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ABSTRACT: A Negative Group Delay (NGD) prototype filter design, based on the ratio of two Chebyshev filter transfer functions, is
presented. The two transfer functions are of the same order, but with different in-band ripple amplitudes and different 3 dB-bandwidths.
The overall transfer function exhibits both an in-band ripple and an out-of-band steep-slope magnitude transition characteristic of a
Chebyshev filter, while also exhibiting an in-band NGD. For high-order designs and in the upper asymptotic limit, the NGD-bandwidth
product of the filter is shown to be a linear function of out-of-band gain in decibels. A resonator-based methodology is used to show how
frequency upshifted filter designs can be implemented in a Sallen-Key topology or in an all-passive ladder topology. An in-band combined
magnitude/phase distortion metric is evaluated for examples of the NGD filter. It is shown that the distortion metric is proportional to
the design order, the in-band ripple amplitude, and the out-of-band gain. For a prescribed distortion metric value, it is demonstrated
that the proposed design can achieve a higher NGD-bandwidth product than an equivalent Butterworth design, which has a flat in-band
magnitude characteristic. Additionally, input waveforms with bandwidths extending to the entire frequency range where the group delay
is negative (typically larger than the 3 dB-bandwidth) should not be applied to this filter design as it results in strong levels of distortion.

1. INTRODUCTION

Negative group delay (NGD) phenomenon is observed
in anomalous dispersion media, within finite frequency

bands. Since group delay is defined as a negative derivative
of the phase characteristic in the frequency domain, NGD is
manifested via positive phase characteristic slope. In the time
domain, NGD is manifested via reshaping of an analytical
waveform, where certain waveform features (such as pulse
peak) are formed at the medium output before they are ob-
served at the input. Causality is not violated in this case, since
any non-analytical part of the waveform (such as onset, or
“front”) was shown not to exceed the luminal velocity [1–3].
In addition to NGD, negative refractive index [4], superlumi-
nal [5], simultaneous negative phase and group velocity [6],
are some of other abnormal wave propagation examples.
Based on magnitude and phase characteristic dependency

described by Kramers-Kronig relations in causal media, it is
shown that the magnitude response has a minimum within a
frequency band exhibiting NGD phenomenon [7]. For gain-
uncompensated designs, this translates into maximum Signal
Attenuation (SA) being observed within the NGD bandwidth.
For gain-compensated designs SA is corrected at the expense of
introducing an out-of-band gain. Regardless of the gain com-
pensation being applied or not, a relative out-of-band gain com-
pared to in-band is present in all NGD designs. It is shown that
the out-of-band gain is proportional to undesired amplification
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of transients in the output waveform, when pulses with non-
analytical discontinuities, such as defined “turn on/off” points
in time, are propagated [8–11]. Further, any type of disconti-
nuity in the waveform or its derivatives was demonstrated to
cause a transient response associated with an out-of-band gain
[12].
A trade-off relationship exists between the desired NGD-

bandwidth product and the undesired maximum out-of-band
gain, and it was functionally quantified for studied media in [8–
10]. The NGD-bandwidth product was shown to have a square
root relationship with the out-of-band gain given in decibels,
in the upper asymptotic limit for a distributed medium com-
posed of a large number of cascaded identical 1st-order NGD
circuits at baseband frequencies [8]. Equivalently, the same
square root relationship applies to cascaded identical 2nd-order
NGD circuits tuned at a non-zero center frequency. Similarly,
a causal medium was engineered from a chosen in-band posi-
tive slope linear phase characteristic (flat in-band NGD char-
acteristic), with Kramers-Kronig relations employed to obtain
the magnitude characteristic resulting in another square root re-
lationship [9], just with a higher scaling factor than [8]. The
NGD-bandwidth product was shown to have a power of 3/4 re-
lationship with the out-of-band gain given in decibels, in the
upper asymptotic limit for a distributed medium comprised of
a large number of cascaded identical 2nd-order NGD circuits at
baseband frequencies [10].
An NGD filter based on an N th-order capped reciprocal-

Butterworth low-pass transfer function is presented in [13]. For
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cascaded identical N th-order capped reciprocal-Butterworth
circuits at baseband frequencies, the NGD-bandwidth product
was shown to be proportional to the out-of-band gain given in
decibels raised to the power of (1 − 1/2N) [13], which is a
generalization of the trend observed for N = 1 in [8] and for
N = 2 in [10]. Further, the capped reciprocal-Butterworth
design achieves an NGD-bandwidth product that in the upper
asymptotic limit as the design order approaches infinity is a lin-
ear function of out-of-band gain in decibels [13].
In this paper, the conceptual NGD transfer function synthesis

presented in [13] is applied to the reciprocal of the Chebyshev
low-pass transfer function, with its out-of-band gain capped at a
finite constant value by a multiplying low-pass Chebyshev fil-
ter transfer function with the same order and a smaller in-band
ripple. The overall design is feasible due to having a finite out-
of-band gain. Such synthesized capped reciprocal-Chebyshev
transfer function is shown to exhibit a higher NGD-bandwidth
product than the capped reciprocal-Butterworth function pre-
sented in [13], for the same design order and out-of-band
gain. It is shown that resonator-based design implementa-
tions in a Sallen-Key topology, as well as in an all-passive
ladder topology are feasible for the prototype NGD transfer
function translated to a higher center frequency. The proto-
type capped reciprocal-Chebyshev design achieves an NGD-
bandwidth product that in the upper asymptotic limit for high
design order values is the same linear function of out-of-band
gain in decibels associated with capped reciprocal-Butterworth
design in [13], but further improved by an offset which is a lin-
ear function of the design order. Parameters of this offset func-
tion are shown to be proportional to the in-band ripple value.
For selected input time-domain waveforms applied to the

proposed design, an in-band combined magnitude/phase dis-
tortion metric reported in [14, 15] and slightly modified as
in [10, 13] is evaluated. When the bandwidth used for wave-
form propagation is kept at 3 dB, to have the distortion metric
below a prescribed acceptable value it is shown that the design
order, and/or the in-band ripple, and/or the out-of-band gain of
the proposed capped reciprocal-Chebyshev design need to be
kept below certain values. Common performance parameters
that NGD designs are compared for, such as designs in [8, 16–
32], are the achieved NGD-bandwidth product and the trade-off
quantity out-of-band gain (which for gain-uncompensated de-
signs translates into signal attenuation). In addition, it would
be beneficial to check any NGD design for in-band magni-
tude/phase distortion as discussed in [10, 13] and is checked
in this paper. Further, many NGD designs in the literature re-
port the entire bandwidth where the group delay is negative,
τ(ω) < 0 (typically larger than 3 dB-bandwidth). The use-
fulness of such bandwidth should be qualified for any NGD
design since it may result in strong levels of distortion of prop-
agated waveforms, as pointed in [13, 33]. In this paper, it was
demonstrated that for the studied capped reciprocal-Chebyshev
designs, the use of 3 dB-bandwidth is also preferred over the
τ(ω) < 0 bandwidth, to keep distortion at an acceptable level.

