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ABSTRACT: One of the major challenges of today’s rotating machine manufacturing industries is finding effective techniques to prevent
early mechanical or electrical failure. Efficient troubleshooting methods must be developed for rotating electrical machines, such as
three-phase and multiphase electrical induction or synchronous machines. A novel method for fault detection in aWound Rotor Induction
Machine (WRIM) is presented in this paper. Its originality lies in the determination of current rise and fall times in healthy and InterTurn
short-Circuit Fault (ITSCF) cases. The method is based on using the two-current (isd, isq) sigmoid transform (ST) of Park’s vector
approach. AWRIMwith a nominal power of 0.3 kW is used for the analytical and experimental studies. The type of fault detection being
studied is short circuit InterTurns on one phase of the stator winding. The results are promising because the methodology used is simple,
fast, and accurate for diagnosing this type of fault, and can detect a low number of short-circuit InterTurns in the stator winding.

1. INTRODUCTION

Numerous methodologies exist for detecting or identifying
electrical faults inWound Rotor InductionMachineWRIM

or Doubly Fed InductionMachine (DFIM). Implementing these
approaches is crucial for detecting failures promptly, prevent-
ing unplanned downtime, and ultimately mitigating economic
losses. Several studies have been undertaken to detect or iden-
tify InterTurn Short-Circuit Fault (ITSCF) occurring in both the
rotor and stator windings of induction machines, whether they
are equipped with wound rotors or designed as induction ma-
chines. For the stator, many studies have been performed to di-
agnose short-circuit faults. In fact, the authors of [1] proposed
a method for the early detection and localization of an ITSCF
in the stator winding of an induction motor. They used the Dis-
crete Wavelet Energy Ratio (DWER) of three stator currents
and Artificial Neural Network (ANN) for diagnosis. In [2], a
Sweep Frequency Response Analysis (SFRA) method was pro-
posed for detecting the ITSCF in a stator winding. However,
with the proposed method, the authors are unable to quantify
the defect under study. The use of ESLF (End-Shield Leakage
Fluxes) has been proposed in [3] and investigated the detection
of InterTurn short-circuit faults in the stator winding of an asyn-
chronous machine. With ESLF, the authors noted that the pro-
posed fault indicator was independent of the number of poles
and the location of the fault in one of the stator windings. In [4],
a general fault diagnosis method was presented and applied to
faults in the stator and rotor windings of a WRIM. This identi-
fication method is based on Feature-bilateral flux Linkage Dif-
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ference Vector (FLDV) which is the difference between the flux
calculated by the current model and the flux calculated by the
voltagemodel. To diagnose the ITSCF in the stator winding of a
WRIM, Deep Learning was used in [5–10]. The authors in [11–
16] have worked on the wavelet transform for diagnosing the
ITSCF in the stator winding of a WRIM. Refs. [17] and [18]
proposed a technique using a genetic algorithm for detection
and localization in the initial phase of an ITSCF in an Induction
Machine (IM). A technique based on V-I (Voltage-Current) was
proposed in [19] and [20]. This technique allowed them to de-
tect and locate the ITSCF in the stator winding of an IM. In [21]
and [22], the authors proposed an artificial intelligence ANN to
detect short-circuit faults in the stator windings of an IM. With
ANN, their method was unable to quantify the number of short-
circuit turns. Kalman filter was used in [23] as a technique for
detecting the ITSCF in the stator winding of an IM. In another
work, Motor Current Signal Analysis (MCSA) was proposed
by the authors in [13, 24, 25] to detect the fault of an ITSC in
the windings of a WRIM and an IM. A technique based on an
empirical method was proposed in [26]. In [11, 27, 28] a tech-
nique based on the Fourier transform and least squares analysis
of Park vectors was developed. Using the latter, the authors
in [28] were able to quantify the short-circuit fault in the stator
winding of a DFIM.
Regarding the various techniques mentioned above, such as

the Wavelet Transform and MCSA, the authors in [29] asserted
that the use of these conventional methods often serves only
to detect certain types of known anomalies and is thus unable
to detect any new abnormal behavior present in the system.

109doi:10.2528/PIERC24061905 Published by THE ELECTROMAGNETIC ACADEMY

https://doi.org/10.2528/PIERC24061905


Bilal et al.

