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ABSTRACT: Sparse arrays have the technical advantages of large equivalent aperture, high degrees of freedom (DOFs), and low mutual
coupling leakage. In this article, a novel symmetric sparse array, termed as symmetric shifted coprime array (SSCA), is proposed for the
localization of both the far-field and near-field of sources. It can be generated in two steps. Firstly, the second subarray of the traditional
coprime array is shifted by a appropriate distance, and secondly, the entire array is flipped. By translating, the proposed array provides
increased DOFs and enhanced ability to resist heavy levels of mutual coupling. Meanwhile, the symmetric structure of the array can be
ensured by flipping to solve the parameter estimation of mixed fields. We provide an analytical expression for the proposed array and
also derive its DOFs and weight functions. The first three weight functions of SSCA are equal to 2, indicating that the SSCA improves
the ability to resist mutual coupling. Numerical results show that the proposed array is superior to existing sparse arrays for both direction
of arrival (DOA) and range estimations.

1. INTRODUCTION

Passive source location is a crucial research topic in array
signal processing [1]. Over the past few decades, it has

attracted considerable attention [2, 3]. If the signal is beyond
the Fresnel region, its wavefront is a plane wave. On this ba-
sis, multi-signal classification (MUSIC) [4], estimation of sig-
nal parameters by rotation invariance technique (ESPRIT) [5],
tensor methods have been developed. However, most of these
methods are based on the far field (FF) [6]. If the signal is in the
Fresnel region, its wavefront is a spherical surface wave includ-
ing DOA and distance [7]. On this basis, the DOA and range
parameters need to be solved synchronously. At present, a va-
riety of near-field (NF) sources detection methods have been
reported [8–12]. However, it should be pointed out that all the
above algorithms rely on either NF or FF. In certain practical
situations, such as using microphone array to achieve the loca-
tion of the sound source, it will be affected by both NF and FF,
which makes the effect of these algorithms worse. In practical
application, a variety of methods have been applied to mixed
source location [13–16].
In mixed-field positioning, the array used is typically a sym-

metrical uniform linear array (SULA). To prevent the issue of
imprecise estimation, it is necessary to maintain a sensor spac-
ing of no more than a quarter wavelength, which leads to heavy
levels of mutual coupling. The performance of estimation will
deteriorate. The traditional SULA is limited by the number of
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elements in its physical array apertures. To improve physical
array apertures, the sensor number needs to be increased, which
will increase the cost of the system. Compared with SULA,
sparse linear arrays have larger inter-element spacing, meaning
that they have larger physical array apertures and are more ro-
bust under strong mutual coupling conditions. Additionally, for
sparse linear arrays with N sensors, there are O(N2) continu-
ous lags in the resulting difference coarray. That is, a maximum
ofN2−1 signals can be estimated by usingN physical sensors.

The earliest nonuniform linear array (NLA) is a minimum
redundant array [17]. Its difference coarray has no holes and
minimum redundancy, but it cannot be represented by closed
expression. Its design needs to be realized through computer
search, so it takes a considerable amount of computation. Dif-
ferent from minimum redundant array, nested array (NA) [18]
and coprime array [19] have the analytical expression of the
array position, so the design of arrays is easy. Compressed
subarray spacing mutual prime array (CACIS) is proposed in
[20]. CACIS improves DOFs and increases the array aperture.
Both the nested array [18] and primitive coprime array [19] can
be regarded as special forms of the CACIS. A coprime array
with multi-period subarrays (CAMpS) is proposed in [21]. The
DOFs of this CAMpS is similar to CACIS. To further enhance
the DOFs, a general nested array (GNA) is proposed in [22],
which extends the nesting idea from uniform arrays to sparse
arrays such as coprime arrays, nested arrays, and minimum re-
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FIGURE 1. Source parameter diagram of mixed field sparse array.

