current
testing (PECT) is an important branch of ECT. Compared with
ECT, PECT has the advantages of rich frequency components,
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stronger penetration ability, and the ability to balance the depth
of detection and accuracy. Its operating principle is the Law
of Electromagnetic Induction, which obtains the information
about the object being measured through the amount of change
in the voltage of the detector coil or changes in the magnetic
field [9, 10].
However, the main challenge in rebar detection using PECT

technology is the inverse solution required to extract informa-
tion about the tested parts from the detection data. Due to the
close proximity of multiple reinforcement bars, as well as im-
proper or uneven concrete pouring, some problems are easy to
appear such as steel deviation, high and low positions of steel
bars. These issues can impact the detection values in actual
measurements. The inverse solution algorithm is challenging as
it needs to extract various features from numerous relevant de-
tection values and provide accurate information about the spec-
imen. At present, the anti-solution algorithm is roughly divided
into two types: one is the database matching method. The rele-
vant data on various operating conditions are collected through
field measurements. Subsequently, a database is established in
the Microcontroller Unit (MCU) to make the detection value
correspond to the information of the rebars. This method re-
quires a large amount of data collection in the early stages to
support the establishment of the database. At the same time,
the applicability is low. The same set of databases is not appli-
cable to all reinforced concrete. The other is the traditional neu-
ral network method. Machine learning methods such as Back
Propagation (BP) neural networks and Support Vector Machine
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(SVM) are used to interpret reinforced concrete data [11, 12].
These methods establish a nonlinear mapping between the de-
tection values and the information of rebar diameter and thick-
ness. On one hand, the process of manually extracting features
is both laborious and time-consuming. On the other hand, this
approach could result in the loss of vital information when ex-
tracting features manually, and these drawbacks are often un-
avoidable in machine learning applications. However, deep
learning can be applied to the RC detection process for better
automation and efficiency. It can automatically learn features
directly from raw data in an end-to-end manner, eliminating the
need for manual feature extraction and rule definition [13].
In recent years, many scholars have combined various types

of traditional models and made full use of their respective ad-
vantages, thus enhancing the performance of the overall model.
For example, in medical field, Petmezas et al. [14] proposed
combining Convolutional Neural Network with Long Short-
TermMemory (CNN-LSTM) models to accurately detect atrial
fibrillation in ECG examinations. In industrial field, Elmaz et
al. [15] predicted indoor temperature modeling using a black-
box CNN-LSTM architecture and compared its performance
with Multilayer Perceptron (MLP) and LSTM. CNN-LSTM
outperformed all other models in all prediction ranges and
showed better robustness to error accumulation. Kim et al. [16]
designed a model for predicting energy consumption in housing
using CNN-LSTM neural networks. They analyzed and iden-
tified the factors that have the most significant impact on pre-
dicting electricity consumption. In the area of time series fore-
casting, Hou et al. [17] used a CNN-LSTM network model to
forecast future hourly temperatures. Yan et al. [18] proposed
the use of CNN, LSTM, and CNN-LSTM based on spatiotem-
poral clustering to establish a multi-time, multi-site forecasting
model of Beijing’s air quality and to compare themwith a back-
propagation neural network (BPNN). Nevertheless, the magni-
tude of the detection signal is related to the distance from the
rebar in this paper, which is a dynamic process. In other words,
the signal value increases as the distance decreases. Therefore,
the collection of a series of test values can also be considered
as time-series data, and in the above literature, Convolutional
Neural Network (CNN) has demonstrated excellent feature ex-
traction of raw data, while Long Short-Term Memory (LSTM)
networks have shown the ability to capture time-series infor-
mation and long-term dependencies [15, 19]. In this paper, a
network architecture based on CNN-LSTMwith Convolutional
Block Attention Module (CBAM) [20] is proposed for auto-
matic prediction of rebar information. The network primarily
consists of CBAM, CNN, and LSTM. CNNs are initially em-
ployed to automatically extract features from the rebar signal
data. However, CNNs can only extract features through con-
volution and pooling operations. As a result, they do not au-
tomatically focus on the importance of different channels and
spatial locations. They focus solely on local information and
lack the full use of global contextual information effectively.
CBAM has the advantage of increasing the importance of each
channel and location, using global information to enhance fea-
ture representation capability [20]. Therefore, CBAM is cho-
sen to compensate the shortcomings during conventional CNN
feature extraction. Finally, the extracted features are fed into

the LSTM to learn temporal correlation properties for predic-
tion. It has been experimentally verified that the proposed net-
work model has good prediction and generalization capabili-
ties. Finally, the remaining sections of this paper are as follows.
Section 2 describes the experimental system and samples. Sec-
tion 3 details the overall structure of CBAM-CNN-LSTM and
the role of each component. Section 4 analyzes and discusses
the experimental results. Finally, Section 5 provides conclu-
sion.