2. PROTOTYPE NGD FILTER BASED ON CAPPED RE-
CIPROCAL LOW-PASS CHEBYSHEV FILTER TRANS-
FER FUNCTION
Baseband NGD transfer functions based on 1st and 2nd-order
rational transfer functions are discussed in [9, 10, 34, 35], while
designs involving non-integer power functions were presented
in [36]. NGD-exhibiting transfer function based on a ratio of
two N th-order low-pass Butterworth filter transfer functions
with different bandwidths is reported in [13]. It was shown that
this baseband transfer function can be factorized into a prod-
uct of non-identical 2nd-order rational transfer function(s), and
for odd-order designs a 1st-order rational transfer function is in-
cluded in the product as well. The same factorization properties
are applicable to the design presented in this paper.
As a variation of the concept presented in [13], a transfer

function based on a ratio of two N th-order low-pass Cheby-
shev filter transfer functions with different in-band ripples (and
therefore different 3 dB-bandwidths as well), is given by:

H (jω)=Hreciprocal-LP (jω) ·Hcapping-LP (jω)

=
1

HLP -ripple-ε (jω)
·HLP -ripple-ε/A (jω) . (1)

It can be shown that NGD exists around the center frequency, if
the in-band ripple of the capping function, ε/A, is smaller than
that of the reciprocal function, ε (i.e., out-of-band gainA > 1).
A patent application details the design process [37]. Fig. 1 il-
lustrates a magnitude plot of a capped reciprocal-Chebyshev
design transfer function (1), showing a finite out-of-band gain,
A. The shown example can also be scaled to represent a gain-
uncompensated design, without affecting the group delay char-
acteristic.
From Fig. 1 it is evident that the overall proposed capped

reciprocal-Chebyshev design satisfies the requirement from [7],
that for an NGD design transfer function magnitude minimum
occurs within the in-band around the center frequency. The
proposed design core term producing the NGD in (1) is a re-
ciprocal function of a Chebyshev low-pass filter transfer func-
tion, 1/HLP -ripple-ε(jω), with a ripple amplitude ε (between 0

Nth-order capped reciprocal-Chebyshev |H(jω)|: concept
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FIGURE 1. Example 3rd-order capped reciprocal-Chebyshev NGD
baseband design, A = 3.162 (AdB = 10 dB), ripple ε = 1 (3 dB),
capping ripple ε/A = 0.316 (0.414 dB).
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and 1, where 1 corresponds to 3 dB) exhibited within the 3 dB-
bandwidth. An infinite out-of-band gain is associated with
the reciprocal function term alone, or an infinite center fre-
quency attenuation in its gain-uncompensated version. There-
fore, an out-of-band gain “capping” is needed to make the de-
sign feasible. Multiplying the reciprocal transfer function with
a low-pass Chebyshev transfer function, HLP -ripple-ε/A(jω),
as given in (1), achieves the needed out-of-band capping. Fur-
ther, it turns out that the in-band ripple of the capping function
needs to be ε/A, in order to yield an out-of-band gain A of the
overall transfer function.
The in-band part of the reciprocal function is not significantly

affected due to the smaller in-band ripple of the capping func-
tion, which is especially the case for designs with larger out-
of-band gain values A. Further, positive out-of-band magni-
tude response slope of the reciprocal function is almost per-
fectly canceled by the capping function past its 3 dB cut-off fre-
quency, since both functions are of the same order and the same
Chebyshev type. Since the capping function in (1) corresponds
to the classical low-pass Chebyshev filter, it emerges as the de-
nominator polynomial of the overall transfer function. There-
fore, the overall transfer function in (1) is inherently stable since
it has poles in the s = jω complex Left Half-Plane (LHP). The
proposed capped reciprocal-Chebyshev design baseband trans-
fer function of an odd N th-order is given by:

HN -odd (jω) = A
ω′ − j · k1
ω′ − j · k2

(N−1)/2∏
m=1

ω′2 − j · 2k1 · sin
(
2m−1
2N π

)
ω′

−
(
k21 + cos2

(
2m−1

N
π
2

))
ω′2 − j · 2k′1 · sin

(
2m−1
2N π

)
ω′

−
(
k

′2
1 + cos2

(
2m−1

N
π
2

))

 , (2a)

where the factorized functions’ parameters are as in N th-order
Chebyshev low-pass filter (chosen in-band ripple given in deci-
bels is RdB, with values between 0 dB and 3 dB):

ε =
√
10(RdB/10) − 1, (2b)

k1 = sinh
(

1

N
· sinh−1

(
1

ε

))
,

k′1 = sinh
(

1

N
· sinh−1

(
A

ε

))
, (2c)

and the normalized frequency ω′ represents frequency ω scaled
by a 3 dB cut-off frequency correction factor, given by:

ω′ =
ω

Cω−3 dB
,

Cω−3 dB= cosh

 1

N
· cosh−1

 1

ε
√
1− 2

/
A2

 . (2d)

Even-order design transfer function is similar to expression
(2a), just with the first order rational term dropped and the prod-
uct upper limit changed to N /2. However, as it will be dis-
cussed later, even-order capped reciprocal-Chebyshev designs
have a reduced center frequency NGD compared to capped
reciprocal-Butterworth design presented in [13], as a contrast
to odd-order designs which increase it. Therefore, this paper is
focused on odd-order capped reciprocal-Chebyshev designs.
As a correction factor numerical example given by (2d), for

in-band ripple RdB = 3 dB (ε = 1) and out-of-band gain
A = 10 (20 dB), the 3 dB cut-off frequency correction factor
for order N = 3 yields Cω−3 dB = 0.9989. For higher orders
or higher out-of-band gain values, the resulting value is even
closer to 1.0, which renders the correction factor negligible in
those cases. A lower ripple of RdB =0.5 dB for example, for
out-of-band gain A = 100 (40 dB) yields Cω−3 dB = 0.8565,
0.9440, for N = 3, 5, respectively. The correction factor for
lower ripple values is sensitive to the order of the design, but not
as sensitive to the out-of-band gain values (the previous exam-
ple values would only slightly decrease to 0.8550 and 0.9434,
respectively, when out-of-band gain is reduced from 40 dB to
20 dB).
From expressions (2a)–(2d), example transfer functions for

several designs with different orders and in-band ripple values,
and for given out-of-band gainA = 100 (40 dB), are given by:

H3rd−0.5 dB (jω)= 100

(
ω − j · 0.5366
ω − j · 3.5046

)

·
(
ω2 − j · 0.5366ω − 0.91552

ω2 − j · 3.5046ω − 3.58222

)
, (3a)

H3rd−3 dB (jω)= 100

(
ω − j · 0.2980
ω − j · 2.8385

)

·
(
ω2 − j · 0.2980ω − 0.91592

ω2 − j · 2.8385ω − 2.96772

)
, (3b)

H5th−0.5 dB (jω)= 100

(
ω − j · 0.3420
ω − j · 1.5483

)

·
(
ω2 − j · 0.2114ω − 0.96082

ω2 − j · 0.9569ω − 1.78982

)

·
(
ω2 − j · 0.5534ω − 0.65192

ω2 − j · 2.5052ω − 1.64472

)
. (3c)

Expression (2a) and correspondingly (3a)–(3c) represent gain-
compensated designs. Dividing these expressions by the out-
of-band gainA results in the center frequency magnitude atten-
uation 1/A (−AdB) and the out-of-band magnitude characteris-
tic below 1 (0 dB). This scaling does not affect the group de-
lay response. Resulting gain-uncompensated magnitude plots
for several different design orders are shown in Fig. 2(a), for
several different center frequency attenuations (relative out-of-
band gains) in Fig. 3(a), and in Fig. (4a) for several different
in-band ripple amplitudes, while the other two parameters are
kept constant in each case. Corresponding group delay plots
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(a) (b)

FIGURE 2. Proposed capped reciprocal-Chebyshev baseband transfer function NGD design with out-of-band gain A = 100 (40 dB), in-band ripple
of RdB = 2 dB and N = 3, 5, 7 order, (a) magnitude and (b) group delay plot.