In addition, if the spectrum of a healthy WRIM is close to or
overlapping with that of a faulty WRIM, it is difficult to dis-
tinguish faulty from healthy operating conditions. Techniques
based on Artificial Intelligence (AI) are known for their per-
formance, but they depend on a large amount of data, which
leads to large computations in the learning process, making
these algorithms relatively complex [30]. In practice, there
are many cases where the severity of a short-circuit fault be-
tween windings must be estimated with a high degree of diag-
nostic accuracy. This paper develops an approach for detect-
ing ITSCF in the winding of a WRIM. It is a particularly sim-
ple and fast fault detection method. A noninvasive approach
based on Park’s Vector Approach (PVA) and the sigmoid func-
tion is proposed. The involved calculations are very simple
in the presented work, unlike Motor Current Signal Analysis
(MCSA) methods, which require frequency analysis of the sig-
nals or ANNmethods, which need heavy computation time. Its
method is not sensitive to harmonics present on the electrical
network but remains sensitive in noisy current measurements
case. The currents on the three stator phases (IsA, IsB , and IsC)
become two currents (isd and isq) in the Park vector approach.
The sigmoid function is then applied to the two currents (isd
and isq). Using the sigmoid function on the two currents (isd
and isq), one can easily obtain the rise time (Rt), fall time (Ft)
and their offsets. These two parameters (Rt) and Ft) are used
to detect short-circuits and quantify their severity. To achieve
this, the second section is dedicated to modeling the DFIMwith
or without the ITSC in the stator windings. The third section
describes the experimental study, test bench, and temporal cur-
rents. The analysis of the two times leads to the fourth section
and allows us to detect and quantify the ITSCF. A comparison
between the performance of the developed method and that in
the literature is discussed. Finally, Section 5 provides the con-
clusion.

2. HEALTHING AND FAULTY CONDITIONS ANALYSIS
USING THE WRIM MODEL
The details of the various steps involved in the developed de-
tection method and quantification are shown in Fig. 1.

FIGURE 1. Steps for detecting ITSCF.

The stator windings of theWRIM in a healthy state are shown
in Fig. 3. The numbers of stator windings for the three phases
(phase “A”, phase “B”, and phase “C”) areNsA,NsB , andNsC ,
respectively. IsA, IsB , and IsC are the three stator currents

(WRIM model or experimental). If phase “A” is affected by
the short-circuit fault, IsA becomes IsA1. VsA, VsB , and VsC

are the three stator voltages. However, Fig. 3 shows the stator
winding where one of the phases is subject to the ITSCF. As
in the healthy case, NsB and NsC are the number of turns on
the “B” phases. Then, NsA1 is the number of reduced turns on
phase “A”, and NsA2 is the shortened part. IsA2 is the current
in this shorted part. In the two illustrations, Fig. 2 and Fig. 3,
the difference lies in the winding structure since in the defec-
tive case the winding of phase “A” is no longer symmetrical
concerning the other two phases. The non-symmetric nature of
phase “A” leads to an increase in the size of the vectors (voltage
vector and current vector) and matrices (resistance and induc-
tance matrices) that characterize the WRIMmodel. For WRIM
modeling, various equations are quoted from the authors’ pre-
vious work [31].

FIGURE 2. Stator winding representation healthy state.

FIGURE 3. Stator winding representation with the ITSCF in phase “A”.

3. EXPERIMENTAL STUDY AND PRESENTATION OF
THE THREE STATOR CURRENTS

3.1. Test Bench Presentation
In the present study, WRIM currents are recorded from mea-
surements. The sampling frequency is 20 kHz. The fault is in
phase “A” (the first stator phase).
The various devices shown in Fig. 4 are described as follows:

FIGURE 4. Test bench.
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1. WRIM power supply box,

2. WRIM,

3. Short-circuit terminal,

4. Current sensors,

5. Acquisition card (NI-USB6218),

6. Computer.

The three phases of the WRIM stator contain six coils in series.
In addition, each coil has 133 turns for a total of 798 turns in
series. The test bench includes an induction machine with a
wound rotor, a sensor that measures the machine currents, an
acquisition card, and a computer for data processing.

TABLE 1. Features of the WRIM.

