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ABSTRACT: To enhance the performance of microwave power transmission (MPT) systems’ transmitting arrays, it is essential to com-
prehensively consider key factors such as beam collection efficiency (BCE), the level of sidelobes outside the reception area (CSL),
and expense. Current transmitting array models commonly suffer from issues like low BCE, a large number of array elements, and
complex feeding systems. Addressing these issues, this paper proposes a novel transmitting array design referred to as Large Spacing
Nonuniform-Excitation Sparse Planar Array (LSNSPA) and introduces a new subarray partitioning algorithm named Multi-Parameter
Dynamic Weight Particle Swarm Optimization for Rectangular Subarrays (MP-DWPSO-RS). The algorithm is capable of optimizing the
subarray structure, as well as the element positions and excitations, during each iteration. This paper achieves a relatively higher BCE
metric than other arrays by utilizing only a small number of subarrays, through the combination of a large-spacing distribution strategy
and a subarray partitioning strategy. Simulations have verified that the proposed MP-DWPSO-RS algorithm can achieve a BCE of
nearly 94% when optimizing the LSNSPA with an aperture of 4.5λ× 4.5λ consisting of 8× 8 elements.

1. INTRODUCTION

MPT technology is widely regarded as a highly promising
method for wireless energy transmission [1]. This tech-

nique enables the transmission of energy from one place to an-
other by using microwaves, which are electromagnetic radia-
tion with frequencies that range from 300MHz to 300GHz. It
has a variety of applications in wireless sensor networks [2],
mobile internet [3], and industrial control fields [4], as well as
sensors and terminal devices such as smartphones, drones, and
implantable medical devices [5]. Although the overall trans-
mission efficiency of an MPT system is the product of the ef-
ficiencies of its various components, BCE is one of the most
critical efficiencies in an MPT system. It can be defined as the
ratio of the total energy emitted by the transmitting antenna to
the energy that is received by the receiving antenna. Its defi-
nition is the proportion of the total power that the antenna that
transmits emits to the total power that the receiving antenna re-
ceives [6]. Moreover, another crucial performance indicator in
MPT is CSL, or the maximum sidelobe level observed beyond
the receiving region. If every element in an array antenna is
stimulated differently, it becomes necessary to build a circuit
for amplifiers and a phase changer circuit for each element,
which can make the entire array’s feeding network extremely
complex and increase the array’s implementation cost. There-
fore, achieving an effective simplification of the feeding net-
work for the transmitting array in an MPT system is a current
challenge in array design.
In MPT systems, subarray partitioning technology simplifies

the feeding network of array antennas by grouping indepen-
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dent array elements into the same subarray for unified optimiza-
tion [7]. This will provide the best synthesis of the sparse planar
array after subarray partitioning. Creating a sensible subarray
structure has significant study implications for transmitting ar-
rays [8]. Attaining highBCE with few subarrays is the current
research emphasis for small arrays.
To solve these problems, this paper suggests a Multi-

Parameter Dynamic Weight Particle Swarm Optimization for
Rectangular Subarrays (MP-DWPSO-RS). By using the largest
generalized eigenvalue as the fitness level of the optimization
process, and this method improves both the locations and exci-
tations of array elements at the same time [9]. The innovation
of this paper lies in the introduction of side length optimization
factors and the use of position interval division for subarrays,
achieving simultaneous optimization of element positions, ele-
ment excitations, and subarray layouts, classified as a one-step
optimization algorithm. This study creates a Large Spacing
Nonuniform-Excitation Sparse Planar Array (LSNSPA). It has
more optimization freedom than regular symmetric arrays,
and the large-spacing element distribution aids in accelerating
the convergence of the algorithm and effectively avoids local
optima, thus further enhancing the optimization metrics.
Simulation results show that the proposed algorithm is suitable
for array optimization schemes with few subarrays; when the
number of subarrays is 3, BCE can reach 93.21%, and CSL
is −13.79 dB. This study proposes a scheme that significantly
reduces costs and simplifies the design of the feeding network,
making it theoretically significant for scenarios in practical
applications that require only a small number of subarrays.
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FIGURE 1. The model of the LSNSPA.