dundant arrays. The focus of the above array design is DOFs
of the array, and the influence of mutual coupling between
arrays is not considered, so strong mutual coupling will lead
to the degradation of DOA estimation performance. To solve
this problem, a super nested array design method is proposed
in [23], whose core is to extract some elements of dense subar-
rays in an NA array structure and scatter them into sparse subar-
rays. The array reduces the mutual coupling effect while main-
taining the same physical aperture and freedom as the nested
array. Compared with the sparse array mentioned above, it can
provide a larger virtual array aperture and has a strong abil-
ity to resist mutual coupling. In [24], a thinned coprime ar-
ray (TCA) is proposed by removing redundant elements from
the coprime array. Under the same physical aperture and free-
dom conditions, the number of physical elements used by the
array is smaller than that of the coprime array, which signifi-
cantly reduces the mutual coupling between the elements. Ref.
[25] designed a type of filling difference coarray coprime array
(CAFDC). Numerical results show that the virtual array has no
holes, and DOFs of the array are obviously improved. How-
ever, these arrays cannot be used directly for the estimation of
mixed field parameters.
Refs. [26, 27] began to use symmetric nonuniform linear

arrays (SNLAs) to locate mixed sources, and the designs of
SNLAsweremainly based on nested arrays and coprime arrays.
In [28], a solution to the mixed source localization problem
was achieved by constructing a symmetric nested array (SNAI).
Compared with the traditional SULA, the physical aperture of
SNAI is larger, and the array inter-element spacing is larger.
Ref. [29] proposed a symmetric double nested array (SDNA).
In comparison to conventional SNAI, SNDA can generate more
continuous lags and estimate more sources with physical ar-
ray sensors equal in number. Ref. [30] proposed a symmetric
nested array (SNAII). Compared with SNAI and SDNA, SNAII
can obtain larger physical array apertures and more continuous
virtual elements.
A novel array geometry, called symmetric shifted coprime

array (SSCA) for the estimation of the DOA in both the FF
and NF of sources, is proposed in this paper for the first time.
In order to increase its DoFs and help mitigating the mutual
coupling effect, we design the SSCA, which is constructed by
translating and transforming on the basis of the traditional co-
prime array. The closed form expressions for sensor locations
of the new structures are provided, alongwith analytical expres-

sions for DOFs. Furthermore, the first three weight functions
are derived for SSCA. Theoretical analysis shows that SSCA
can effectively reduce mutual coupling while maintaining high
DOFs compared to nested arrays. In strong mutual coupling
scenarios, simulation results are provided to demonstrate the
effectiveness and superiority of the proposed designs.
The rest of this article is organized as follows. The array

signal model is introduced in Section 2. Section 3 describes
the structure of the SSCA. In Section 4, the used algorithms are
given. The results of the numerical simulations are presented
in Section 5, and the conclusions will be drawn in Section 6.
We use the following notations throughout this paper. We

use bold lowercase (uppercase) characters to represent vectors
(matrices). ⊙ represents Khatri-Rao product. vec(·) denotes
vectorization operation. Matrix C is denoted using CT , CH ,
andC∗ to represent its transpose, Hermitian transpose, and con-
jugate. The symbol ∥·∥F stands for a matrix’s Frobenius norm.
The symbol ⌊·⌋ represents a rounded-down integer. The sym-
bol E(·) denotes mathematical expectation. The symbol cum(·)
represents the fourth order cumulant. The symbol ⟨·⟩i,j repre-
sents the number of elements in the ith row and jth column of
the matrix.

2. PRELIMINARIES

2.1. Array Signal Model
Suppose that K narrow band uncorrelated mixed field sources
are incident on a symmetric linear array, as shown in Fig. 1,
where the numbers of far-field sources and near-field sources
areK1 andK2 = K −K1, respectively. The coordinate set of
the elements is L = [l−M , . . . , l0, . . . , lM ], where li represents
the position index of the ith element, i ∈ [−M,M ].
The central sensor 0 is used as the phase reference point, and

the signal model received by the ith sensor at time t is:

xi(t) =

K∑
k=1

sk(t)e
jτik + ni(t), (1)

where sk(t) denotes the kth source of information; ni(t) rep-
resents the noise of the ith sensor at time t; τik represents the
time delay between the kth signal incident on the ith sensor and
the signal incident on the reference sensor. The relative propa-
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gation delay of the k-th source received by the i-th sensor is

τik =
2πrk
λ

√
1 +

(
id

rk

)2

− 2md sin θk
rk

− 1

 , (2)

where θk and rk are the DOA and distance parameters of the
k-th signal [31]; λ is the wavelength of the signals; d = λ/4.
By expanding (2) into a second-order Taylor series, we have

