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ABSTRACT: Near-field scattering of human targets in the view of a bi-static, radar-like sensor operating in the lower radiofrequencies is
used as an alternative to traditional biometric identification systems. These radiofrequency-based human sensor systems have emerged as
a promising solution to address privacy concerns, particularly those associated with audio and visual data that extract sensitive personally
identifiable information. In this paper, we propose a novel method for privacy-preserving human identification using bi-static radar-like
sensors. Unlike conventional radar systems that rely on echoes and reflections in the far field, our approach is based on the transmission of
signals through and around users as they pass through a transmitter and receiver. Instead of the more commonly used linear or segmented
swept frequencies, this work utilizes discrete swept frequencies to transmit and receive radiofrequency signals. We have examined the
performance of seven machine learning models in terms of accuracy and processing time and found that the Extra Trees ensemble model
produced the best results, with an accuracy rate of 94.25% for a sample size of 31 individuals using an Intel(R) Core(TM) i5-10300H
CPU @ 2.50GHz processor.

1. INTRODUCTION

Radiofrequency-based human sensor systems are an active
area of research. The rise in popularity of these systems

is contributed by the concerns surrounding the privacy of ex-
isting biometric systems. This is especially so for audio and
vision-based systems as they capture sensitive personally iden-
tifiable information such as facial features and voiceprints.
Radiofrequency-based systems provide an alternative by lever-
aging their ability to utilize noninvasive biometric markers such
as gait, velocity, heartrate, or respiration.
While most state-of-the-art radiofrequency identification

(RFID) systems have a setup akin to mono-static radar with
the transmitter and receiver on the same plane, works such
as [1] have shown the bi-static setup to be just as, if not
more efficient. In this work, we present our novel method
of privacy-preserving human identification using the bi-static
approach. However, unlike conventional radar systems which
rely on echoes and reflections [2], our approach focuses
on near-field scattering of users as they walk through the
receiver and transmitter antenna pair. The mode of signal
transmission in our method differs from radar systems which
typically employ linear frequency sweep across a predefined
frequency range. Our proposed method utilizes a discrete
frequency sweep to extract information from the resonance
of wavelengths interacting with different parts of the human
body.

* Corresponding author: Nicole Tan Xin Hui (tan.nicole@1utar.my).

The operating principles of our proposed method of human
sensing is different from passive RFID systems which utilize an
array of spatially separated tags to provide temporal and spatial
information. In contrast, we obtain spatial information through
the phase and magnitude data collected from the discrete fre-
quency sweep performed.
While the trend in human identification currently leans to-

ward deep learning, through our comparison of various ma-
chine learning models we have shown that ensemble machine
learning models work best for our set of data in terms of accu-
racy and time efficiency.
Our contribution in this paper is as follows:

• We demonstrate the potential for a novel human identifica-
tion system using a bi-static radar-like sensor, with signals
generated from a discrete frequency sweep.

• We examine the effects of the type of signal used (magni-
tude data, phase data, and the combination of both), effect
of number of frequencies used, and the effect of sample
size on the performance of our system.

• We evaluate the performances of our system using 7 ma-
chine learning algorithms (k-nearest neighbour, support
vector machine, extra trees, random forest, convolutional
neural network (CNN), recurrent neural network (RNN),
CNN-RNN) in the context of human identification, focus-
ing on their accuracy and effectiveness in distinguishing
between individual persons.
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The paper is organised as follows. Section 2 summarises the
literature reviewed. The data processing techniques and setup
of the system are elaborated in Section 3. Section 4 presents
the results and discussion, and Section 5 concludes this paper.