(a) (b)

FIGURE 3. Capped reciprocal-Chebyshev baseband 5th-order design with in-band ripple of RdB = 1 dB and with out-of-band gains A = 10 dB,
20 dB, 30 dB, 40 dB, (a) magnitude and (b) group delay plots.
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FIGURE 4. Capped reciprocal-Chebyshev baseband 5th-order design with out-of-band gain A = 100 (40 dB), and with in-band ripples of RdB =
0.01 dB, 0.5 dB, 1 dB, (a) magnitude and (b) group delay plots.

are shown in Figs. 2(b), 3(b), and 4(b), respectively. Fig. (2a)
demonstrates that increasing the order of the proposed design,
while keeping the in-band ripple amplitude and out-of-band
gain constant results in a steeper magnitude characteristic tran-
sition from in-band to out-of-band region. Further, Fig. (2b)

demonstrates that the described order increase also results in
the center frequency NGD increase, as well as an increase in the
overall group delay variation (a trade-off, resulting in increased
waveform distortion). Fig. (3b) demonstrates that increasing
the out-of-band gain of the proposed design, while keeping the
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in-band ripple amplitude and the design order constant, results
in a seemingly linear (with out-of-band gain in dB) increase of
the center frequency NGD. This seemingly linear relationship
is further analyzed later in this paper.
The effect of in-band ripple amplitude variation on the mag-

nitude and group delay characteristics is captured in Figs. 4(a)
and 4(b), respectively. An almost negligible in-band rip-
ple example of 0.01 dB is chosen to demonstrate its close
in-band magnitude characteristic match to capped reciprocal-
Butterworth design [13], with the in-band to out-of-band mag-
nitude characteristic transition significantly steeper however,
even for such small ripple design. Similarly, Fig. (4b) demon-
strates a close in-band group delay characteristic match to
capped reciprocal-Butterworth design, for the same small in-
band ripple example of 0.01 dB. Increased in-band ripple results
in progressively steeper out-of-band magnitude transitions, as
well as in the center frequency NGD further increased relative
to the corresponding capped reciprocal-Butterworth example.
Therefore, the proposed NGD capped reciprocal-Chebyshev

design can be interpreted as a design that exhibits a group
delay characteristic that “builds” on the capped reciprocal-
Butterworth design reported in [13]. A negligible in-band rip-
ple in the capped reciprocal-Chebyshev design corresponds to
the capped reciprocal-Butterworth design, and a further ripple
amplitude increase results in an increase of the center frequency
NGD as shown in Fig. 4(b) for odd-order designs, due to the
concave ripple shape. Conversely, even-order designs have a
convex ripple shape, which effectively reduces the center fre-
quency NGD compared to the capped reciprocal-Butterworth
design, which is the reason that this paper focuses on odd-order
capped reciprocal-Chebyshev designs. The trade-off associated
with the proposed design is an in-band distortion increase in the
magnitude and group delay characteristics, as will be discussed
later in the paper.
The 1st-order factorized rational function general form

present in the odd-order capped reciprocal-Chebyshev transfer
function (2a) and its associated center frequency NGD derived
similarly as in [13] are, respectively, given by:

H1st (jω)=
ω − j∆ω1

ω − j∆ω2
, (4a)

τ1st (0)=− 1

∆ω1
+

1

∆ω2
= − 1

Cω−3 dB

(
1

k1
− 1

k′1

)
. (4b)

Similarly, the general form of the 2nd-order factorized rational
function(s) present in any odd-orderN ≥ 3 capped reciprocal-
Chebyshev transfer function (2a) and their associated center
frequency NGD derived similarly as in [13] are, respectively,
given by:

H2nd (jω) =
ω2 − j∆ω1ω − ω2

01

ω2 − j∆ω2ω − ω2
02

, (5a)

τ2nd (0) = −∆ω1

ω2
01

+
∆ω2

ω2
02

= − 1

Cω−3 dB

(
2k1 sin

(
2m−1

N
π
2

)
k21 + cos2

(
2m−1

N
π
2

)

−
2k′1 sin

(
2m−1

N
π
2

)
k

′2
1 + cos2

(
2m−1

N
π
2

)) . (5b)

The product of 1st and 2nd-order factorized functions in (2a)
translates into a sum of center frequency NGD values given
by (4b) and (5b). Therefore, the center frequency NGD value
for odd-orders of the proposed capped reciprocal-Chebyshev
design, corrected for 3 dB-bandwidth, is given by:

τodd (0)=− 1

Cω−3 dB

( 1

k1
− 1

k′1

)
+

(N−1)/2∑
m=1(

2k1 sin
(
2m−1

N
π
2

)
k21+cos2

(
2m−1

N
π
2

)− 2k′1 sin
(
2m−1

N
π
2

)
k

′2
1 +cos2

(
2m−1

N
π
2

))]. (6)

In Fig. (2b) examples with A = 100 (40 dB), in-band rip-
ple of RdB = 2 dB, expression (6) in conjunction with ex-
pressions (2b)–(2d) yield center frequency NGD values, NGD
= −τ(0) = 2.5909 s, 3.6176 s, 4.3589 s, for N = 3, 5, 7,
respectively. Since the corrected 3 dB-bandwidth cut-off fre-
quency is ωc = 1, corresponding NGD-bandwidth product val-
ues are NGD ·∆f = NGD ·ωc/π = 0.8247, 1.1515, 1.3875,
for N = 3, 5, 7, respectively. As a comparison, for the
same out-of-band gain A = 100 (40 dB), capped reciprocal-
Butterworth design [13] yields smaller values of NGD ·∆f =
0.4995, 0.6200, 0.6896, for N = 3, 5, 7, respectively.