2. SPARSE PLANAR ARRAY MODEL AND SUBARRAY
PARTITIONING MODEL
Figure 1 illustrates the LSNSPAmodel in the MPT system, and
the symbols along with their meanings in the formulas men-
tioned in this paper are detailed in Table 1. This section will
elaborate on the derivation of maximum BCE and the subar-
ray partitioning method.
As seen in Fig. 1, let the planar array’s size of the aperture

be Lx × Ly . On the XOY plane, M elements are dispersed
at random. (xm, ym) is a representation of the mth element’s
location, and the element excitation is ωm = Ime−jαm . Ac-
cording to [9], substituting these parameters into a rectangular
planar pattern function yields the directional pattern function of
the LSNSPA:

F (u, v) =

M∑
m=1

ωmeik(uxm+vym) (1)

where k is the wave number, and u = sin(θ) cos(φ)
and v = sin(θ) sin(φ) are the two angular coordinates
that describe the radiation range of the array. The re-
ceived power PΨ within the square-shaped reception
space Ψ = {(u, v) : −u0 ≤ u ≤ u0,−v0 ≤ v ≤ v0} and
the total power PΩ within the whole viewable area
Ω = {(u, v) : u2 + v2 = 1} can be expressed as:{

PΨ =
∫
Ψ
|F (θ, φ)|2 dudv

PΩ =
∫
Ω
|F (θ, φ)|2 dudv

(2)

From Eq. (2), the general notation for BCE can be written as
follows:

BCE =
PΨ

PΩ
=

∫
Ψ
|F (θ, φ)|2 dudv∫

Ω
|F (θ, φ)|2 dudv

(3)

Let Vm(u, v) = eik(uxm+vym), and we can rewrite the array
pattern function as:

F (u, v) =

M∑
m=1

ωmVm (u, v) (4)

in this context, ω = [ω1, ω2, . . . , ωM ] can be represented as
the element excitation vector of the array, and V (u, v) =
[e−ik(ux1+vy1), e−ik(ux2+vy2), . . . , e−ik(uxM+vyM )]H can
be represented as the element direction vector of the array.
By using the aforementioned equation, we can derive the
expression for the beam pattern function of the LSNSPA given
the known array element direction vector V (u, v) and the
element excitation vector ω. Based on Eq. (4), BCE can be
represented as:

BCE =

∫
Ψ
ωHV (u, v)V H (u, v)ωdudv∫

Ω
ωHV (u, v)V H (u, v)ωdudv

=
ωHZω

ωHQω
(5)

wherein:

Z =

∫
Ψ

V (u, v)V H(u, v)dudv

Q =

∫
Ω

V (u, v)V H(u, v)dudv

(6)

Furthermore, the peak sidelobe value beyond the receiving area
is specified as the CSL, which is a metric for assessing the
transmitting array’s performance. CSL can be written as fol-
lows [9]:

CSL(dB) = 10lg
maxθ,φ/∈Ψ |F (θ, φ)|2

maxθ,φ∈Ω |F (θ, φ)|2
(7)
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TABLE 1. The list of symbols.