2. EXPERIMENTAL SYSTEMS AND SAMPLES

2.1. PECT System
The detection principle model is shown in Fig. 1. When the ex-
citation coil is pulsed, the alternating current I1 causes a rapid
decay of the magnetic field B1. The downward propagation of
B1 will be interrupted by the magnetic inductance line when
it encounters the rebars, resulting in the generation of transient
eddy currents I2 on the surface, which produces the opposite
transient magnetic field B2. The magnitude of B2 is related to
the magnitude of the eddy currents and depends on the physical
factors of the conductor specimen under test, such as magnetic
permeability, electrical conductivity, size, and shape. Simulta-
neously, it is also associated with the distance from the spec-
imen to the coil and the excitation frequency of the excitation
coil. Finally, the equivalent impedance of the excitation coil is
influenced by the reverse magnetic fieldB2, which is then con-
verted into a voltage output for detection by the detection coil.

FIGURE 1. PECT principle model diagram.

The diagram of the experiment in this study is shown in
Fig. 2(a), and the PECT detection system mainly consists of
four components, including rectangular coil array type sensors,
power amplifier circuit, signal conditioning module, and data
acquisition module. Based on the directional nature of rectan-
gular coils and their capability to produce a uniform distribution
of eddy currents, along with the geometry of the object being
measured, the rebar can be easily positioned [21]. The sensor
part consists of one excitation coil and four detection coils inde-
pendently. The specific sensor parameters are shown in Table 1.

As shown in Fig. 2(b), the experimental procedure began
with the use of the square wave signal from the FY6300 sig-
nal generator to drive the coil. The square wave signal is set
to have a duty cycle of 50%, an amplitude of 5V, a rise time
of 1µs, and a frequency of 200Hz. Since the maximum cur-
rent output from the signal generator is only mA, which is in-
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(a)

(b)

FIGURE 2. Detection System. (a) Diagram. (b) Application.

TABLE 1. Parameters of the rectangular coil.

Parameters Exciting coil Detecting coil
Number of turns N 200 500
Inner radius di (mm) 55 8
Outer radius do (mm) 67 20

Height h (mm) 2 2

sufficient to drive the excitation coil directly, it is necessary to
design a power amplifier circuit to amplify the current flow-
ing into the excitation coil. Metal-Oxide-Semiconductor Field-
Effect Transistor (MOSFET) has the advantageous character-
istics of high input resistance and low control current, and is
commonly used in amplification circuits and switching circuits,
so N-channel MOS is used as the main control chip for power
amplification circuits. Then, the amplified current flows into
the excitation coil, and the induced voltage signal is received
through the detection coil. The magnitude of change is also
small, which needs to be processed in two ways: amplification
and filter. Therefore, a signal conditioning circuit has been de-
signed. The signal amplifier module uses a differential ampli-
fier circuit, which has excellent performance in anti-jamming
ability, signal processing precision, and common mode inter-
ference suppression. Because of the interference of the external
environment, high frequency harmonics are introduced in the
experiment, so the RC low-pass filter is used to filter out these
high frequency harmonic signals. Finally, the processed signal
is connected to the analog channel of the NI-USB-6351 data
acquisition card. At the same time, USB is used to connect the
NI-USB-6351 with the computer, and the output signal is saved
to the computer by configuring the trigger conditions through
LabVIEW software programming.