Specifications Values Units
Rated frequency, fn 50 Hz

Rated voltage, Un (△/Y) 230/400 V
Rated power, Pn 0.3 kW
Rated speed, Vn 1488 rpm

Rated current, In (△/Y) 1.5/0.87 A
Number of pole pairs, p 2 -

For this purpose, the features of the WRIM are presented in
Table 1. The short-circuit turn ratios (Rsh) used in this study
are shown in Table 2.

TABLE 2. InterTurn Short-Circuit Fault.

Number of short-circuit turns (Nsh) Rsh(%)
20 2.5
40 5
80 10
160 20
240 30
320 40

The configuration of the ITSCF is shown in Fig. 3. This
test bench (Fig. 4) can be used to simulate different conditions:
healthy state and in the presence of an ITSCF. To calculate
Rsh(%), the relationship is as follows:

Rsh(%) =
Nsh

Ns
× 100 (1)

where Ns is the total number of turns on a phase.

3.2. The Three Currents of the WRIM Model and Experiment
Both Fig. 5 and Fig. 6 show the three currents from the three
phases of the WRIM stator in the healthy case and in the pres-
ence of the ITSCF. In the fault case, the greater the number
of short circuits is, the greater the amplitudes of phase “A”
is. However, the deformations and changes in current ampli-
tudes in phases “B” and “C” are phenomena related to the short-
circuit fault in phase “A” of the WRIM stator.

FIGURE 5. Three-phase currents from the stator in both cases (healthy
and faulty): WRIM model.
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FIGURE 6. Three-phase currents from the stator in both cases (healthy
and faulty): experimental part.

4. PARK'S VECTOR APPROACH AND SIGMOID
TRANSFORM

4.1. PVA
PVA is a technique introduced by Marques Cardoso et al. in
1999, as described in [32] and later extended to multiple fault
diagnosis in the IM and WRIM. This technique combines the
information of three-phase currents into two equivalent currents
in the reference frame obtained by the transformation. The PVA
is represented by [32–34]:

isd =

√
2

3
IsA − 1√

6
IsB − 1√

6
IsC

isq =
1√
2
IsB − 1√

2
IsC

(2)

The two currents isd and isq are then used in the sigmoid
function to obtain Rt and Ft for fault detection.
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4.2. Sigmoid Transform
The main idea of this work is to apply ST to two PVA currents
isd and isq . This function is used to obtain Rt and Ft. Then,
the isd and isq currents are normalized using the ST so that
the fault diagnosis method is not affected by variations in load
torque and motor speed in the three phases (IsA, IsB , and IsC).
The ST of the real variable x is defined as follows: where λ
is a positive real. Fig. 7 shows the sigmoid function of the si-
nusoidal variable x. F (x) varies from 0 to 1 and has the same
period as the variable x. The effect of positive real λ on the
dynamics of F (x) is shown in Fig. 7. The greater the λ is, the
faster the F (x) changes.

F (x) =
1

1 + e−λx
(3)

FIGURE 7. Sigmoid function for different coefficient values λ.

Using (2) and (3), we obtain Fig. 8, Fig. 9, Fig. 10, and
Fig. 11. These four figures show the effect of a short-circuit
fault between the windings of phase “A” and the other two
phases (B and C) of the WRIM stator winding.

FIGURE 8. WRIM model: (a) isd currents, (b) isd currents from ST
and (c) zoom.

FIGURE 9. WRIM model: (a) isq currents, (b) isq currents from ST
and (c) zoom.

FIGURE 10. Experimental part: (a) isd currents, (b) isd currents from
ST and (c) zoom.

Figures 10 and 11 show that there are shifts between the isd
currents without the presence of InterTurn short-circuit fault.
Similarly, there are some offsets for isq currents, but not too
much compared to isd currents. The offsets result from the rise
and fall times of each change in the rate of shortened windings
in phase “A” of the stator.

5. DISPLAY OFRt, F t AND THEIR OFFSETS

5.1. Rise TimeRt and Fall Time F t

Before presenting the Rt and Ft values of isd and isq currents,
let us see how these two parameters are calculated:

• Rt is calculated between 10% and 90% of the signal varia-
tion. Let T1 and T2 be the times when the response reaches
10% and 90% of its final value, respectively (see Fig. 12).