Symbols Meanings
k the wave number
m,M the number of array elements
n,N the number of subarrays
dmin the minimum element spacing
Lx, Ly the planar array’s size of the aperture
ωm the element excitation
Im the excitation amplitude
αm the excitation phase
xm, ym the element’s location
u, v the angular coordinates that describe the radiation range of the array
BCE the beam collection efficiency
CSL the level of sidelobes outside the reception area
PΨ the received power
PΩ the total power
Ψ the square-shaped reception space
Ω the whole viewable area
V the element direction vector of the array
θ, φ the pitch angle and azimuth angle of the array
ωopt the optimal element excitation vector
ηmax the maximum generalized eigenvalue
BX , BY the side length vector of the subarray
SR the subarray division matrix
Iiv the initial element excitation vector
Isub the subarray excitation vector
Isub_all the element excitation vector after subarray partitioning
Vx, Vbx, Vby the element velocity and the side length update speed
pbest the local optimal individual
pbestx, pbestbx, pbestby the positions of the elements and the subarray side lengths

corresponding to the local optimal individual
gbest the global optimal individual
gbestx, gbestbx, gbestby the positions of the elements and the subarray side lengths

corresponding to the global optimal individual

The array’s receiving matrix and transmitting matrix are rep-
resented respectively. According to [9], we can transform the
problem of solving the maximum BCE of the LSNSPA into
solving the maximum generalized eigenvalue of the matrix
equation, that is:

Zωopt = ηmaxQωopt

BCEmax = ηmax
(8)

Furthermore, to divide the subarrays, we compare the max-
imum value of the element position coordinates with the max-
imum random side length of the rectangular subarray. The di-
vision method is shown in Fig. 2.
The side length vector can be represented as:

BX = [bx1, bx2, . . . , bxN ]

BY = [by1, by2, . . . , byN ]
(9)

Based on Eq. (9), the side length optimization model has the
following expression:

find BX = [bx1, bx2, . . . , bxN ]
H

BY = [by1, by2, . . . , byN ]
H

maximize BCE (BX , BY )
subject (a) bxN = Lx/2, byN = Ly/2;

(b) dmin/2 ≤ bxn ≤ Lx

/
2,

dmin/2 ≤ byn ≤ Ly/2,
n = {1, 2, . . . , N} ;

(c) bxn+1 − bxn ≥ dmin,
byn+1 − byn ≥ dmin,
n = {1, 2, . . . , N − 1} ;

(10)

Subarray partitioning method: Min (bxn, byn) ≤ Max(xm,
ym) < Max (bxn+1, byn+1) ; m∈ (1,M) , n∈ (1, N − 1) ,
this indicates that the nth subarray contains themth element.
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FIGURE 2. Subarray Division Model.

Let the subarray division matrix SR be an M × N matrix,
which represents dividingM elements into different subarrays
and can be expressed as:

SR=



R11 R12 . . . R1N

R21 R22 . . . R2N

...
...

. . .
...

RM1 RM2 . . . RMN


Rmn =

{
1 The mth element ∈ The nth subarray
0 The mth element /∈ The nth subarray

m=1, 2, . . . ,M ; n = 1, 2, . . . , N. (11)

Make sure that each element belongs to one subarray by satis-
fying the condition:

N∑
n=1

Rmn = 1, m = 1, 2, . . . ,M (12)

For the initial element excitation vector, provide the following
definition:

Iiν = [I1, I2, . . . , IM ]
H (13)

The subarray excitation vector is defined as follows:

Isub =
[
Isub1 , Isub2 , . . . , IsubN

]H (14)

The excitation formula for each subarray is calculated as fol-
lows:

Isubn =

M∑
m=1

Rmn · Im
M∑

m=1
Rmn

, n = 1, 2, . . . , N (15)

By multiplying the subarray partitioning matrix by the subarray
excitation vector, the element excitation vectors after subarray
partitioning can be obtained, as shown below:

Isub_all = SR · Isub (16)

Therefore, according to Eq. (5), Eq. (15), and Eq. (16), we can
deduce that:

BCE =
(Isub_all)

H · Z · Isub_all
(Isub_all)

H ·Q · Isub_all
(17)