2.2. Experimental Sample
In order to ensure the validity of the experimental results, the
experiment purchased a batch of rebar with the same specifica-

tions and different diameters as the experimental samples and
took the vertical distance between the coil sensor and the steel
bar as the thickness of the protective layer. First, the coil sensor
was fixed to the three-axis moving platform above the sample,
and the experimental sample is placed vertically without any
angle, and the horizontal uniform speed is moved above the
sample through computer control. The number (N ), diameter
(D), and protective layer thickness (H) are changed, so that the
detection coil picks up the corresponding voltage signal, and the
signal curve is drawn. As shown in Fig. 3, the presence of peak
value indicates the presence of rebar at this location. When
measuring multiple rebars, the detection system in Figure 2(a)
is used to determine the critical value of the large and small
spacing of the rebars, and the distance between the two rebars
is continuously increased with the step size of 5mm. The num-
ber of peaks changes, then this spacing is estimated to be the
critical value. Therefore, set the small spacing to 5 cm and the
large spacing to 10 cm. The specific sample types and quantity
distribution are shown in Table 2. A total of 2222 sets of data
were collected, and the curve characteristics of some samples
were extracted as shown in Fig. 3. The horizontal coordinate
represents the displacement distance of the coil sensor, and the
vertical coordinate represents the voltage value of the current
position. l1 and l2 respectively indicate the spacing between
the rebars. It can be seen that (1) the detection voltage is in-
versely proportional to the thickness of the protective layer and
is proportional to the diameter; (2) When there are multiple re-
bars, the number of peaks varies with the spacing between the
rebars. In short, it can be inferred that various rebar parameters
will exhibit distinct curve characteristics.
A large number of samples are required to train the network

model, and the quality of the dataset directly affects the gener-
alization ability of the network model. Therefore, the dataset
is divided into a training set and a test set. 80% of the data is
used as the training set, and the remaining 20% is allocated to
the test set. The test set incorporates data collected from more
intricate scenarios, like multiple rebars with varying spacing as
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(a) (b)

(c) (d)

FIGURE 3. Examples of curve features of some data sets. (a) Single rebar of different thicknesses. (b) Single rebar of different diameters. (c) Two
different spacing rebars. (d) Three different spacing rebars.

TABLE 2. Different sample distribution and quantity.

Type Diagram Quantity

Single 370

Large, Small Spacing 660

Same large, small Spacing 596

Different Spacing 596
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FIGURE 4. The proposed CBAM-CNN-LSTM architecture, MaxPooling layer is not included in the illustration.

shown in Table 2. This operation aims to enhance the model’s
performance and generalization capabilities.

3. METHOD
The deep learning model possesses a powerful fitting and ex-
pressive ability to learn complex nonlinear mappings. In this
paper, the detection value and reinforced concrete parameter
information are also nonlinear, so the deep learning method is
employed to learn end-to-end in order to address the prediction
of different parameters.
The CBAM-CNN-LSTM network model proposed in this

paper consists of a preprocessing module and a post-processing
module, shown in Fig. 4. The preprocessing module mainly
standardizes the length of the collected experimental data and
fills in any shorter sequences or missing values using linear
interpolation. Additionally, it defines labels for training sam-
ples of the model, such as the number of steel bars, the size
of the diameter, and the thickness of the protective layer. The
post-processing module includes two types of CNN and LSTM.
Since convolutional kernels of different sizes have different
perception fields, smaller convolutional kernels correspond to
smaller perception fields. As a result, they only capture lo-
cal features, while larger kernels capture more global features.
So we use two convolutional kernels with sizes of 12 and 3 to
conduct the convolutional operation on the initial data in this
paper, followed by a backward sliding process with a specific
step size. After multiple iterations through the two-layer con-
volutional structure, local features are extracted. Each convo-
lutional layer is then subjected to the activation function ReLU
and the Maxpooling layer which helps aggregate and compress
the features. On the one hand, due to the locally connected
and translation invariant nature of CNN, the final feature in-

formation corresponds to a specific sub-region in the initial
data, which lacks the full utilisation of global information. On
the other hand, CNN only performs simple feature extraction
through convolution kernels, neglecting the importance of dif-
ferent locations and channels. Therefore, considering the need
to prevent the loss of valuable information in the middle hid-
den layer, we propose incorporating an attention layer follow-
ing the convolutional layers based on the principles of the at-
tention mechanism [20]. This addition aims to enhance the ex-
traction of key detection signals’ expressive capabilities from
different dimensions while suppressing irrelevant features. Af-
ter that, the extracted feature sequences are input into the LSTM
network for training to learn its temporal order. In order to cap-
ture the complex patterns and long-term dependencies between
features, this paper uses three LSTM layers to improve its ex-
pressive capability. However, the network architecture is in-
tentionally designed to avoid excessive stacking of LSTM lay-
ers. This constrain is because an abundance of such layers can
result in increased model complexity, slower training speeds,
and a heightened risk of overfitting. Finally, the LSTM units
are iterated multiple times before being connected to the Fully
Connected (FC) layer to generate the prediction results. The
dropout layer is added after the FC layer to prevent overfitting
by discarding part of the network with a certain probability, thus
improving the generalization ability [23].