τik =

(
−2πd

λ
sin θk

)
i+

(
πd2

λrk
cos2 θk

)
i2+o

(
d2

r2k

)
. (3)

According to the fresnel approximation [32], we have

τik = iγk + i2ϕk, (4)

where

γk = −2πd

λ
sin θk, (5)

ϕk =
πd2

λrk
cos2 θk. (6)

Therefore, using approximate relationships, the array receiving
data in (1) can be simplified as

xi(t) =

K∑
k=1

sk(t)e
j(iγk+i2ϕk) + ni(t). (7)

Write it in matrix form [33]

x(t) = AFFsFF(t) + ANFsNF(t) + n(t), (8)

where sFF(t) = [s1(t), . . . , sK1
(t)]T and sNF(t) =

[sK1+1(t), . . . , sK(t)]T denote the far-field and near-field
sources vectors, respectively. AFF = [a(θ1), . . . , a(θK1

)] and
ANF = [a(θK1+1, rK1+1), . . . , a(θK , rK)] denote the far-field
and near-field array manifold matrices, respectively. a(θk) and
a(θk, rk) represent the far-field sources guidance vector and
near-field sources guidance vector, respectively. The specific
form is as follows

a(θk) =
[
e−jMγk , . . . , 1, . . . , ejMγk

]T
, (9)

a(θk, rk)=
[
ej(−Mγk+(−M)2ϕk), . . . , 1,

. . . , ej(Mγk+M2ϕk)
]T

. (10)

According to (10), the FF signal model is a special case of the
NF signal model. When ϕk is equivalent to 0, Equation (10) is
reduced to (9).

2.2. Fourth-Order Cumulants and Difference Co-Array
In the field of array signal processing, fourth-order cumulants
are commonly used. The advantage of the fourth-order statis-
tics method is that the fourth-order statistics do not need to con-
sider the higher-order statistics of Gaussian noise, and applying
fourth-order cumulants to array signal processing can achieve

array expansion, increase virtual array elements, expand array
aperture, resulting in improved estimation performance. Ac-
cording to [29], the fourth-order cumulant output of the array
is

cum
{
xm(t), x∗

n(t), x
∗
ρ(t), xq(t)

}
=

K∑
k=1

c4,ske
j{[(lm−ln)−(lρ−lq)]γk+[(l2m−l2n)−(l

2
ρ−l2q)]ϕk}, (11)

where xm(t), xn(t), xρ(t), and xq(t) represent the re-
ceived data of the m,n, ρ, q-th elements at time t;
c4,sk = cum {sk(t), s∗k(t), s∗k(t), sk(t)} is the kurtosis of
the kth source; γk only contains the angle θk parameter; and
ϕk contains both the angle θk and distance rk parameters.
In order to effectively decouple angle and distance param-

eters while avoiding parameter estimation failures, according
to literature [28, 30], it can be concluded that by substituting
n = −m, q = −ρ, into (11)

cum
{
xm(t), x∗

−m(t), x∗
ρ(t), x−ρ(t)

}
=

K∑
k=1

c4,ske
j2(lm−lρ)γk ,

(12)
which can be seen as the cross-correlation between the outputs
of the mth and ρth elements of a virtual array. If m̄ = m +
M + 1, ρ̄ = ρ + M + 1, m̄, ρ̄ ∈ [1, 2M + 1] define a matrix
C1 with a (2M +1)× (2M +1) dimension, then the elements
in the m̄th row and n̄th column of matrix C1 are

⟨C1⟩m̄,n̄ =

K∑
k=1

c4,ske
j2(lm−lρ)γk . (13)

The matrix form of (13) is

C1 = B(θ)CsBH(θ) =

K∑
k=1

c4,skb (θk) bH (θk) , (14)

where Cs = diag(c4,s1 , c4,s2 , . . . , c4,sK ) represents the cumu-
lativematrix of the signal;B = [b(θ1), b(θ2), . . . , b(θk)] repre-
sents the steering matrix; and its kth column can be represented
as

b (θk) =
[
ejl−Mγk , . . . , 1, . . . , ejlMγk

]T
. (15)

Obviously, (14) only contains DOA parameters, with which we
can estimate DOA of all sources with C1.
Definition 1: (DOFs [23]) The number of DOFs of a sparse

array is the cardinality of its difference coarray. Given a sparse
array L, H denotes the maximum consecutive segment of its
difference coarray. The cardinality ofH is named as the number
of uniform DOFs of L.