3. MP-DWPSO-RS ALGORITHM AND ITS UTILIZA-
TION ON THE LSNSPA

3.1. Overview of the LSNSPA Model Based on MP-DWPSO-RS
Through multiple simulations, we have found that for intelli-
gent optimization algorithms such as particle swarm optimiza-
tion, appropriately increasing the minimum element spacing
can accelerate convergence. Therefore, this paper proposes a
sparse rectangular planar array model with a large spacing dis-
tribution that experiences nonuniform stimulation. The opti-
mization model of the LSNSPA using the MP-DWPSO-RS al-
gorithm can be represented as:

find [X] = [x1, x2, . . . , xM , y1, y2, . . . , yM ]
H

[BX , BY ] = [bx1, bx2, . . . , bxN , by1, by2, . . . , byN ]
H

maximize BCEmax [X,BX , BY ]
subject (a) −Lx/2 ≤ xm ≤ Lx/2, m = {1, 2, . . . ,M} ;

(b) −Ly/2 ≤ ym ≤ Ly/2, m = {1, 2, . . . ,M} ;
(c)

√
(xm1

− xm2
)
2
+ (ym1

− ym2
)
2 ≥ dmin,

m1,m2 ∈ {1, 2, . . . ,M} , m1 ̸= m2;
(d) (x1, y1) = (−Lx/2,−Ly/2) ,

(xend, y1) = (Lx/2,−Ly/2) ;
(e) (x1, yend) = (−Lx/2, Ly/2) ,

(xend, yend) = (Lx/2, Ly/2) ;
(f) dmin/2 ≤ bxn ≤ Lx/2,

dmin/2 ≤ byn ≤ Ly/2, n ∈ {1, 2, . . . , N} ;
(g) bxn+1 − bxn ≥ dmin,

byn+1 − byn ≥ dmin, n ∈ {1, 2, . . . , N − 1} ;
(h) bxN = Lx/2, byN = Ly/2;

(18)
The model aims to maximize BCE as the optimization objec-
tive, with the optimization variables being the element positions
and side length vector. The element positions in this model are
randomly distributed, offering higher degrees of optimization
freedom than symmetrically distributed array models. Since
small arrays have smaller apertures and fewer elements than
large arrays, their overall complexity is relatively low, making
the strategy of large-spacing random distribution suitable for
small arrays to enhance optimization metrics.

3.2. Overview of the MP-DWPSO-RS Algorithm
MP-DWPSO-RS is an improved algorithm based on DWPSO
that incorporates multi-parameter and subarray partitioning to
propose a comprehensive optimization algorithm for planar
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The pseudo-code of the MP-DWPSO-RS 

Initialization parameters. 

Initialize element position ( ,m mx y ) and subarray side lengths ,
n nx yb b .  

Initialize particle velocities 
xV  and side length velocities ,bx byV V .

For 1:t = T  

For 1:tNP = NP

Update subarray partitioning matrix SR.

Calculate subarray excitation 
subI and BCE .

Update local optimal individual pbest .

Update particle velocities 
xV and side length velocities ,bx byV V .

Update element position ( ,m mx y ) and subarray side lengths ,
n nx yb b .  

End 

Update global optimal individual gbest .

End 

 Output the above parameters. 

FIGURE 3. The pseudo-code of the MP-DWPSO-RS.

transmit arrays. Here are the specific steps of theMP-DWPSO-
RS algorithm:

Step 1: Initialize parameters. Initialize the number of ele-
ments (M), the number of subarrays (N), the planar ar-
ray’s size of the aperture (Lx × Ly), element positions
(xm, ym), the element velocity (Vx), receiving area (Ψ),
subarray side length (BX , BY ), side length update speed
(Vbx, Vby), current iteration number (t), and the number
of iterations (T ), etc.

Step 2: According to the subarray partitioning method men-
tioned in this paper, partition the subarrays and calculate
the subarray excitations using the formula, thereby obtain-
ing the element excitations after subarray partitioning, and
calculate the BCE value in Eq. (3).

