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ABSTRACT:Nowadays, deep learning schemes (DLSs) have gradually become one of the most important tools for solving inverse scatter-
ing problems (ISPs). Among DLSs, the dominant current scheme (DCS), which extracts physical features from the dominant components
of the induced currents, has shown its successes by simplifying the learning process in solving ISPs. It has shown excellent performance
in terms of efficiency and accuracy, but the increasing number of channels in DCS often requires higher computational costs and memory
usage. In this paper, a lightweight deep learning model for DCS is proposed to reduce the burden of memories in the training and testing
processes of network structure. And extensive tests of the model are conducted, where comparisons with results from the U-Net structure
are provided. The comparison results validate its potential application in utilizing DCS under limited resource conditions.

1. INTRODUCTION

Imaging techniques based on the inverse scattering tech-
nique are widely applied in many critical fields, such as

granary inspection in agriculture [1], imaging diagnostics
in biomedicine [2], and exploration in seismology [3–5].
However, ISPs face two primary challenges: nonlinearity and
ill-posedness [6], which to some extent restrict their further
applications. To address these difficulties, alongside the
rapid advancement of deep learning, utilizing deep learning
solutions for ISPs [7–10] has garnered significant attention.
This approach is primarily categorized into four types [11]:
direct learning approach, learning-assisted objective-function
approach [12–14], physics-assisted learning approach [15–17],
and other approaches. Among them, physics-assisted learn-
ing approach integrates physical models and mathematical
properties into the input or internal architecture of neural
networks, which enhances data efficiency and generalization
capabilities, thus attracts extensive attentions. The dominant
current scheme (DCS) proposed on this basis has gained more
application due to its superior performance in handling highly
nonlinear problems and achieving precise reconstruction.
Nevertheless, in addressing practical problems, there is often

a need to balance between high accuracy and low computational
cost. Storing and computing DCS based on the U-net structure
remains a significant challenge when only limited resources are
available. In many fields, such as medical lesion imaging [18–
20], real-time human body security screening [21, 22], and crop
disease recognition and type identification [23–25], many ef-
forts are made in compressing and refining the U-net model.
Inspired by this, this work proposes a lightweight improvement
scheme for the U-net structure used in DCS, as shown in Fig. 1.
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In this work, we useX andX to denote the vector andmatrix
of the discretized operator or parameter X , respectively. Fur-
thermore, we use ∥ · ∥F and ∥ · ∥ to denote Frobenius norm of
a matrix and Euclidian length of a vector, respectively.

2. PRINCIPLE

2.1. Theory
ISPs refer to a class of problems where the interaction between
incident waves and a scattering object (the object under test)
is used to reconstruct features such as the sizes, shapes, and
material compositions of the scattering objects based on mea-
surements of the secondary field (scattered field) excited by
the scattering object [6]. In our consideration, under the con-
dition of a two-dimensional transverse magnetic field in free-
space background, a non-magnetic scattering object is located
in the domain of interest (DOI), D ⊂ R2, and illuminated
by Ni line sources positioned at rip in the z-direction, with
p = 1, 2, · · · , Ni.
The relationship between the electric field and the scatter-

ing object is described by the following Lippmann-Schwinger
equation:

Et (r) = Ei (r) + k20
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for r ∈ D (1)

where Et(r) and Ei(r) respectively represent the total electric
field and incident electric field. k0 = ω

√
µ0ε0 is the free-space

wave number, and g(r, r
′
) is the 2-D free space Green’s func-

tion. Then, ξ(r) = εr(r)− 1 represents the contrast permittiv-
ity.

83doi:10.2528/PIERM24071701 Published by THE ELECTROMAGNETIC ACADEMY

https://doi.org/10.2528/PIERM24071701


Xia and He

FIGURE 1. Schematic architecture of the original model and the proposed model.

The scattered electric field collected can be formulated by:

Es (r) = k20

∫
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, for r ∈ S (2)

where Es(r) is the scattered field measured on the surface.
Therefore, the inverse problem is to reconstruct the permittivity
εr(r) (r ∈ D) from the measured scattered field.
The starting point of the dominant current scheme is to obtain

the solution of the dominant part of the unknowns and use this
solution as an initial value to simplify the problem.
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where I
l and I

+ are the low-frequency induced current and
induced current, respectively. Then ξ

d

p (n) represents the nth
element of the contrast, and E t,b

p is the updated total electrical
field of DCS for the pth incidence.
Specifically, through eigenvalue decomposition, the domi-

nant part of the current which is computed from Eq. (3) gen-
erated by each incident is identified. Based on this domi-
nant current, an approximate contrast of relative permittivity
is derived from Eq. (4), which serves as input for subsequent
CNN networks. The advantage of this approach lies in signif-
icantly reducing computational costs and excluding the high-
frequency components of induced currents that are susceptible
to input noise contamination, thereby concentrating most of the
information from natural images in the low spatial frequency
band [26].

2.2. Network Architecture

The proposed U-net convolutional neural network struc-
ture [26], as shown in Fig. 2, consists of a contraction path
(left side) and an expansion path (right side). The advantage
of this architecture for ISPs lies firstly in the incorporation
of skip connections within the neural network, allowing
information to flow directly from the input to the output layers.
This reduces the path length over which information needs to
propagate in the network and effectively mitigates the issues of
vanishing or exploding gradients during deep neural network
training [27, 28]. Secondly, as downsampling proceeds, the
receptive field gradually enlarges, expanding the area per-
ceivable per unit area [29, 30]. This enhances the perception
of low-frequency information in images and facilitates the
capture of large-scale contour information. Simultaneously,
during the upsampling recovery process, information from the
downsampling stages is integrated, enabling the network to
effectively preserve all aspects of the image.
Therefore, in our lightweight design process, we retain skip

connections and upsampling-downsampling operations. The
specific structure is illustrated in Fig. 3.
The left contraction path consists of repeated applications of

3×3 convolutions and Rectified Linear Units (ReLU), followed
by 2 × 2 max-pooling operations. In the right expansion path,
3 × 3 upsampling replaces max-pooling, along with a corre-
sponding connection (feature fusion) from the contraction to
expansion paths and two residual connections. Additionally,
two skip connections are added in the expansion path.
In the lightweight structure, more residual connections are

employed to maintain network simplicity while ensuring ef-
fective information transmission and learning, thereby improv-
ing network performance. Secondly, this structure integrates
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FIGURE 2. U-Net architecture for the DCS [26].