2. RELATED WORK

Radar-based human identification systems typically involve a
participant walking toward the radar sensor located at the end
of the measured walking path [2–5]. Ref. [6] differs slightly in
setup where the radar is located overhead on the doorframe.
These frequency modulated carrier wave (FMCW) systems
functions are based on echoes and reflections from a person’s
body as the person walks toward the sensor. This utilizes the
range Fourier Transform (range-FFT) principle and Doppler
Fourier Transform (Doppler-FFT) and therefore require linear
swept frequency transmission which enhances the radar sys-
tem’s sensitivity to changes in the target range. These sys-
tems typically process data as time-frequency spectrograms (2-
dimensional images).
Another popular human sensing method utilizes WiFi sig-

nals. There are two setup configurations used in state-of-the-art
work. One involves aWiFi transmitter and receiver arranged in
the same plane, facing the same direction, and the participant
is required to walk toward the transmitter or receiver [7]. The
other setup involves a WiFi transmitter and WiFi receiver ar-
ranged a few feet apart from each other and function as a vir-
tual WiFi gate whereby the participant is required to walk on
the path between them [8, 9]. Authors of [8] emphasise that the
latter orientation is able to provide directional information as
opposed to the more popular former orientation. Data collected
in theseWiFi systems are either in the form of Channel State In-
formation (CSI) or Received Signal Strength Indicator (RSSI),
with CSI being a more popular choice. As suggested by [10],
it offers more fine-grained information than RSSI which does
not include phase information.
Passive RFID setups are typically arranged in a bi-static-like

setup with a reader on one side and an array of RFID tags on the
other, functioning essentially like an RFID gate [11]. Although
the general idea of a setup with a receiver and transmitter posi-
tioned across each other with a fixed distance between them is
reminiscent of what we are proposing, the operating principles
are different. The array of tags provides temporal and spatial
information as the participants walk on the path between the
reader and array of tags. We obtain spatial information through
the discrete swept frequencies.
The general trend ofmachine learningmodels in state-of-the-

art work lean toward deep learning models such as CNN, RNN,
long-short term memory (LSTM), or a combination of them.
Researchers favour these models due to their ability to perform
automatic feature extraction. However, some researchers have
found that manual feature extraction can produce a classifier
that is capable of outperforming CNNs. Ref. [6] applied prin-
cipal component analysis (PCA) to aid in dimensionality re-
duction and feature extraction. The authors then compared the
performances of several machine learning algorithms: support
vector machine (SVM), logistic regression, k-nearest neighbor

(KNN), random forest and CNN, and found that the random
forest model performed the best.
In this paper, we perform a comparison among 7 machine

learning models to examine the effects of different machine
learning models on tabular data: K-nearest neighbor (KNN),
support vector machine (SVM), random forest, extra trees, con-
volutional neural network (CNN), recurrent neural network
(RNN), and a combination of CNN-RNN. CNN, RNN, and
CNN-RNNmodels were selected as they have beenwidely used
in this area of study, while KNN and SVM are standard models
used for comparison in related work, but have typically shown
to produce poorer results.
While the use of extra trees is rarely found in related liter-

ature, we have included them in this work due to their simi-
lar structure to random forests which have shown to perform
well on similar applications [6, 12]. Outside the area of human
identification using microwave signals, a study by [13] on so-
lar radiation showed that extra trees were capable of producing
results on par with random forest models.

3. METHODOLOGY

3.1. Setup of System
The system comprises an antenna pair (one transmitter and one
receiver), a radio transmitter, radio receiver, and data processor
as illustrated in Figure 1 and shown in Figure 2 see [14]. The
antennas used here are vertical dipoles, with reflectors fabri-
cated using aluminium sheets. They stand at 180 cm in height

FIGURE 1. Identification system setup.

FIGURE 2. Experimental system configuration including vector net-
work analyser (VNA).
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and 15 cm in width, held up by wooden frames. These dipole
antennas are arranged 80 cm apart from each other. A ZVL13
Rohde and Schwarz vector network analyser (VNA) is used to
synchronise the transmission and reception of discrete frequen-
cies simultaneously. Twelve frequencies were selected in the
range of 50MHz to 920MHz, which are listed in Table 1 along-
side their respective wavelengths. These frequencies were cho-
sen by their ability to capture more significant information from
the signals. This was experimentally determined by choosing
the measured signals with the greatest variation.

TABLE 1. Frequencies used and their wavelengths.