Step 3: Update the element positions (xm, ym) and element
update speed Vx according to Eq. (19).

w =wmax − (wmax − wmin)× (t/T )2

Vxt+1
=w × Vxt

+ c1 × rand× (pbestxt
− xt)

+ c2 × rand× (gbestxt
− xt)

xt+1 =xt + Vxt+1

(19)

Step 4: Calculate the side length update speed (Vbx, Vby) ac-
cording to Eq. (20).

Vbxt+1
=w × Vbxt

+c1 × rand×(pbestbxt
−bxt)

+ c2 × rand× (gbestbxt
− bxt)

bxt+1= bxt + Vbxt+1

Vbyt+1
=w×Vbyt

+c1×rand×(pbestbyt
−byt)

+ c2 × rand× (gbestbyt
− byt)

byt+1= byt + Vbyt+1

(20)

Step 5: Update the local optimal individual (pbest) and global
optimal individual (gbest) according to Eq. (21).

if pbest ≤ BCE

pbest = BCE

end

gbest = max (pbest)

(21)

The above formula uses a dynamic weight calculation
method that has nonlinear characteristics and represents
the current iteration number. In the early stages of the
algorithm, a large weight coefficient facilitates global
search, allowing particles to explore the solution space
more widely. Therefore, in the early iterations, the weight
should be set as high as possible. In the later stages of
iteration, a low weight coefficient facilitates local search,
enabling particles to conduct detailed searches near known
solutions. The MP-DWPSO-RS algorithm can effectively
transition from global search to local search by using dy-
namic weights, which represent the local learning factor
and global learning factor, respectively.

Step 6: Determine if t has reached the maximum number of
iterations, and if not, return to step 2; otherwise output
gbest.

By following the above steps, we can obtain the maximum
BCE value after subarray partitioning. The algorithm is ca-
pable of simultaneously optimizing the element positions and
excitations during each iteration, classifying it as a one-step
optimization algorithm. Additionally, by combining subarray
partitioning techniques with a multi-parameter particle swarm
optimization algorithm, it becomes advantageous in searching
for the fittest individuals within the population. Fig. 3 displays
the pseudo-code for the MP-DWPSO-RS algorithm.

135 www.jpier.org



Cui and Li

(a) (b)

FIGURE 4. The simulation results of the LSNSPA when N = 2.

(a) (b)

FIGURE 5. The simulation results of the LSNSPA when N = 3.

4. SIMULATION TESTING AND RESULTS ANALYSIS

In this part, we will use simulations to look into the MP-
DWPSO-RS algorithm’s optimization level and how well it
works on different array models. We will also compare theMP-
DWPSO-RS’s optimization results to those of other algorithms
to see how well it works. First, we utilize the MP-DWPSO-RS
algorithm to optimize the LSNSPA array model. Next, to test
the universality of the algorithm, we also apply it to a Sym-
metric Quadrant Sparse Rectangular Planar Array (SQSRPA)
and Non-Uniformly Excited Sparse Rectangular Planar Array
(NESRPA). Furthermore, we compare the optimization results
of these three arrays with those from the literature, including
the number of elements, the number of subarrays, sparsity ra-
tio, BCE, and CSL. Finally, to illustrate the benefits of the
MP-DWPSO-RS algorithm for the thorough optimization of the
LSNSPAmodel, we conduct a comprehensive evaluation of the
MP-DWPSO-RS algorithm against three other particle swarm
optimization algorithms under the same constraints. The paper
focuses solely on the research of beam patterns in a fixed ver-
tical direction and does not address the issue of beam steering.
The parameters related to MP-DWPSO-RS are as follows:

population particle number NP = 50, wavelength λ set to 1,
learning factors c1 = c2 = 2, maximum iteration number T =
200, array aperture set to Lx × Ly = 4.5λ × 4.5λ, number of
elements set toM = 8× 8, and receiving area u0 = v0 = 0.2.

All simulation experiments in this paper were conducted using
an Intel Core i7-1250U CPUwith a main frequency of 2.0GHz,
with a memory size of 16GB, and the simulation software used
was MATLAB R2021a.