3. BASEBAND NGD FILTER TRANSFORMATION TO
BAND-STOP-FILTER (BSF)
The proposed capped reciprocal-Chebyshev transfer function
given by (2a) can be transformed from the baseband form to
its equivalent form centered at a non-zero center frequency ω0.
This equivalent BSF transfer function form (with a finite band-
stop attenuation) is obtained via the same frequency substitu-
tion applied in a low-pass to bandpass filter transformation [13]:

ω → 1

2

(
ω − ω2

0

ω

)
. (7)

When the transformation (7) is applied to the baseband 2nd-
order factorized rational function(s) given by (5a), it yields the
frequency up-shifted form given by [13]:

HBSF2 (jω)=

(
ω2 − j∆ω1pω − ω2

01p

ω2 − j∆ω2pω − ω2
02p

)

·

(
ω2 − j∆ω3pω − ω2

03p

ω2 − j∆ω4pω − ω2
04p

)
. (8)

The BSF transfer function (8) is given in its factorized form as
a product of two 2nd-order rational functions, which is more
suitable for subsequent circuit design as discussed in [10, 13].
From the four baseband frequency parameters in (5a), all

eight frequency parameters in expression (8) can be determined
from expressions reported in [10]. A few relationships between
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3rd-order reciprocal-Chebyshev translated to w  =10: magnitude0 3rd-order reciprocal-Chebyshev translated to w  =10: magnitude0
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FIGURE 5. Example 3rd-order capped reciprocal-Chebyshev transfer function (a) magnitude and (b) group delay responses transformed to ω0 =
10ωc = 10 center frequency and compared with corresponding ideally translated baseband responses.

parameters in (8), selected for referencing purposes, are given
by [10, 13]:

ω03p =
ω2
0

ω01p
, ∆ω3p =

ω2
0

ω2
01p

∆ω1p =
ω03p

ω01p
∆ω1p. (9)

The geometric mean of the two 2nd-order rational transfer func-
tions numerator’s parameters ω01p and ω03p corresponds to
the BSF center frequency ω0, as noted from (9). Further, for
the two numerator functions the quality factors are the same,
ω01p/∆ω1p = ω03p/∆ω3p. For the corresponding denominator
parameters, similar relationships to (9) apply with indices 2 and
4 replacing 1 and 3, respectively [10, 13].
When the transformation (7) is applied to the baseband 1st-

order factorized rational function(s) given by (4a), it yields the
frequency up-shifted form given by [13]:

HBSF1 (jω) =
ω2 − j∆ω5pω − ω2

0

ω2 − j∆ω6pω − ω2
0

, (10)

where∆ω5p = 2∆ω1 and∆ω6p = 2∆ω2.
As an example, consider a 3rd-order capped reciprocal-

Chebyshev baseband transfer function given by (3b), with an
in-band ripple of RdB = 3 dB (ε = 1) and out-of-band gain
A = 100, or 40 dB (gain-uncompensated variation, divided by
A):

HBB3−3 dB (jω)=

(
ω − j · 0.2980
ω − j · 2.8385

)

·
(
ω2 − j · 0.2980ω − 0.91592

ω2 − j · 2.8385ω − 2.96772

)
. (11)

Employing expression (7), the frequency up-shift to ω0 =
10ωc = 10 chosen in this example yields (after factorization):

HBSF3 (jω) =
ω2 − j0.5961ω − 102

ω2 − j5.6770ω − 102

·
(
ω2 − j0.3249ω − 10.94452

ω2 − j3.5608ω − 12.97162

)

·
(
ω2 − j0.2712ω − 9.13702

ω2 − j2.1162ω − 7.70922

)
. (12)

The plots in Figs. 5(a) and 5(b) depict transfer function (12)
magnitude and group delay characteristics, respectively, with
out-of-band gain A = 40 dB, RdB = 3 dB in-band ripple, and
normalized bandwidth ∆ω = 2ωc = 2. Comparing responses
associated with (12) with the baseband ones (expression (11)
ideally translated with ω → ω − ω0) reveals a close in-band
match in Figs. 5(a) and 5(b). Transfer function (12) achieves a
center frequency NGD of 3.036 s or an NGD-bandwidth prod-
uct of NGD · ∆f = 0.9664 (the same as the corresponding
baseband transfer function).
Note that the numerators of two 2nd-order rational func-

tions in (12), associated with translating the single 2nd-order
baseband rational function in (11), have resonant frequencies
(10.9445 and 9.1370) which are different from those in the de-
nominators (12.9716 and 7.7092). However, the product of the
numerator frequency parameters is the same as the product as-
sociated with denominator parameters (10.9445 × 9.1370 =
12.9716 × 7.7092 = ω2

0 = 100). This is congruent with the
geometric mean property in (9) and also yields the required con-
stant out-of-band gainA on both sides relative to the center fre-
quency magnitude response. This is corroborated by Fig. 5(a),
as well as by evaluating expression (12) at the center frequen-
cies and out-of-band extremes (H(0) = 1, H(ω → ∞) = 1,
H(ω0) = 1/A).

4. EXACT IMPLEMENTATION WITH SALLEN-KEY
TOPOLOGY
A Sallen-Key topology depicted in Fig. 6 schematic can imple-
ment a 3rd-order baseband capped reciprocal-Chebyshev trans-
fer function upshifted to higher center frequency ω0, which
yields an overall 6th-order BSF transfer function such as (12).
Cascaded versions of the topology in Fig. 6 can achieve higher
order capped reciprocal-Chebyshev designs, similar to capped
reciprocal-Butterworth designs detailed in [13]. Given the sys-
tem impedance Z0, transfer function of Fig. 6 topology and its
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FIGURE 6. Sallen-Key topology that can be used to achieve an exact
3rd-order capped reciprocal-Chebyshev baseband NGD transfer func-
tion translated to a higher center frequency ω0 (BSF).

input impedance are given by, respectively [13]:

H (jω)=
Vout

Vin

=
RG ·RF

RG ·RF +Z1 ·Z2+RF ·(Z1+Z2)

Z0

Z0 + Z3
, (13)

Zin =
RG ·RF + Z1 · Z2 +RF · (Z1 + Z2)

RF + Z2
. (14)

Expression (12), associated with an overall 6th-order capped
reciprocal-Chebyshev BSF function is used for a Fig. 6 topol-
ogy implementation example. An out-of-band gain A = 100
(40 dB) was chosen, RdB = 3 dB ripple, and 3-dB cut-off fre-
quency ωc = ∆ω/2 related to the center frequency as ω0 =
10ωc. Transfer function (12) parameters are summarized as:

ω01p = 10.9445ωc, ∆ω1p = 0.3249ωc,

ω03p = 9.137ωc, ∆ω3p = 0.2712ωc, (15a)
ω02p = 12.9716ωc, ∆ω2p = 3.5608ωc,

ω04p = 7.7092ωc, ∆ω4p = 2.1162ωc, (15b)
ω0 = 10ωc, ∆ω5p = 0.5961ωc,

∆ω6p = 5.677ωc. (15c)

The BSF transfer function (12) with parameters given by
(15a)–(15c) can be equated to the Sallen-Key transfer function
(13), to solve for component values depicted in Fig. 6 [13]. For
a chosen bandwidth of ∆f = 2fc = 100MHz, center fre-
quency f0 = 10fc = 500MHz, input impedance at center fre-
quency Zin ≈ 40Z0 = 2 kΩ, Fig. 6 component values can be
calculated as [10, 13]:

R1 ≈Zin = 2 kΩ, C1 =
1

∆ω1pR1
= 4.899 pF,

L1 =
1

ω2
01pC1

= 17.266 nH, (16a)

R2 =R1 = 2 kΩ, C2 =
1

∆ω3pR2
= 5.868 pF,

L2 =
1

ω2
03pC2

= 20.681 nH, (16b)

RG =
1/C1 + 1/C2

∆ω2p +∆ω4p −∆ω1p −∆ω3p
= 234.6Ω, (16c)

RF =
1

(ω2
02p+ω2

04p+∆ω2p∆ω4p−ω2
01p

−ω2
03p−∆ω1p∆ω3p)RGC1C2− 2

R2
1

=49.455Ω, (16d)