• Ft is calculated between 90% and 10% of the signal varia-
tion. Let T3 and T4 be the times when the response reaches
90% and 10% of its final value, respectively (see Fig. 12).

112 www.jpier.org



Progress In Electromagnetics Research C, Vol. 147, 109-116, 2024

FIGURE 11. Experimental part: (a) isq currents, (b) isq currents from
ST and (c) zoom.

FIGURE 12. Methods for obtaining the rise and fall times (Rt and Ft).

T1, T2, T3, and T4 are the averages of the rising and falling
edge times observed for 160ms. The equations to obtain Rt

and Ft are (4) and (5):

Rt = T2(90%) − T1(10%) (4)

Ft = T4(10%) − T3(90%) (5)

Table 3 and Table 4 summarize the values for the rise and
fall times of the isd and isq currents. They show how the Inter-
Turn short-circuits fault influences the rise time and fall time
of isd and isq currents, since they evolve according to the ratio
of the short-circuit turns. These values show small changes in
Rt and Ft, which are normal since the fault is not in isq (see
(2)). Eventually, Rt and Ft are the same in the faulty case and
in the healthy case. Then, as the number of shorted windings
increases, Rt or Ft of the faulty case decreases compared to
that of the healthy case.

5.2. Offset forRt and F t

This section shows the current offset values. The current offset
is used to detect and quantify InterTurn short circuit faults. As
a result, the method for obtaining the Rt or Ft offset between
the healthy and faulty cases is shown in Fig. 13. In the latter,
the offsets are calculated as:

DRt
= Rt(Health) −Rt(Fault) (6)

DFt = Ft(Health) − Ft(Fault) (7)

whereDRt
andDFt

are the offsets fromRt andFt respectively.

FIGURE 13. Method of obtaining the offset from Rt or Ft.

The current offset values for the theoretical and experimental
cases are shown in Table 5 and Table 6. As a result, these values
indicate that as the number of short-circuit windings increases,
the offset of the currents (isd and isq) in the presence of the fault
changes concerning the healthy current. Compared to the two
PVA currents, the offset evolutions are more significant in isd
than in isq .
Then, DRt and DFt will show the same evolution values.

Therefore, only DRt
is taken into account when modeling off-

set trends, and the different DRt
models are written from isd

and isq streams. Fig. 14 illustrates the DRt
models derived

from the isd current in the theoretical and experimental cases.
Fig. 15 illustrates the patterns ofDRt derived from the isq cur-
rent in the theoretical and experimental cases. This gives us
two models derived from the offset of the two PVA currents.
These two Equations (8) and (9) show that the ITSCF can be
detected from the rise or fall time offset of the currents derived
from the sigmoid function. Then, the two models expressed
by Equations (8) and (9) are obtained via the method of least
squares.
The evolution of DRt

models (theoretical and experimental
cases) gives a logarithmic model of the following form:

DRt(Rsh) = p2 log(1 + p1Rsh). (8)

where p1 and p2 are two constants of the two models shown in
Fig. 14. Here are the values of the two constants:
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TABLE 3. Theoretical case study.

T1 (ms) T2 (ms) Rt (ms) T3 (ms) T4 (ms) Ft (ms)
Rsh (%) for isd for isq for isd for isq for isd for isq for isd for isq for isd for isq for isd for isq

0 73.30 78.80 74.80 80.30 1.50 1.50 83.30 88.80 84.80 90.30 1.50 1.50
2.5 72.70 78.60 73.90 80.10 1.20 1.50 82.70 88.60 83.90 90.10 1.20 1.50
5 72.25 78.27 73.35 79.70 1.10 1.43 82.25 88.22 83.35 89.65 1.10 1.43
10 71.65 77.75 72.55 79.10 0.90 1.35 81.65 87.75 82.55 89.10 0.90 1.35
20 71.10 77.15 71.70 78.40 0.60 1.25 81.10 87.15 81.70 88.40 0.60 1.25
30 70.85 76.94 71.30 78.10 0.45 1.16 80.85 86.94 81.30 88.10 0.45 1.16
40 70.78 76.79 71.08 77.85 0.30 1.06 80.78 86.79 81.08 87.85 0.30 1.06

TABLE 4. Experimental case study.