3.1. Local feature learning

3.1.1. CNN

CNN consists of an input layer, an output layer, and several
hidden layers, and its structure is shown in Fig. 5. Among them,
the hidden layers include a convolutional layer, an activation
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FIGURE 5. Schematic diagram of 1D CNN structure.

function, and aMaxpooling layer. In general, the convolutional
layer and Maxpooling layer are used in conjunction with each
other [21].
The CNN convolutional layer will rely on multiple filters to

perform convolutional operations on the local features of the
input signal and locally extracts the entire dataset through a
fixed-size sliding window. Subsequently, under the influence
of the activation function, it generates the output characteris-
tics. The purpose of the convolution operation is to reduce the
number of parameters, enhance the feature expression ability of
the model, and achieve fast convergence under stochastic gradi-
ent [18]. The ReLU activation function is usually used to obtain
nonlinear features, and the convolution calculation formula is

xk
i = f

(
wk

i ∗X(k−1) + bki

)
(1)

where xk
i is the characteristic quantity of the output of each con-

volution layer, f the ReLU activation function, wk
i the weight

of the convolution kernel, ∗ the convolution operation,X(k−1)

the output of the previous layer, and bki the offset.
The Maxpooling layer performs the pooling operation on the

convolution feature matrix and adopts a fixed sliding window
to screen the maximum value in each window region. The cal-
culation formula is as follows.

pl+1
i (j) = maxxj

i (k), k ∈ Dj (2)

where pl+1
i is the result of Maxpooling, xj

i (k) the data within
the scope of the sliding window, and Dj the pooling range.
Finally, after the calculation of multiple convolutions, acti-

vation functions, and maximum pooling, the advanced features
of the detection value were obtained. In order to achieve end-
to-end output, all extracted features are mapped to the sample
and output through the full connection layer.

3.1.2. CBAM

The specific location and structure of the CBAM are shown in
Fig. 5. It mainly integrates two attention mechanisms: chan-
nel and spatial. This module is capable of extracting features
from the input data in both channel and spatial dimensions in
chronological order. The feature information is then compared
and modified with the original input data to generate the final
feature information. The total attention process can be summa-
rized as:

F1 = MC(F )⊗ F (3)
F2 = MS (F1)⊗ F1 (4)

where F is the input feature; F1 is the middle feature; F2 is the
output feature; MC and MS are the channel and spatial atten-
tion mechanisms, respectively; ⊗ indicates multiplication be-
tween elements.
Among them, the channel attention sub-module, as shown

in Fig. 6(a), employs average pooling and Maxpooling oper-
ations in parallel. They can extract high-level features, and
different pooling methods ensure that the extracted high-level
features are more comprehensive, significantly enhancing the
network’s representation, instead of relying solely on individ-

(a)

(b)

FIGURE 6. CBAM components. (a) Channel Attention Sub-module.
(b) Spatial Attention Sub-module.
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ual features. The spatial information of the feature maps is ag-
gregated through a pooling operation. Subsequently, the im-
portance of each feature channel is automatically learned by a
Multilayer Perceptron (MLP), which infers a 1D-channel atten-
tion vectorMC , and it indicates the importance of each channel.
Finally, the output feature vectors are merged using element-
by-element summation. The specific calculation process is

Mc(F )=σ(MLP (AvgPool(F ))+MLP (MaxPool(F )))

=σ
(
W1

(
W0

(
F c
avg

))
+W1 (W0 (F

c
max))

) (5)

where σ is a sigmoid activation function; W0 and W1 are the
weights in the MLP and the ReLU; activation function is fol-
lowed byW0.
The spatial attention sub-module differs from the channel at-

tention by focusing on which locations have meaningful infor-
mation. It is also complementary to the channel attention whose
structure is shown in Fig. 6(a). Using the regions of valid salient
information generated in channel attention, two 7 × 7 convo-
lutional kernels are applied to extract features between spatial
locations through the convolutional layers. This process helps
infer a spatial attention map MS , which encodes the empha-
sized and suppressed locations. The specific calculation pro-
cess is

Ms(F ) = σ
(
f7×7([AvgPool(F );MaxPool(F )])

)
= σ

(
f7×7

([
F s
avg ;F

s
max

])) (6)

where σ is a sigmoid activation function, and f7×7 denotes a
convolution operation with a filter size of 7× 7.
Finally, since CBAM is a lightweight universal module, it

can be integrated into any CNN architecture for end-to-end
training, and the overhead can be ignored. This modular pro-
cessing method not only shows high performance but also has
extensive applicability [20].