R3 =Z0 (∆ω6p/∆ω5p − 1) = 426.21Ω,

C3 =
1

∆ω5pR3
= 12.529 pF,

L3 =
1

ω2
0C3

= 8.087 nH. (16e)

Tuned frequencies of the two resonators at the op-amp input
of the topology in Fig. 6 in this case are f01p = 10.9445fc =
547.23MHz, and f03p = 9.137fc = 456.85MHz, as given
by (15a). The remaining 2nd-order term in (12) tuned at the
overall design center frequency f0 = 500MHz is implemented
with a resonator at the op-amp output shown in Fig. 6, and its
component values are calculated by (16e). Fig. 7 shows trans-
fer function magnitude and group delay responses of Fig. 6
topology, for an ideal source design, as well as a design with
a matching shunt input resistor Rm = 51.28Ω, driven by a
50Ω-source [13].
For the ideal-source and resistor-matched designs, the center

frequency NGD values are 9.66 ns and 9.45 ns, and the 3 dB-
bandwidths are 100MHz and 100.5MHz, yielding the NGD-
bandwidth products of 0.9664 and 0.9495, respectively. Sensi-
tivity analysis results for the component values of this design
are similar to those for the corresponding capped reciprocal-
Butterworth circuit described in [13]. The presented design is
mostly intended as a proof-of-concept in this paper.

5. APPROXIMATE IMPLEMENTATIONWITH PASSIVE
LADDER CIRCUIT TOPOLOGY
A Sallen-Key topology discussed in the previous section can
implement the exact BSF capped reciprocal-Chebyshev design
transfer function, such as (12). However, it comes at a cost of
employing op-amps (for odd-N th order, (N − 1)/2 op-amps
are needed). Further, op-amp(s) in this topology do not pro-
vide gain-compensation, so the design has an attenuation at the
center frequency as evident from Fig. 7(a), just like a purely
passive NGD topology would have.
Alternatively, a relatively goodmatch to the exact BSF trans-

fer function can be achieved with an all-passive ladder topol-
ogy involving resonators, such as a π-circuit illustrated in
Fig. 8 [13]. An alternative T-circuit equivalent of this topol-
ogy is discussed in [13]. Assuming a Z0-impedance source and
load, transfer function of the Fig. 8 design is given by [13]:

H (jω) =
Vout

Vin
=

2

(1 + Z2/Z0 + Z2/Z3)
· (1 + Z0/Z1) + (1 + Z0/Z3)

. (17)

The BSF transfer function (12) with parameters given by (15a)–
(15c) can be equated to transfer function (17), in an attempt
to solve for component values depicted in Fig. 8 [13]. After
frequency-dependent impedance expressions are substituted in
(17), the overall transfer function can be factorized into three
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FIGURE 7. Transmission coefficient (a) and group delay (b) of the ideal source (buffered) driven Sallen-Key design, and of the shunt resistor matched
design driven by a 50Ω source, for the BSF capped reciprocal-Chebyshev transfer function.

FIGURE 8. Three-resonator π-circuit ladder topology that can achieve
an approximate 3rd-order baseband capped reciprocal-Chebyshev
NGD transfer function translated to a higher center frequency ω0
(BSF).

2nd-order rational functions to have the same form as (12). The
numerators of the exact BSF transfer function (12) and the π-
circuit transfer function (17) after impedance expressions are
expanded can be exactly matched [13], and are given by:

ω01p = ω01π = 10.9445ωc,

∆ω1p = ∆ω1π = 0.3249ωc,

ω03p = ω03π = 9.137ωc,

∆ω3p = ∆ω3π = 0.2712ωc,

ω05p = ω05π = ω0 = 10ωc,

∆ω5p = ∆ω5π = 0.5961ωc. (18)

Further, as shown in [13], shunt impedances Z1 and Z3 need to
be complex conjugates of each other atω0, in order to satisfy the
required center frequency transfer function value ofH(jω0) =
1/A. Additionally, analysis detailed in [13] showed that the
middle resonator resistor value in Fig. 8 can be calculated as:

R2 = 2
(A− 1)

(
R2

1 +X2
1

)
− Z0R1

(R2
1 +X2

1 )
/
Z0 − 2R1 + Z0

(19)

where X1 is the reactance of shunt resonators at ω0, as labeled
in Fig. 8. From (19), given the R1 = R3 requirement, the
only degree of freedom of this design then becomes the shunt
resonators’ resistance value R1. Therefore, an exact match of

transfer functions (17) and (12) is not possible, but an in-band
match optimization can be used [13].
Since a characteristic of Chebyshev filters is an in-band rip-

pled magnitude response, its center frequency curvature (2nd
derivative) closest to one of the exact transfer function (12) is
used to determine the optimal value R1. In this example with
out-of-band gain A = 100 (40 dB) and RdB = 3 dB in-band
ripple, an optimal valueR1 = 2.5945Ω is obtained. Such opti-
mized denominator parameters of theπ-circuit transfer function
(17), along with the exact ones in (12), are:

ω02π = 12.8198ωc, ∆ω2π = 3.7111ωc,

ω04π = 7.8004ωc, ∆ω4π = 2.2581ωc, (20a)
ω02p = 12.9716ωc, ∆ω2p = 3.5608ωc,

ω04p = 7.7092ωc, ∆ω4p = 2.1162ωc, (20b)
∆ω6π = 5.9568ωc, ∆ω6p = 5.677ωc,

ω06π = ω06p = ω0 = 10ωc. (20c)

Substituting the optimized R1 = 2.5945Ω value, out-of-band
gain A = 100 (40 dB), system impedance Z0 = 50Ω, and the
center frequency reactance magnitude of the shunt branches in
Fig. 8, X1 = (1/(ω0C1) − ω0L1) = 15.7993Ω, into expres-
sion (19) yields R2 = 837.2241Ω. All component values cor-
responding to the design in Fig. 8 in this example are then given
by:

R1 = 2.5945Ω, L1 =
1

∆ω1pR1
= 25.422 nH,

C1 =
1

ω2
01pL1

= 3.3273 pF, (21a)

R3 = 2.5945Ω, L3 =
1

∆ω3pR3
= 30.4511 nH,

C3 =
1

ω2
03pL3

= 3.9856 pF, (21b)

R2 = 837.2241Ω, C2 =
1

2ωcR2
= 6.3784 pF,
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FIGURE 9. Transfer function magnitude (a) and group delay (b) responses of the exact capped reciprocal-Chebyshev 3rd-order design upshifted to a
higher center frequency, and of the π-circuit all-passive design.

L2 =
1

ω2
0C2

= 15.8849 nH. (21c)

Figure 9 shows the transfer function magnitude and group
delay responses of Fig. 8 topology. The center frequency NGD
values are 9.66 ns and 9.61 ns, for the exact and π-circuit de-
signs, respectively.
Sensitivity analysis results for the component values of

this design are similar to those for the corresponding capped
reciprocal-Butterworth circuit described in [13]. The compo-
nent sensitivity is higher than corresponding bandpass filter of
the same order, and the presented design is mostly intended
as a proof-of-concept in this paper. Higher order capped
reciprocal-Chebyshev passive ladder topology designs can be
implemented by following the method described for capped
reciprocal-Butterworth designs in [13].