Frequencies (MHz) Wavelength (m)
Freq 1 50 5.996
Freq 2 100 2.998
Freq 3 130 2.306
Freq 4 250 1.199
Freq 5 320 0.937
Freq 6 440 0.681
Freq 7 490 0.612
Freq 8 530 0.566
Freq 9 560 0.535
Freq 10 700 0.428
Freq 11 820 0.366
Freq 12 920 0.326

These frequencies correspond to transmitting power levels
between 1 nW and 20mW (−60 dBm to +13 dBm). Therefore,
the maximum power density equates to 0.0009947mW/cm2

which is within the threshold of 0.613mW/cm2 set by Federal
Communications Commission (FCC) [15].
When a person walks between the transmitter-receiver anten-

nas, the signal transmission between them will be modulated
by the presence and movement of the person. This informa-
tion is captured by way of the change in magnitude and phase
of the received signal. Shorter wavelengths corresponding to
higher frequencies tend to resonate with smaller body parts,
such as the arms and legs, whereas larger wavelengths corre-
sponding to lower frequencies resonate with the entire length
of the body [16]. Having data from more frequencies selected
in the segmented sweep would provide more information; how-
ever, this would result in a slower sampling rate. Therefore, in
order to optimize the performance of the VNA, 12 frequencies
were selected. These frequencies (Table 1) were determined
experimentally to produce more significant variation than am-
bient readings.

3.2. Dataset
Data from 31 individuals have been measured and collected in
an open indoor setting. The dataset collected consists of 16
females and 15 males in the age range of 19 to 49. A summary
of their physical attributes is tabulated in Table 2. The identities
of participants have been concealed to ensure anonymity.
Each individual was required to walk in a straight line be-

tween the two antenna sensors as marked out by the yellow ar-
row in Figure 2. This walking path is 360 cm in length: 180 cm
before the antennas and 180 cm after the antennas. In order to

TABLE 2. Summary of participant details

No. Age Gender (M/F) Height (cm) Weight (kg)
1 24 M 170 110
2 23 M 172 62
3 23 M 166 48
4 19 F 154.5 43
5 19 F 163 52
6 22 F 160 47
7 23 F 153 50
8 19 F 160 68
9 40 M 168 62
10 39 M 180 80
11 36 F 168 65
12 41 F 160 53
13 49 F 158 73
14 28 M 170 72
15 24 M 174 70
16 23 F 163 46
17 23 M 171 54
18 28 F 170 68
19 41 F 163 68
20 24 F 170 63
21 25 F 159 52
22 24 F 169 49.2
23 23 M 173 60
24 23 F 163 54
25 22 M 177 75
26 22 M 170 58
27 23 F 159 49
28 23 M 165 71
29 23 M 173 76
30 23 M 182 80
31 23 M 169 60

replicate real-life scenarios and generate a more robust identifi-
cation system, three walking conditions were employed: regu-
lar walking without electronic devices or additional load, walk-
ing while carrying electronic devices without a bag, and walk-
ing while carrying electronic devices and a bag. Each walking
event was repeated five times, resulting in a total of 15 mea-
surements per participant across all walking conditions. Par-
ticipants were instructed to maintain a consistent walking pace
throughout the experiment. These measurements were repeated
15 times for each individual with no sudden movements or sig-
nificant changes in their speed. The signal data collected are in
the form of phase and magnitude data from the forward trans-
mission coefficient from input port 1 to output port 2.

3.3. Classification
The collected data was normalised for the data sets for all 31
individuals. Each measured value was divided with the corre-
sponding ambient magnitude and phase values measured with
no one present. The corresponding class labels were generated
for each set of data to aid in the supervised learning process.
The 10-fold cross validation techniquewas applied to each clas-
sifier with data split into: 80% as training data and 20% as val-
idation data. These normalised values were then used as the in-
put to the 7 machine learning models as mentioned previously
in Section 2.
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FIGURE 3. Sample of magnitude data. FIGURE 4. Sample of phase data.

4. RESULTS AND DISCUSSION

4.1. Analysis of Captured Data
Samples of captured signals are as shown in Figure 3 and Fig-
ure 4, each depicting magnitude and phase data respectively.
The different colours represent signal data from each of the