4.1. Results of Array Optimization Using the MP-DWPSO-RS
Algorithm

The first array model to be simulated is the LSNSPA array,
which employs a large spacing distribution strategy, with its
minimum element spacing dmin set to 0.6. Table 2 presents
the comprehensive results after optimization using the MP-
DWPSO-RS algorithm.

For subarray numbers 2, 3, and 4, the element positions and nor-
malized power directions are shown in Figs. 4, 5, and 6, respectively.

TABLE 2. Results of the LSNSPA Optimization Using the MP-
DWPSO-RS Algorithm.

N u0 = v0 Isub BCE/% CSL/dB
2 0.2 0.8434, 0.3806 87.23 −15.78

3 0.2 0.8827, 0.5800, 0.2511 93.21 −13.79

4 0.2
0.9877, 0.7977,
0.5360, 0.2343

93.60 −13.53
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(a) (b)

FIGURE 6. The simulation results of the LSNSPA when N = 4.

(a) (b)

FIGURE 7. The simulation results of the SQSRPA when N = 3.

The second simulationmodel utilizes the SQSRPA arraymodel with
an aperture of 4.5λ× 4.5λ, consisting of 64 elements and a minimum
element spacing of dmin = 0.5λ. The results after comprehensive op-
timization using the MP-DWPSO-RS algorithm are presented in Ta-
ble 3.

TABLE 3. Results of the SQSRPA Optimization Using the MP-
DWPSO-RS Algorithm.

N u0 = v0 Isub BCE/% CSL/dB
2 0.2 0.8304, 0.3887 90.15 −13.44

3 0.2 0.8555, 0.6223, 0.3001 91.38 −12.87

4 0.2
0.9737, 0.8043,
0.4323, 0.2941

91.78 −11.91

When the number of subarrays is 3, the element distribution and
normalized power directions are shown in Fig. 7.

The final simulation model is the NESRPAmodel, which maintains
consistent array parameters with the SQSRPA model. The results of
comprehensive optimization using the MP-DWPSO-RS algorithm are
presented in Table 4.

When the number of subarrays is 3, the element distribution and
normalized power directions are shown in Fig. 8.

Through the simulation of the above three array types, we can un-
derstand that the BCE of all three arrays can reach over 90% when
dividing just a few of subarrays. Among them, when the number of

TABLE 4. Results of the NESRPA Optimization Using the MP-
DWPSO-RS Algorithm.

N u0 = v0 Isub BCE/% CSL/dB
2 0.2 0.7753, 0.3185 88.23 −12.57

3 0.2 0.8531, 0.6563, 0.2797 91.51 −12.75

4 0.2
0.8741, 0.6736,
0.3461, 0.1219

91.81 −11.19

subarrays N = 3, the BCE of LSNSPA reaches over 93%, which
is a relatively good optimization result for dividing only three sub-
arrays, thus verifying the effectiveness of the MP-DWPSO-RS algo-
rithm. Looking at the optimization results of the LSNSPA and NES-
RPA array models side by side, it is clear that, under the same condi-
tions, arrays with a lot of space between them can improve their overall
performance to achieve a high BCE and a low CSL.

4.2. Comparison of MP-DWPSO-RS Algorithm with Other PSO Algo-
rithms
To validate the superiority of the MP-DWPSO-RS algorithm in op-
timizing sparse planar arrays, this paper compares it with Basic PSO
(Base-PSO) [10], Constricted Factor PSO (C-PSO) [11], and Dynamic
Weighted PSO (DW-PSO) [12]. The tests were conducted on the NES-
RPA model with the following parameters set: population particle
numberNP = 50, wavelength λ set to 1, maximum iteration number
T = 200, array aperture set to Lx × Ly = 4.5λ × 4.5λ, number of
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(a) (b)

FIGURE 8. The simulation results of the NESRPA when N = 3.