6. NGD-BANDWIDTH PRODUCT ASYMPTOTIC
LIMIT OF AN NTH-ORDER CAPPED RECIPROCAL-
CHEBYSHEV DESIGN
Similar to the capped reciprocal-Butterworth design [13], the
NGD-bandwidth product of the N th-order capped reciprocal-
Chebyshev design can be expressed as a function of the trade-
off quantity, out-of-band gain. An upper asymptotic limit of
this functional relationship can be found, as the design order be-
comes large. For the capped reciprocal-Butterworth NGD de-
sign in [13], the NGD-bandwidth asymptotic limit was shown
to be a linear function of the out-of-band gain in decibels, ap-
proximately equal to 0.0233 ·AdB.
From the center frequency NGD expressions (6), odd N th-

order baseband capped reciprocal-Chebyshev designs have an
NGD-bandwidth product given by:

NGD ·∆f =−τ (0) · 2ωc

2π
=

1

π

1

Cω−3 dB

[(
1

k1
− 1

k′1

)

+

(N−1)/2∑
m=1

(
2k1 sin

(
2m−1

N
π
2

)
k21 + cos2

(
2m−1

N
π
2

)

−
2k′1 sin

(
2m−1

N
π
2

)
k

′2
1 + cos2

(
2m−1

N
π
2

))] . (22)

Further, employing the trapezoidal area sum approximation for
an integral evaluation, the first part of the sum from (22) can be
approximated as (for odd orders N ≥ 7, yielding at least three
sum terms):

(N−1)/2∑
m=1

2k1 sin
(
2m−1

N
π
2

)
k21 + cos2

(
2m−1

N
π
2

)

≈ 2N

π

π(N−2)/(2N)∫
π/(2N)

k1 sin (x)
k21 + cos2 (x)

dx

+
k1 sin

(
π
2N

)
k21 + cos2

(
π
2N

) + k1 cos
(
π
N

)
k21 + sin2

(
π
N

) , (23a)

where the resulting integral can be solved in a closed form:∫
k1 sin (x)

k21 + cos2 (x)
dx = − tan−1

(
cos (x)
k1

)
. (23b)

Similar expression to (23a) can be obtained for the second
part of the sum in (22), involving k′1. For a large design or-
der N , using small argument approximations for sinh(x) ≈
x, cosh(x) ≈ 1, and a large argument approximation for
tan−1(y) ≈ π/2 − 1/y, NGD-bandwidth product asymptotic
expression for capped reciprocal-Chebyshev design can be de-
rived as:

NGD ·∆f ≈ ln (10)
10 · π2

·AdB +N · 1
π

(
1

sinh−1
(
1
ε

)
− 2

π
tan−1

(
π

sinh−1
(
1
ε

))
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+
1

sinh−1
(
1
ε

)
+ π2

sinh−1( 1
ε )


+

2

π2
·
(
ln
(
2

ε

)
− sinh−1

(
1

ε

))
. (24)

The first term in expression (24), proportional to decibel value
of out-of-band gain and approximately yielding 0.0233 · AdB,
is identical to the NGD-bandwidth asymptotic expression
of the capped reciprocal-Butterworth design [13]. The ad-
ditional “offset” term in the capped reciprocal-Chebyshev
asymptotic NGD-bandwidth expression (24) is approximated
by a linear function of the odd-order number N , repre-
senting an NGD-bandwidth improvement over the capped
reciprocal-Butterworth design.
Expression (24), applicable to large values of odd-order num-

bers N , for selected in-band ripple amplitude values yields:

(NGD ·∆f)3 dB-ripple
≈ 0.0233 ·AdB + (0.1246 ·N − 0.0381) . (25a)

(NGD ·∆f)1dB-ripple
≈ 0.0233 ·AdB + (0.0292 ·N − 0.0120) . (25b)

(NGD ·∆f)0.5 dB-ripple
≈ 0.0233 ·AdB + (0.0087 ·N − 0.0059) . (25c)

Expressions (25a)–(25c) demonstrate that the asymptotic
NGD-bandwidth offset as a linear function of an odd-order N
is also proportional to the in-band ripple magnitude. The NGD-
bandwidth product for several odd-order baseband capped
reciprocal-Chebyshev designs, as a function of out-of-band
gain, is plotted in Fig. 10 based on expression (24).

NGD  ∆f vs out-of-band gain, reciprocal Cheb: Nth-order.
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FIGURE 10. Asymptotic NGD-bandwidth product for large odd-order
baseband capped reciprocal-Chebyshev designs, as a function of over-
all out-of-band gain.

7. RELATIONSHIP BETWEEN TIME DOMAIN AND
FREQUENCY DOMAIN NGD METRICS
The transient’s magnitude amplification phenomenon exhib-
ited in NGD designs is proportional to the out-of-band gain,
as discussed in detail in [13]. It is also demonstrated here

for a Gaussian pulse example with finite turn-on/off times,
propagated through selected capped reciprocal-Chebyshev and
capped reciprocal-Butterworth NGD designs.
Both example designs are chosen to be of 5th-order, have

an out-of-band gain of 40 dB (A = 100) and are gain-
compensated at the center frequency (0 dB), with capped
reciprocal-Chebyshev design having a 0.5 dB in-band ripple
amplitude. The input Gaussian pulse chosen in this example
is the same as the one detailed in [13], with its frequency
spectrum standard deviation related to the 3 dB-bandwidth
cut-off frequency as σω = ωc/3 = 1/3, and its turn-on/off
times selected at 3.5σt (σt = 1/σω). The compared 5th-
order, 40 dB out-of-band gain, capped reciprocal-Butterworth
and capped reciprocal-Chebyshev (with a 0.5 dB in-band
ripple) designs have NGD-bandwidth product values of
NGD · ∆f = 0.62, and 0.8226, respectively, which for a
bandwidth of ∆f = ωc/π = 1/π yield center frequency NGD
values of 1.948 s and 2.584 s, respectively. The corresponding
time domain Gaussian pulse-peak advancement values in
Fig. 11(b) are comparable at 2.146 s and 2.565 s, respec-
tively, as expected. Further, transient amplitudes observed in
Fig. 11(b) are practically the same for the two designs, which
is expected due to their identical out-of-band gains [13].
Figure 12 shows NGD-bandwidth product variation with

out-of-band gain for selected capped reciprocal-Chebyshev and
capped reciprocal-Butterworth designs, with both frequency
domain values and time domain values corresponding to time-
advancement of a Gaussian pulse peak. Fig. 12 shows that
for the capped reciprocal-Butterworth design the time domain
NGD is higher than the frequency domain value, and vice versa
for capped reciprocal-Chebyshev designs. Further, for capped
reciprocal-Chebyshev designs the frequency domain NGD
keeps increasing with the in-band ripple amplitude, whereas
the time-domain NGD shows only a marginal increase after
0.5 dB ripple, in this case. This phenomenon puts a practical
limit on the in-band ripple amplitude of the capped reciprocal-
Chebyshev designs, due to diminishing time-domain NGD
increase and a considerable distortion increase at the same
time, as it will be discussed in the next section.