3.2. Global Feature Learning
The core building blocks of LSTM include cell states, forget-
ting gates, input gates and output gates, which work together to
form the unit structure of LSTM. To visualize the flow of in-
formation inside the LSTM unit, refer to Fig. 7. LSTM can

FIGURE 7. An LSTM unit structure.

regulate the state of the network unit through the forgetting
gate, input gate, and output gate. It achieves adaptive learn-
ing of sequence features and performs the function of retaining
useful information while eliminating unnecessary information.
Among them, the feature information is extracted by CNN and
transferred to LSTM. The forgetting gate controls the state of
the unit by using the activation function to determine how the
previous time state is updated to the current state. The input
gate determines which newly received information is updated
or stored by activation value and memory unit candidate state.
Finally, the output gate determines which information is al-
lowed to be output by outputting the activation value and the
memory unit output value [15]. The specific calculation for-
mula at time t is

it = σ (Vixt +Wiht−1 + bi) (7)
ft = σ (Vfxt +Wfht−1 + bf ) (8)

∼
c t = tanh(Vcxt +Wcht−1 + bc) (9)

ct = ft ⊗ ct−1 + it ⊗
∼
c t (10)

ot = σ (V0xt +W0ht−1 + b0) (11)
ht = ot ⊗ tanh(ct) (12)

where xt and h∗ are the input and hidden state, and t represents
the current time step. Respectively, V∗ and W∗ represent the
weight matrix, and b∗ is the offset of the FC layer. it, ft, and
ot are the input, forget, and output gates. ⊗ is a element-wise
multiplication operation, and σ is a sigmoid activation function.
ht denotes the final output state.

3.3. Quantitative Analysis
In order to evaluate and compare the performance of the im-
plemented method, we have adopted R2, EVS, RMSE,MAE as
defined in Equations (13), (14), (15), and (16):

R2 = 1−
∑m

i=1

(
yi − ŷi)

2∑m
i=1 (yi − ȳ)2

(13)

EV S = 1−
∑m

i=1

(
yi − ŷi − E (y − ŷ))2∑m

i=1 (yi − ȳ)2
(14)

RMSE =

√∑m
i=1 (yi − ŷi)2

m
(15)

MAE =
1

m

m∑
i=1

|yi − ŷi| (16)

where yi and ŷi are the predicted and actual output of themodel;
ȳ is the average output; E is the mean; m is the number of
samples.

R2 is usually applied to measure the extent to which a regres-
sion model predicts the observed data. It represents the ratio of
the variance of the data that can be explained by the model.
The output of this metric lies between 0 and 1, where 1 corre-
sponds to a perfect prediction. EVS is used to assess how well
a downscaling model or feature selection model explains the
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variability of the data. It reflects the proportion of data vari-
ability retained by the model, the extent to which the model is
able to preserve important information about the data, and is
mostly used to compare the performance of different models.
It also ranges between 0 and 1, with values close to 1 indi-
cating that the model explains the data better. RMSE allows
for direct performance comparison, offering the advantage of
imposing a larger penalty for higher error values by squaring
the variance values. This prevents larger error values from dis-
proportionately affecting the goodness-of-fit. Finally, there is
MAE, which has relatively small impact on outliers because it
uses the absolute value of the difference and is not affected by
the positive or negative direction [15].

4. RESULTS AND DISCUSSION

4.1. Results
Figure 8 shows the workflow of this study. Firstly, the exper-
imental system acquires the PECT signals with different re-
bar parameters. The series of collected data are labeled with
the corresponding labels through preprocessing operations and
trained using the CBAM-CNN-LSTM framework proposed in
this paper. The specific training parameters are shown in Ta-
ble 3. The losses during network training are shown in Fig. 9.
After 500 training epochs, the losses of each prediction pa-
rameter tend to decrease and stabilize, indicating that the net-
work models have all converged. In order to illustrate the su-

FIGURE 8. Research framework.