TABLE 5. Comparison of comprehensive results of various arrays under rectangular receiving area.

Ref. [9] Ref. [13] Ref. [14] SQSRPA NESRPA LSNSPA
M 100 100 64 64 64 64
N 1 1 6 3 3 3

γe (%) 100 100 64 64 64 64
γa (%) 1 1 9.4 4.68 4.68 4.68

BCE (%) 86.48 91.09 91.11 91.38 91.51 93.21
CSL (dB) −7.78 −14.68 −16.01 −12.87 −12.75 −13.79

elements set to M = 8 × 8, number of subarrays N = 3, minimum
element spacing dmin = 0.5λ, receiving area set to u0 = v0 = 0.2,
and the simulation software used in this paper is MATLAB R2021a.

Figure 9 shows that compared to other PSO algorithms, the MP-
DWPSO-RS method produces superior simulation results. Relative
to DW-PSO, the algorithm achieves higher BCE values in the early
stages of iteration. This is mainly because the algorithm uses random
side lengths of subarrays as optimization parameters, enabling the si-
multaneous optimization of element positions and subarray parameters
during the iteration process, which significantly improves the overall
efficiency of the optimization process and accelerates the search for
the optimal value. Compared to C-PSO and Base-PSO, the algorithm
adopts a nonlinear dynamic inertia weight, focusing on global search
in the early stages of iteration and local search in the later stages, which
helps to improve the convergence speed and search efficiency of the
algorithm.

FIGURE 9. Simulation outcomes for various PSO algorithms.

4.3. LSNSPA Array Model Performance Comparison
For an emission array with the same aperture and reception area, the
LSNSPA proposed in this paper employs a large-spacing distribution
strategy and a subarray partitioning strategy, effectively reducing the
number of array elements and amplifiers. By comparing it with the
SQSRPA, NESRPA, and the array models optimized using the “one-
step” method mentioned in [9, 13, 14], we will conduct a comparison
in terms of the number of elementsM , the number of subarraysN , el-
ement sparse distribution rate (γe), power amplifier sparse distribution
rate (γa), BCE, and CSL.

Table 5 demonstrates that under the same conditions, the LSNSPA
outperforms the SQSRPA and NESRPA, confirming the effectiveness
of the large-spacing distribution strategy in enhancing array perfor-
mance. By combining the large-spacing distribution strategy and sub-
array partitioning strategy, it is possible to achieve a highBCE value
with a reduced number of subarrays, while taking into account both
the expense and performance of the array.

5. CONCLUSION
In this paper, addressing the issue of achieving a high BCE value by
dividing a few subarrays, an efficient subarray partitioning algorithm
named MP-DWPSO-RS is proposed. This algorithm is a one-step ap-
proach that combines the large-spacing distribution strategy, subarray
partitioning techniques, and dynamic weight particle swarm optimiza-
tion, allowing for the simultaneous optimization of element positions,
excitations, and subarray parameters. The algorithm takes the random
side length of the subarrays as optimization parameters, achieving si-
multaneous optimization of positions and subarray partitioning side
lengths during each iteration. This enhances the algorithm’s global
search capability while finding optimal values and avoiding local op-
tima. Extensive simulations have shown that applying this algorithm
to the LSNSPA can achieve a BCE of 93.21% by dividing only three
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subarrays. Compared to other algorithms that require the division into
three or more subarrays, when partitioning a few subarrays, this al-
gorithm can significantly reduce the number of amplifiers and array
elements, achieving a high BCE and low cost.

ACKNOWLEDGEMENT
This work was supported by the National Natural Science Foundation
of China (Grant No. 51877151).

REFERENCES
[1] Lu, F., H. Zhang, W. Li, Z. Zhou, C. Zhu, C. Cheng, Z. Deng,

X. Chen, and C. C. Mi, “A high-efficiency and long-distance
power-relay system with equal power distribution,” IEEE Jour-
nal of Emerging and Selected Topics in Power Electronics, Vol. 8,
No. 2, 1419–1427, 2020.