8. IN-BAND COMBINED MAGNITUDE/PHASE RE-
SPONSE DISTORTION METRIC
Performances of different NGD designs can be quantified and
compared based on a Figure of Merit (FOM)metric, such as the
one reported in [10, 13]:

FOM =
NGD ·BW

AdB
. (26)

FOM in expression (26) is defined as a ratio of the achieved
NGD-bandwidth product, and the undesired trade-off quantity,
out-of-band gain. One of the undesired properties of the out-
of-band gain is its proportional relationship to transients asso-
ciated with information carrying signals, as demonstrated in
Section 7 and also discussed in [8–10, 13]. For waveforms
where there is no transients concern and the focus is on gain-
compensation, the FOM expression (26) can be modified to
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FIGURE 11. 5th-order, 40 dB out-of-band gain capped reciprocal-Butterworth and capped reciprocal-Chebyshev (0.5 dB in-band ripple) baseband
designs (a) magnitude responses, and (b) time-domain responses to a Gaussian pulse turned-on/off at 3.5σt.

NGD  ∆f vs out-of-band gain, reciprocal Buttw. vs. Cheb: 5th-order.
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FIGURE 12. NGD-bandwidth product as a function of out-of-band
gain for selected 5th-order capped reciprocal-Chebyshev and capped
reciprocal-Butterworth designs, with frequency domain, and corre-
sponding time domain NGD for an applied Gaussian pulse.

replace the 1/AdB term by the center frequency magnitude re-
sponse value, |H(jω0)|.
Another NGD trade-off is a distortion associated with vari-

ations in the magnitude response, as well as variations in the
group delay characteristic (phase non-linearity), within the in-
band (typically 3 dB-bandwidth). For waveforms with associ-
ated transients, this in-band combined magnitude/phase distor-
tion affects the “steady-state” part of the waveform which fol-
lows any transient settling [13]. Waveforms with no associated
transients are also affected by the in-band distortion.
The in-band distortion will affect applied waveforms differ-

ently, based on their frequency spectrums. A distortion metric
for an NGD baseband transfer functionH(jω), an input wave-
form f(t) and its frequency spectrum F (jω), observed time-
domain advancement of the output waveform peak ∆tpk, in-
put/output pulse peak magnitudes fmax/ymax, and a 3 dB cut-off
ωc is given by [13]:

Din-band

=

√√√√∫ ωc

0
|F (jω)−e−jω∆tpkF (jω)H(jω)·fmax/ymax|

2
dω∫ ωc

0
|F (jω)|2dω

. (27)

As an example, the distortion metric is examined for a Gaus-
sian pulse input waveform (NGD 3 dB-bandwidth comprises 6
standard deviations of the pulse frequency spectrum) applied
to a 5th-order capped reciprocal-Chebyshev design with a cho-
sen out-of-band gain A = 40 dB and in-band ripple of 0.5 dB.
Fig. 13 depicts input and output waveforms, and the distor-
tion metric calculated from (27) is Din-band-Gaussian = 0.0413.
As a reference, Dlow-pass-Gaussian = 0.0411, for a classical 1st-
order low-pass filter. The center frequency NGD of the capped
reciprocal-Chebyshev design is −τ(0) = 2.584 s, yielding an
NGD-bandwidth product of 0.8226, as shown in Fig. 12. This is
somewhat higher but comparable to the time domain advance-
ment of the pulse depicted in Fig. 13, where ∆tpk = 2.488 s
(congruent with Fig. 12 trend between frequency and time-
domain NGD).
NGD-bandwidth product (NGD as observed in the time do-

main) as a function of out-of-band gain is shown in Fig. 14
for selected 5th-order capped reciprocal-Chebyshev designs.
Solid curves in Fig. 14 are associated with a 3 dB-bandwidth,
while dashed curves are associated with a reduced bandwidth
needed to keep the distortion metric below the chosen refer-
ence 1st-order low-pass filter value (D = 0.0411 for aGaussian
pulse). Corresponding capped reciprocal-Butterworth case [13]
is shown as well in Fig. 14, as a reference.
It can be noted from Fig. 14 that the NGD-bandwidth prod-

uct is higher for the 0.75 dB than the 0.5 dB in-band ripple
case when distortion is ignored, i.e., input bandwidth kept at
medium’s 3 dB cut-off frequency in both cases (solid curves).
However, with the two inputs’ respective bandwidths reduced
to yield the distortion metric below that of a 1st-order low-pass
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FIGURE 13. (a) Input Gaussian pulse with a frequency spectrum cut-off at ωc = 1, and the corresponding output waveform for a 5th-order capped
reciprocal-Chebyshev gain-compensated design. (b) The same comparison but with the output waveform shifted by ∆tpk and normalized by
|y(t)|max.
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FIGURE 14. NGD-bandwidth product (using time domain NGD) for a
Gaussian input applied to selected 5th-order designs with 3-dB band-
width (solid curves) vs. reduced bandwidth yielding the same distor-
tion metric as a 1st-order low-pass filter (DLP = 0.0411).

filter, the Gaussian pulse time domain NGD-bandwidth prod-
uct for the 0.5 dB in-band ripple case is now higher than the
0.75 dB one. This demonstrates that reducing the medium’s ef-
fective bandwidth below the 3 dB cut-off frequency is not as
effective for capped reciprocal-Chebyshev designs, when the
presented distortion metric is considered. Reducing the in-band
ripple and/or the design order is recommended instead.
Input and output waveform cross-correlation [26, 30] is a

complementary distortion metric to the one given by (27),
roughly related as a square root of 1 − D2. It should be
kept in mind, however, that seemingly high cross-correlation
numbers can still be associated with a high distortion metric
(for example, correlation of 0.95 roughly yields a distortion of
D = 0.312). Another combined magnitude/phase distortion
metric of an NGD medium is presented in [33], which is used
to define an NGD bandwidth with an acceptable level of dis-
tortion. The main difference to the metric given by (27) is that
the metric from [33] considers the medium only, without the
specific applied waveform consideration.

When an in-band distortion limit is imposed on an NGD de-
sign, it is assumed that the objective is to maintain reasonable
input/output waveform fidelity. Alternatively, in NGD design
applications targeting magnitude/phase (group delay) equaliza-
tion of the preceding stage transfer function, distortion metric
presented in [13], and in this paper, can be evaluated for the
overall design including the preceding stage(s).

9. IMPLICATIONS OF USING THE ENTIRE BAND-
WIDTH WHERE GROUP DELAY IS NEGATIVE
Group delay response is negative over a frequency bandwidth
τ(ω) < 0, which in many NGD designs can be considerably
wider than the 3 dB-bandwidth, as discussed in [13]. In many
NGD publications, the τ(ω) < 0 defined bandwidth is reported
as the actual design bandwidth, and as such used in performance
metrics instead of the typically smaller 3 dB-bandwidth. How-
ever, if the τ(ω) < 0 defined bandwidth is not validated with
input waveforms corresponding to that bandwidth, it can result
in unacceptably high distortion of associated output waveforms,
as also discussed in [33].
Group delay response zero-crossings for a capped reciprocal-