TABLE 3. Training parameters of the model.

Table Head Table Column Head
Hidden layer 256
Batch size 64

Loss function MSELoss
Optimizer Adam

Learning rate 0.001
Dropout 0.01

FIGURE 9. Loss during the iteration process of three parameters.

periority of the model proposed in this paper, several different
deep learning network architectures including CNN, LSTM,
and CNN-LSTM are employed for comparison. All models
used the same data inputs, ensuring the access to identical infor-
mation. In addition, all models use the same training parame-
ters and are trained to predict the corresponding univariate vari-
ables, such as the number of rebars, diameter, or thickness of the
protective layer, based on the corresponding input sequences.
In this paper, the proposed performance is evaluated on the

entire test set, as shown in Figs. 10, 11, and 12. The CBAM-
CNN-LSTMmethod proposed in this paper produces better vi-
sual results and more efficiently predicts three types of infor-
mation: the quantity of objects to be measured, the diameter,
and the thickness of the protective layer, than CNN, LSTM,
and CNN-LSTM network models. In the traditional network
model, extracting key information related to the measured ob-
jects in complex situations is challenging due to factors like
neighboring rebar or signal weakening when the thickness is
too large. As depicted in the prediction curves of CNN and
LSTM in Figs. 10(a) and 10(b), the traditional models CNN and
LSTM can only learn the information in the data in a simplistic
manner. For the judgement of the number of rebars, a single
rebar can make an accurate prediction. However, when there
are two or more rebars, the limitations of CNN, which can only
depend on the convolutional kernel for extracting local features
and the lack of local feature extraction by LSTM, lead to inaccu-
rate predictions. By combining CNN and LSTM, the advantage
of CNN in extracting local features and the advantage of LSTM
in capturing temporal information are fully used. This integra-
tion can improve the accuracy of predicting the quantity of two
or more rebars, as shown in Fig. 10(c). However, it may also
exhibit a certain level of instability. Similarly, when making
judgments on diameter and thickness, the traditional CNN and
LSTM predictions are also unsatisfactory, with large average
errors as shown in (a) and (b) in Figs. 11 and 12. The accuracy
of predicting the thickness value can be improved in the CNN-
LSTM model, as shown in Fig. 10(c), and its average error is
reduced by about 40% compared to the traditional model. How-
ever, unstable and fluctuating prediction abilities still occur in
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(a) (b)

(c) (d)

FIGURE 10. Prediction of the number of rebars. (a) CNN. (b) LSTM. (c) CNN-LSTM. (d) CBAM-CNN-LSTM.

diameter prediction, as shown in Fig. 11(c). In conclusion, the
prediction accuracy of traditional CNN and LSTM models is
not high. The CNN-LSTMmodel can address the shortcomings
of the traditional models in prediction. But it lacks a certain de-
gree of stability in overall prediction across three different pa-
rameters. This instability may reduce the reliability and credi-
bility of the model. In contrast, using the CBAM-CNN-LSTM
method proposed in this paper can extract the depth features in
the data and achieve accurate and stable predictions for all three
different measured information. The specific prediction graphs
are shown in (d) in Figs. 10, 11, and 12.
In order to clearly quantify the different network models,

quantitative evaluation of the prediction curves of the four
methods in the task of predicting information about the object
under test using R2, EVS, RMSE, and MAE is presented in Ta-
ble 4. The results are presented in Figs. 13 and 14. The method
proposed in this paper achieves the best R2, EVS, RMSE, and
MAE values for all three parameter predictions. Overall, the
CNN exhibits the largest feature error, followed by the LSTM
and CNN-LSTM feature errors. With the incorporation of the
CBAM, the fitted values of R2 and EVS are close to 1. It can

be observed that the module allows the model to concentrate on
the crucial features, enhancing the accuracy and robustness in
predicting the number of rebars, diameter, and thickness. This
results in a smaller error between the actual and predicted val-
ues. The biggest change is in the identification of the number
of rebars, with an average error decrease of almost 50%. The
least reduction is in the thickness feature, with an average error
decrease of 3%. The above data illustrate that the introduc-
tion of the attention mechanism CBAM improves the overall
prediction ability of the model. Simultaneously, it verifies the
superiority of the CBAM-CNN-LSTM model in dealing with
the time-series prediction problems.