[2] Kumar, S. and A. Sharma, “Switched beam array antenna opti-
mized for microwave powering of 3-D distributed nodes in clus-
tered wireless sensor network,” IEEE Transactions on Antennas
and Propagation, Vol. 70, No. 12, 11 734–11 742, 2022.

[3] Chen, X., “Power coverage analysis of cellular networks with
energy harvesting and microwave power transfer-based power
sharing,” IEEE Access, Vol. 8, 77 204–77 213, 2020.

[4] Cao, W., J. Liu, J. Li, Q. Yang, and H. He, “Networked mo-
tion control for smart EV with multiple-package transmissions
and time-varying network-induced delays,” IEEE Transactions
on Industrial Electronics, Vol. 69, No. 4, 4076–4086, 2022.

[5] Takabayashi, N., K. Kawai, M. Mase, N. Shinohara, and T. Mi-
tani, “Large-scale sequentially-fed array antenna radiating flat-
top beam for microwave power transmission to drones,” IEEE
Journal of Microwaves, Vol. 2, No. 2, 297–306, 2022.

[6] Jiang, H. and W. Dou, “Methods for improving the distance of
microwave wireless power transmission with a given beam col-

lection efficiency,” IEEE Antennas and Wireless Propagation
Letters, Vol. 19, No. 12, 2112–2116, 2020.

[7] Miao, K., Y. Zhang, C. Yao, and H. Sun, “Improved algorithm
X for subarray partition with acceleration and sidelobe suppres-
sion,” IEEE Antennas andWireless Propagation Letters, Vol. 21,
No. 7, 1403–1407, 2022.

[8] Liu, X., X. Zhang, and H. Yan, “Research of subarray partition
in optically phased array radar,” Applied Science & Technology,
2006.

[9] Oliveri, G., L. Poli, and A. Massa, “Maximum efficiency beam
synthesis of radiating planar arrays for wireless power transmis-
sion,” IEEE Transactions on Antennas and Propagation, Vol. 61,
No. 5, 2490–2499, 2013.

[10] Poli, R., J. Kennedy, and T. Blackwell, “Particle swarm opti-
mization: An overview,” Swarm Intelligence, Vol. 1, 33–57,
2007.

[11] Cheng, Z., L. Fan, and Y. Zhang, “Multi-agent decision support
system for missile defense based on improved PSO algorithm,”
Journal of Systems Engineering and Electronics, Vol. 28, No. 3,
514–525, 2017.

[12] Liu, Y., J. Xi, H. Bai, Z. Wang, and L. Sun, “A general robot
inverse kinematics solution method based on improved PSO al-
gorithm,” IEEE Access, Vol. 9, 32 341–32 350, 2021.

[13] Li, J. and S. Chang, “Novel sparse planar array synthesis model
for microwave power transmission systems with high efficiency
and low cost,” Progress In Electromagnetics Research C, Vol.
115, 245–259, 2021.

[14] Li, X., B. Duan, J. Zhou, L. Song, and Y. Zhang, “Planar array
synthesis for optimal microwave power transmission with multi-
ple constraints,” IEEE Antennas and Wireless Propagation Let-
ters, Vol. 16, 70–73, 2016.

139 www.jpier.org


	Introduction
	Sparse Planar Array Model And Subarray Partitioning Model
	MP-DWPSO-RS Algorithm And Its Utilization On The LSNSPA
	Overview of the LSNSPA Model Based on MP-DWPSO-RS
	Overview of the MP-DWPSO-RS Algorithm

	Simulation Testing and Results Analysis
	Results of Array Optimization Using the MP-DWPSO-RS Algorithm
	Comparison of MP-DWPSO-RS Algorithm with Other PSO Algorithms
	LSNSPA Array Model Performance Comparison

	CONCLUSION