Butterworth design can be solved for analytically [13], showing
that τ(ω) < 0 bandwidth approximately corresponds to magni-
tude response variation equal to the half of the out-of-band gain
in decibels, AdB/2.
Capped reciprocal-Chebyshev design presented in this paper

does not yield such a concise explicit solution for group de-
lay response zero-crossings, but in general it yields a smaller
τ(ω) < 0 to 3 dB-bandwidth ratio than capped reciprocal-
Butterworth design presented in [13]. For example, a 5th-order
capped reciprocal-Chebyshev design with 40 dB out-of-band
gain and a 0.5 dB in-band ripple yields a τ(ω) < 0 to 3 dB-
bandwidth ratio of 1.203 (as corroborated in Fig. 4(b)). This
yields a distortion metric from expression (27) of 0.1121 for
a Gaussian waveform (2.73 times higher than distortion met-
ric of a 1st-order low-pass filter, used as reference). Further,
the in-band magnitude variation for τ(ω) < 0 bandwidth is
somewhat less thanAdB/2= 20 dB, as corroborated in Fig. 4(a).
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3rd-order, 0.5 dB ripple recip-Cheb, Gaussian pulse response, BW: 3 dB 3rd-order, 0.5 dB ripple recip-Cheb, Gaussian pulse response, BW: τ(ω) < 0
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FIGURE 15. Capped reciprocal-Chebyshev 3rd-order gain-compensated design response to an input Gaussian pulse with its frequency spectrum (a)
within the 3 dB-bandwidth of the design, and (b) within the τ(ω) < 0 bandwidth (1.637x wider bandwidth, leading to a distortion metric 4.26x
higher than that of a 1st-order low-pass filter reference).

TABLE 1. NGD performance metrics for selected N th-order capped reciprocal-Chebyshev baseband designs, with 3 dB-bandwidth.

Design order/
in-band ripple

Out-of-band
gain, A [dB]

NGD-BW product,
−τ(0) ·∆f3 dB

FOM
[1/dB]

∆tpk ·∆f3 dB

(Gaussian)
Distortion: Din-band

(Gaussian)

3rd-order Butterworth 40 0.4995 0.0125 0.5416 0.0227 (0.55×D1st-LP-filter)

3rd-order, 0.25 dB 40 0.5790 0.0145 0.5904 0.0219 (0.53×D1st-LP-filter)

3rd-order, 0.5 dB 40 0.6192 0.0155 0.6016 0.0260 (0.63×D1st-LP-filter)

5th-order, 0.25 dB 40 0.7638 0.0191 0.7800 0.0353 (0.86×D1st-LP-filter)

5th-order, 0.5 dB 40 0.8226 0.0206 0.7920 0.0413 (1.01×D1st-LP-filter)

7th-order, 0.25 dB 40 0.8660 0.0217 0.8840 0.0472 (1.15×D1st-LP-filter)

7th-order, 0.5 dB 40 0.9404 0.0235 0.8928 0.0541 (1.32×D1st-LP-filter)

TABLE 2. NGD performance metrics for selected N th-order capped reciprocal-Chebyshev baseband designs, with τ(ω) < 0 bandwidth.

Design order/
in-band ripple

Out-of-band
gain, A [dB]

NGD-BW product,
−τ(0) ·∆fτ<0

BWτ<0/
BW3 dB

∆tpk ·∆fτ<0

(Gaussian)
Distortion: Din-band

(Gaussian)

3rd-order Butterworth 40 1.0761 2.154 1.1592 0.3008 (7.32×D1st-LP-filter)

3rd-order, 0.25 dB 40 0.9959 1.720 1.1176 0.1958 (4.76×D1st-LP-filter)

3rd-order, 0.5 dB 40 1.0137 1.637 1.0968 0.1749 (4.26×D1st-LP-filter)

5th-order, 0.25 dB 40 0.9433 1.235 1.0752 0.1203 (2.93×D1st-LP-filter)

5th-order, 0.5 dB 40 0.9896 1.203 1.0496 0.1121 (2.73×D1st-LP-filter)

7th-order, 0.25 dB 40 0.9656 1.115 1.0456 0.0942 (2.29×D1st-LP-filter)

7th-order, 0.5 dB 40 1.0325 1.098 1.0288 0.0905 (2.20×D1st-LP-filter)

In comparison, the corresponding 5th-order capped reciprocal-
Butterworth design yields a higher τ(ω) < 0 to 3 dB-bandwidth
ratio of 1.585 (compared to 1.203) and a higher distortion met-
ric of 0.1842 (compared to 0.1121).
As another example, a 3rd-order capped reciprocal-

Chebyshev design example, with a 40 dB out-of-band gain and

a 0.5 dB in-band ripple magnitude, yields to 3 dB-bandwidth
and τ(ω) < 0 bandwidth responses shown in Figs. 15(a) and
15(b), respectively. The τ(ω) < 0 bandwidth response leads
to an unacceptable level of pulse distortion (4.26 times higher
than distortion metric of a 1st-order low-pass filter, used as
reference), as demonstrated in Fig. 15(b).
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10. CONCLUSION
In this paper, a prototype baseband NGD filter is introduced,
based on the ratio of two transfer functions of a classical
Chebyshev low-pass filter (capped reciprocal-Chebyshev de-
sign). The baseband design can be translated to a higher center
frequency, yielding an NGD band-stop filter (BSF) with finite
attenuation. It was shown that resonator-based design imple-
mentations in a Sallen-Key topology, as well as in an all-passive
ladder topology, are feasible for the prototype NGD transfer
function translated to a higher center frequency.
The prototype capped reciprocal-Chebyshev design achieves

an NGD-bandwidth product that in the upper asymptotic limit
for high design odd-order values is the same linear function of
out-of-band gain in decibels associated with capped reciprocal-
Butterworth design in [13], but further improved by an offset
which is approximately a linear function of the design order.
Parameters of this offset function are shown to be proportional
to the in-band ripple value.
An in-band combined magnitude/phase distortion metric dis-

cussed in [13] was calculated for a Gaussian pulse input ap-
plied to several capped reciprocal-Chebyshev designs. It was
shown that if the distortion metric for the proposed design and
the applied waveform is to be kept below the corresponding
reference distortion value of a 1st-order low-pass filter, the
reduction of the in-band ripple is more effective than band-
width reduction (which was effective for capped reciprocal-
Butterworth designs [13]). Table 1 shows a performance com-
parison of selected proposed capped reciprocal-Chebyshev de-
signs with a given order. The table shows achieved NGD
in both the frequency and time (for a Gaussian pulse input)
domains. The associated Figure-of-Merit (FOM) and dis-
tortion metric are also shown, along with the metrics for a
capped reciprocal-Butterworth design from [13], for compar-
ison. For a prescribed distortion metric value, for the same
design order and out-of-band gain, it is demonstrated that the
proposed capped reciprocal-Chebyshev design can achieve a
higher NGD-bandwidth product than the capped reciprocal-
Butterworth design reported in [13].
Further, it was shown that the bandwidth over which

the group delay response is negative, τ(ω) < 0 is larger
than the 3 dB-bandwidth for the presented reciprocal-capped
Chebyshev design, just like it was for the capped reciprocal-
Butterworth design in [13]. As a result, magnitude response
variation over the τ(ω) < 0 bandwidth is higher than 3 dB
and can result in an unacceptably high distortion. Table 2
summarizes NGD performance metrics for the same examples
from Table 1, when instead of the 3 dB-bandwidth, the larger
τ(ω) < 0 bandwidth is used. As discussed in this paper,
as well as in [10, 13], any NGD design and its specified
bandwidth should be checked for distortion with waveforms
corresponding to that bandwidth.
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