12 discrete swept frequencies. As can be observed in Figure 4,
we face an issue of phase wrapping. This was addressed using
the method of phase unwrapping by [12]. The outcome after
phase unwrapping at these twelve frequencies is shown in their
individual phase plots in Figure 5 to facilitate easier viewing.
The effect of the claim by [16] can be observed in Figure 5,

whereby the oscillating effect becomes more pronounced as the
frequency increases. The signals in the range of 320 MHz to
920MHz, labelled as “Freq_5” to “Freq_12”, show oscillating
effects, which we can infer to be from the resonance of shorter
wavelengths and moving limbs. In contrast, the lower frequen-
cies in the range of 50MHz to 250MHz, labelled as “Freq_1”
to “Freq_4”, do not exhibit such pronounced oscillations and
therefore can be inferred to be the resonance of longer wave-
lengths with a larger body part such as the torso.
In our investigation, we conducted feature extraction to iden-

tify the minimum points associated with each frequency. As de-
picted in Figure 6, the resulting features exhibit notable cluster-
ing patterns among individuals, with certain frequencies such
as “Freq_2”, “Freq_3”, “Freq_4”, “Freq_5”, “Freq_12”, and
“Freq_12” exhibiting clearer distinctions than others. This
observation underscores the capability of discrete frequen-
cies to capture individual-specific information, thereby hold-
ing promise for potential applications in identification tasks.
Our findings show the prospect of leveraging feature extraction
methodologies for future research endeavors.

4.2. Comparison of Collected Parameters
We explored the influence of utilizing magnitude-only, phase-
only, and a combination of magnitude and phase data on classi-
fication accuracy. Our findings, depicted in Figure 7, reveal
that phase-only data contributes to a higher accuracy rate at
85.25% than using magnitude-only data at 80.43%. We can in-
fer that phase information is more descriptive than magnitude
data as stated by [13]. The combination of magnitude and phase

data produces optimum results at 94.25%. This evaluation was
performed using a random forest machine learning model.
Next, we examined the effect of increasing number of fre-

quencies. Figure 8 illustrates a consistent pattern of accuracy
improvement. This increment is more pronounced when the
number of frequencies increases from 1 to 4, whereas the ac-
curacy rates reach a plateau, progressing by approximately less
than 1% per step as it increases from 5 frequencies to 12. This
observation may be attributed to the feature importance of each
frequency as illustrated in Figure 9, whereby frequencies 1 to
3 (labelled as “Freq_1”, “Freq_2” and “Freq_3”) have a higher
score of feature importance than the subsequent frequencies.

4.3. Effect of Group Size
It can be observed from Figure 10 that accuracy decreases with
the increase in group size. We have examined the correla-
tion between sample size and accuracy in our work and found
a strong negative correlation coefficient between the two at
−0.99345. We have further examined this correlation among
related works [2, 7, 8, 11, 12] as summarised in Table 3 and
found that the same trend applies. This suggests that as sam-
ple size increases, the variability within the data also increases,
making it more challenging for the model to maintain the same
level of accuracy. Therefore, ideal systems should be able to
achieve high levels of accuracy even in large sample size.

TABLE 3. Correlation coefficient between sample size and accuracy
among related work.

System Correlation coefficient
mID [2] −0.96686

Wihi [7] −0.972761

Gate-ID [8] −0.959847

RFree-ID [11] −0.995823

RFPass [12] −0.985801

Ours −0.99345

4.4. Comparison of Machine Learning Models
We have evaluated the performance of seven machine learning
models mentioned in Subsection 3.3. The results are as shown
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FIGURE 5. 12 individual phases.
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FIGURE 6. Minimum features of 12 discrete frequencies.

FIGURE 7. Comparison of identification accuracy using magnitude and
phase data.

FIGURE 8. Effect of number of frequencies.

FIGURE 9. Feature Importance vs Frequency. FIGURE 10. Effect of group size on accuracy.
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FIGURE 11. Comparison of accuracy and processing time.

in Figure 11. The accuracy rates of each model are represented
by the blue bar chart, and their corresponding values are on
the vertical axis on the left. These results show that ensem-
ble learning models perform best with random forest achieving
93.1% and extra trees achieving 94.25%. This is followed by
the CNN-RNNmodel at 83.17%. The other fourmachine learn-
ing models examined here have archived accuracy rates below
80%. This is expected based on [5] which showed that ran-
dom forest outperformed the neural network based models and
KNN.
Subsequently, we have evaluated the performance of these

models in terms of processing time. The results are represented
by the orange coloured line in the chart of Figure 11 and cor-
respond to the values on the vertical axis on the right. It can
be observed that the CNN-RNN model requires 15.3 times of
the processing time taken for the extra trees model to process
at 1211.1 s versus 79.1 s. The KNN and SVM required only
a fraction of the processing time of extra trees; however, these
models have produced less-than-ideal performances in terms of
accuracy.
The precision-recall-iso F1 curve is as shown in Figure 12.