FIGURE 3. Lightweight architecture for the DCS.

features before and after residual connections, obtaining more
comprehensive and integrated feature representations that aid
in optimizing the model’s training process and enhancing its
performance. Thirdly, this design significantly reduces the re-
quired number of channels during training, decreases network
complexity, and requires fewer computational resources, mak-
ing it suitable for operation in resource-constrained environ-
ments.

3. RESULTS

3.1. Environment and Numerical Settings
For fair comparison, all experiments were conducted on the
same personal computer with a CPU of 2.5-GHz Intel Core i5

Processor and 16-GB RAM and a GPU of NVIDIA GeForce
MX450. All networks and operations in this work were imple-
mented using TensorFlow 2.9.0. The hyperparameter configu-
rations for this work are shown in Table 1.

TABLE 1. Hyperparameter configurations.
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FIGURE 4. Test results of lightweight training models under learning rates of 5× 10−4, 10−3, 10−4.

FIGURE 5. Test results of lightweight training models under batch size of 1, 6.

3.2. Model Tests

In the example, the relative permittivity is set between 1 and
1.5. The lightweight network and U-net are first trained with
different hyperparameters (learning rate, batch size), followed
by testing on 50 different profiles using the trained networks.
To quantitatively evaluate performance, the relative errors for
these 50 tests are further calculated. Finally, based on the re-
sults, optimal hyperparameters suitable for the lightweight net-

work are selected, and the performance of both the lightweight
network and U-net are comprehensively evaluated.
First of all, training comparisons were conducted with learn-

ing rates of 10−3, 5 × 10−4, and 10−4, and a batch size of 1.
From Fig. 4, it can be observed that the network performs best
with a learning rate of 5 × 10−4. A learning rate of 10−4 can
only reconstruct simpler profiles, such as single or two non-
overlapping cylinders. For more complex profiles, a learn-
ing rate of 10−4 can only show some relative positions, while
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FIGURE 6. Test results of lightweight and U-Net training models under batch size of 1 and learning rate of 5× 10−4.

TABLE 2. MSEs and trainable parameters for lightweight and U-Net under different learning rates and batch sizes.

shapes reconstructed with 10−3 are not as complete as those
reconstructed with 5× 10−4.
Secondly, comparisons were made by training with a learn-

ing rate of 5× 10−4, using batch sizes of 1 and 6. From Fig. 5,
it can be seen that performance is superior when the batch size
is 1. With a batch size of 1, reconstructed shapes exhibit clearer
contours and edges. However, with a batch size of 6, the recon-
structed images show some degree of degradation, only able to
display the relative positions and basic outlines of the shapes.
Thirdly, comparisons were made by training the lightweight

model and U-Net model with a learning rate of 5× 10−4 and a
batch size of 1. From Fig. 6, it can be observed that the results
of the lightweight model already shows complex profiles rela-
tively clearly, with minor deficiencies mainly in the sharpness
of edges and smoothness of colors within the profiles.

MRE =
1

N

N∑
i=1

∥∥∥ε t
r − ε

r
r

∥∥∥
F

/∥∥∥ε t
r

∥∥∥
F

(5)

where ε t
r and ε

r
r respectively represent the real relative permit-

tivity and the reconstructed relative permittivity of the profile.
N is the number of tests.

Lastly, we quantitatively evaluated each training result using
the Mean Relative Error (MRE) as shown in Eq. (5) and calcu-
lated the number of trainable parameters for both models.
In Table 2, it can be seen that for ISP data, the lightweight

model performs best when hyperparameters such as learning
rate of 5 × 10−4 and batch size of 1 are chosen. Although
its ability to reconstruct images is slightly inferior to the orig-
inal U-Net model, it reduces trainable parameters by 99.75%
with only a 0.09% increase in MRE, which significantly lowers
the computational resources required. This demonstrates that
lightweight models have great potential for applications where
high precision is not critical, and resources are limited.

4. CONCLUSION

In this paper, we propose a simple yet effective lightweight
DCS approach to address the inverse scattering problem. Un-
like traditional U-Net structures, we reduce the number of
channels and introduce residual connections and feature fu-
sion between contraction-expansion paths and internal expan-
sion paths. This approach achieves significant compression of
the overall structure while maintaining basic reconstruction ac-
curacy, yielding satisfactory results.
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In practical applications, the advantage of lightweight mod-
els in reducing model size effectively decreases the storage
space required for handling large-scale datasets and complex
data model matching. This makes it easier to deploy models
on embedded and mobile devices. Simultaneously, when in-
tegrating technologies for solving nonlinear inverse scattering
problems with other systems, lightweight structures reduce the
consumption of computational resources, thereby enhancing
computational efficiency, and maintaining high performance
in faster training times. Moreover, simplified network archi-
tectures and fewer channels make lightweight models easier to
maintain, which is crucial for reliability and maintainability in
practical engineering applications.
Furthermore, there is potential for further research to mini-

mize performance degradation in lightweight models, opening
up more possibilities for practical applications.
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