T1 (ms) T2 (ms) Rt (ms) T3 (ms) T4 (ms) Ft (ms)
Rsh (%) for isd for isq for isd for isq for isd for isq for isd for isq for isd for isq for isd for isq

0 72.00 77.16 73.35 78.66 1.50 1.50 82.00 87.16 83.50 86.66 1.50 1.50
2.5 71.68 77.19 72.92 78.69 1.24 1.50 81.85 87.23 83.09 88.73 1.24 1.50
5 71.46 77.21 72.64 78.68 1.18 1.46 81.47 87.12 82.64 88.58 1.18 1.46
10 71.33 76.98 72.41 78.43 1.08 1.45 81.40 86.98 82.48 88.43 1.08 1.45
20 71.27 76.74 72.20 78.06 0.93 1.32 81.27 86.74 82.20 88.06 0.93 1.32
30 71.09 76.67 71.87 77.85 0.78 1.18 81.28 86.63 82.06 87.80 0.78 1.18
40 71.00 76.64 71.69 77.73 0.69 1.09 81.00 86.64 81.69 87.73 0.69 1.09

FIGURE 14. DRt models from the isd current. FIGURE 15. DRt models from the isq current.

The evolution of DRt (theoretical and experimental cases)
gives a linear model of the following form:

DRt
(Rsh) = p3Rsh + p4. (9)

where p3 and p4 are two constants of the two models shown in
Fig. 15. Here are the values of the two constants:
Themeasurement, shown by red point in Fig. 16, correspond-

ing to Rsh = 10%, is D′
Rt

= 0.42. As shown on Fig. 16,
the model, obtained by Equation (8) gives Rsh = 8.42% for

D′
Rt = 0.42. The error between these two values is about 20%

which is quite acceptable, bearing inmind that this point is quite
unfavorable, as it is the one farther from the modeled curve. A
similar study can be done on Fig. 17. The measurement spotted
by red point for Rsh = 10% is D′

Rt
= 0.05. From this value,

the model given by (9) permits to deduce Rsh = 7% which
corresponds to an error of 30%. Therefore, this model should
be essentially used to confirm an ITSC defect.
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TABLE 5. Theoretical case study.

isd DRt (ms) DFt (ms) isq DRt (ms) DFt (ms)
D1 0.30 0.30 D1 0 0
D2 0.40 0.40 D2 0.07 0.07
D3 0.60 0.60 D3 0.15 0.15
D4 0.90 0.90 D4 0.25 0.25
D5 1.05 1.05 D5 0.34 0.34
D6 1.20 1.20 D6 0.44 0.44

TABLE 6. Experimental case study.

isd DRt (ms) DFt (ms) isq DRt (ms) DFt (ms)
D1 0.26 0.26 D1 0 0
D2 0.32 0.32 D2 0.04 0.04
D3 0.42 0.42 D3 0.05 0.05
D4 0.57 0.57 D4 0.18 0.18
D5 0.72 0.72 D5 0.32 0.32
D6 0.81 0.81 D6 0.41 0.41

TABLE 7. Values of the two model constants.

Studies p1 p2

Theoretical 0.476 0.276
Measurement 0.493 0.253

TABLE 8. Values of the two model constants.

Studies p3 p4

Theoretical 0.0117 0.0069
Measurement 0.0108 −0.0234
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FIGURE 16. D′
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6. CONCLUSION

This paper presents a new methodology for detecting short-
circuit faults in DFIM and for evaluating the evolution of these
faults, based on the two-current ST of the PVA. The evolution
of defects since their appearance is studied. Diagnosis takes full
advantage of the offset time of the currents generated by the sig-
moid function. In fact, the current offset times evolve accord-
ing to the severity of the fault. When the number of short-circuit
turns increases (2.5% to 40%), the rise and fall times of the cur-
rents are earlier than those in the healthy case. With the present
study, it is possible to quantify the number of shorted turns in
the WRIM winding with good accuracy. It can also be used
to detect short-circuit faults on electric vehicles motors or gen-
erators installed in wind farms. This simplicity of calculation
makes it possible to monitor ITSCF in real time. This method,
which does not use conventional methods (MCSA) for detect-
ing ITSCF, provides detection redundancy and it is a valuable
complement to the others.
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