The micro-averaged identification performance in terms of pre-
cision and recall is 0.93. The average precision (AP) for all
participants is above 0.8, except participant number 9 with an
average precision of 0.76. Despite the slight decrease in result
from participant 9, these results indicate that the system is able
to correctly identify participants while maintaining a relatively
low rate of false positives.

4.5. Comparison with Related Work

A summary of related works is provided in Table 4. Sys-
tems [6, 7, 14, 10] utilize bi-static-like setups for their transmit-
ting and receiving antennas, while systems [14] and [15] utilize
a mono-static setup. Our results show that our near-field bi-
static radar is capable of producing results on par with that of
mono-static systems which have been a more common choice.

TABLE 4. Summary of related work.

System Sample Signal ML Model Accuracy
Size Type (%)

Wihi [6] 8 WiFi RNN 91
Gate-ID [7] 20 WiFi RNN 75.7

[14] 7 Radar CNN-RNN 90
mID [1] 12 Radar CNN-LSTM 89

RFree-ID [10] 30 Passive WMD-DTW 92.7
RFID

RFPass [15] 20 Passive CNN-RNN 91.2
RFID

Ours 31 RF Extra Trees 94.25

As evidenced from our investigation in Subsection 4.2 which
examines the effect of sample size, systems with smaller sam-
ple sizes are generally expected to yield higher accuracy rates
than those with larger sample sizes. However, as shown in Ta-
ble 4, our system with the largest sample size of 31 participants
achieves the highest accuracy rate outperforming those with
smaller sample sizes ranging from 8 to 20, and RFree-ID [10]
with a close sample size of 30 participants.
The confusion matrix in related work records a tendency of

lower true positive rates (TPR) among participants with simi-
lar physical attributes such as height and weight. Gate-ID [7]
records values as low as 0.33 for such instances. Conversely,
Wihi [6], which involves participants of similar age but with
more varied height and weight, does not exhibit this pattern of
discrepancy in its confusion matrix. In contrast, as shown in
Figure 13, our system consistently achieves TPRs above 0.80
across all participants, with the majority exceeding 0.9, even
among those with closely matching physical attributes.
The prevailing trend in related work favors deep learning;

however, our findings suggest that ensemble learning models
offer better performance for our dataset. In theory, the com-
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FIGURE 12. PR-isoF1 curve of 31 participants.

FIGURE 13. Confusion matrix of 31 participants.

plexities of deep learning models should perform better than
simple ensemble learning models. Based on the work in [17],
we would expect that this is because neural networks have a
tendency to overly smooth tabular data, and therefore struggle
to create best-fit functions. Our results indicate that this form
of data acquisition is more robust and does not require as much
machine learning processing to obtain good results.

Taking the varied sample size, signal types, and machine
learning models of these systems into consideration, our pro-
posed system has shown to outperform the systems listed here.
This shows that our novel method of sensing using near-field
bi-static radar, operating on discrete swept frequencies is effec-
tive and efficient. However, it is worth noting that the process-
ing times of these approaches are not explicitly provided in the
literature, precluding a direct comparison in this regard.
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5. CONCLUSION
In this study, we have demonstrated the potential for a novel
privacy-preserving human identification utilizing a bi-static
radar-like sensor, with signals generated from a discrete fre-
quency sweep. We have examined the effects of various pa-
rameters on the performance of our system and found that the
usage of both magnitude and phase information provides better
coverage for feature extraction. We also conclude that lower
frequencies from 50MHz to 130MHz provide a higher con-
tribution of informative features than those from 440MHz to
920MHz. Therefore, it is not necessary to use more frequen-
cies for higher rates of identification accuracy.
While deep learning is widely used in this area of research,

we find that ensemble machine learning works best on our
dataset. Specifically, our extra trees model achieves an accu-
racy of 94.25% with a processing time of 79.1 s.
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