4.2. Discussion
In this paper, an end-to-end deep learning method is proposed
for predicting reinforcing bar parameter information in rein-
forced concrete. This method can automatically extract high-
dimensional deep features directly from the original signal. It
eliminates the need for complex solutions from traditional in-
verse solution algorithms and effectively handles the nonlin-
ear relationship between the rebar diameter, quantity, and the
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(a) (b)

(c) (d)

FIGURE 11. Prediction of the diameter of rebars. (a) CNN. (b) LSTM. (c) CNN-LSTM. (d) CBAM-CNN-LSTM.

TABLE 4. Training parameters of the model

Prediction parameters Network R2 EVS RMSE MAE

Number/N

CNN 0.8133 0.8799 0.1016 0.2685

LSTM 0.9161 0.9589 0.0456 0.1574

CNN-LSTM 0.9263 0.9296 0.039 0.1684

CBAM-CNN-LSTM 0.991 0.9928 0.0049 0.055

Diameter/D

CNN 0.7376 0.8175 5.6261 1.8291

LSTM 0.7559 0.7574 5.2334 1.9022

CNN-LSTM 0.8333 0.8484 3.5745 1.4784

CBAM-CNN-LSTM 0.9143 0.9145 1.8373 1.1927

Protective Layer Height/H

CNN 0.7244 0.7456 1.8457 1.8607

LSTM 0.8148 0.8157 1.6014 1.4897

CNN-LSTM 0.9801 0.9814 1.0316 0.9054

CBAM-CNN-LSTM 0.9968 0.9975 0.8492 0.8838
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(a) (b)

(c) (d)

FIGURE 12. Prediction of the thickness of the protective layer of the rebars. (a) CNN. (b) LSTM. (c) CNN-LSTM. (d) CBAM-CNN-LSTM.

(a) (b) (c)

FIGURE 13. Comparison of R2 and EVS of four different network models. (a) Number/N . (b) Diameter/D. (c) Protective layer thickness/H .

height of the protective layer, and electromagnetic signals. This
capability surpasses what traditional machine learning methods
can achieve. There are other reasons that affect the relation-
ship mapping between parameter information and PECT sig-
nals. For example, during the measurement process, it may be
observed that the impact of rebar diameter on the PECT signal
and the effect of protective layer thickness on the PECT sig-
nal are interconnected. This interconnection may lead to chal-

lenges in accurately determining the protective layer thickness
or the rebar diameter when using a multi-input multi-output
network model. Based on this conjecture, this paper adopts
the same network model to implement multi-input and single-
output modes for predicting the number of rebars, diameters,
and the thickness of the protective layer. It has been proven to
have a certain identification effect.
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(a) (b) (c)

FIGURE 14. Comparison of RMSE and MAE of four different network models. (a) Number/N . (b) Diameter/D. (c) Protective layer thickness/H .

5. CONCLUSION
An intelligent prediction method, CBAM-CNN-LSTM, based
on PECT signals is proposed for solving the inverse problem
of determining the diameter, number, and thickness of the pro-
tective layer of steel bars in reinforced concrete. The collected
PECT signals are directly used to automatically extract the pa-
rameter information prediction features using the deep learning
method. The experimental data are used to test the model and
verify its effectiveness, and the main conclusions are as fol-
lows:
(1) The model can accept the unprocessed PECT time series

signals directly, express the features of the original data through
deeply learning, thus overcoming the shortcomings of manual
feature extraction and prediction accuracy. This enables the
end-to-end prediction of reinforced concrete parameter infor-
mation.
(2) By incorporating the attention mechanism CBAM into

CNN-LSTM, its performance is compared and analyzed against
traditional CNN, LSTM, and CNN-LSTM. The results show
that emphasizing key features can enhance the performance of
the whole networkmodel, and it has a good effect on the predic-
tion of PECT signals. Especially in terms of the overall predic-
tion results, all the methods proposed in this paper demonstrate
high accuracy and stability.
(3) The model adopts a multi-input, single-output mode to

predict the corresponding parameters separately. This approach
helps the model eliminate many data elements that are not re-
lated to the output during computation. As a result, the overall
computational demand of the model is small, and computation
is fast so that it can be implemented in embedded systems for
real world applications.
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