2.3. Mutual Coupling Model
In the absence of mutual coupling between array sensors, the
expression of the received signal vector is the formula (8).
However, in engineering practice, the mutual coupling between
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FIGURE 2. The symmetric shifted coprime array geometry.

array sensors must be fully considered. After discussing mutual
coupling, the received signal model becomes

x(t) = ΩAFFsFF(t) +ΩANFsNF(t) + n(t), (16)

where Ω represents the mutual coupling matrix of Q × Q, de-
scribing the degree of coupling between two array sensors. Ap-
proximating themutual couplingmatrixΩ to a B-band symmet-
ric Toeplitz matrix [5],

⟨Ω⟩m,n =

{
c|lm−ln|, if |lm − ln| ≤ B

0, otherwise
(17)

where c0, c1, c2, . . . , cB represent the mutual coupling coeffi-
cient and satisfies c0 = 1 > |c1| > |c2|, . . . , > |cB |. It is
assumed that the greater the distance is between two sensors,
the lower the mutual coupling is, then |cl/ck| = l/k. To eval-
uate the mutual coupling effect of arrays, the mutual coupling
leakage coefficient Le can be expressed as

Le =
∥Ω− diag(Ω)∥F

∥Ω∥F
. (18)

The smaller the Le is, the stronger the overall anti-coupling
ability of the array is. Usually, the bigger the spacing is be-
tween array elements, the smaller the mutual coupling leakage
coefficient Le is. The focus of this article is on sparse array
design and the use of data received by the antenna backend for
array signal processing. Therefore, it is hoped that the larger
the spacing between array elements, the better.

3. SYMMETRIC SHIFTED COPRIME ARRAY
In this section, we first give the structure of SSCA, then analyze
the properties of SSCA and present the analytical expressions
of degrees of freedom and weight functions.

3.1. Symmetric Shifted Coprime Array Structure
As shown in Fig. 2, the proposed SSCA consists of four sub-
arrays, i.e., L1, L2, L3, and L4. L1 has U + 1 sensors with
inter-element spacing V , while L2 has V −1 sensors with inter-
element spacing U , and it shifts to the right L with respect to
the L1. L1 and L2 are flipped around the origin to generate L3

and L4, respectively. The set of sensor positions L of SSCA

can be expressed as
L = L1 ∪ L2 ∪ L3 ∪ L4

L1 = {uV | u ∈ [0, U ]}
L2 = {vU + L | v ∈ [1, V − 1]},
L3 = −L1

L4 = −L2

(19)

where L = ⌊(U + 1)/2⌋V .

3.2. Difference Co-Array of Symmetric Shifted Coprime Array
Firstly, we analyze the difference co-array of each subarray of
SSCA and the relationship among them. Based on this, we
make holes of the differences co-array filled as much as possi-
ble by selecting the appropriate value ofL. Then, the maximum
number of continuous virtual elements of SSCA is obtained.
According to (19), the differences co-array of SSCA is given

by

diff (L,L) = ∪ diff (Li,Lj) , i, j ∈ {1, 2, 3, 4}, (20)

where diff (Li, Lj) = {a− b | a ∈ Li, b ∈ Lj}. Because of
L1 = −L3 and L2 = −L4, we have

diff (L2,L1) = − diff (L1,L2) ,
diff (L2,L3) = − diff (L4,L1) ,
diff (L3,L1) = − diff (L1,L3) ,
diff (L3,L2) = − diff (L1,L4) ,
diff (L3,L3) = − diff (L1,L1) ,
diff (L3,L4) = − diff (L1,L2) ,
diff (L4,L1) = − diff (L1,L4) ,
diff (L4,L2) = − diff (L2,L4) ,
diff (L4,L3) = − diff (L2,L1) ,
diff (L4,L4) = − diff (L2,L2) .

(21)

Therefore, we focus on analyzing

diff (L1,L1)={uV | u ∈ [−U,U ]},
diff (L1,L2)={uV − vU − L | u ∈ [0, U ], v ∈ [1, V − 1]},
diff (L1,L3)={uV | u ∈ [0, 2U ]},
diff (L1,L4)={uV + vU + L | u ∈ [0, U ], v ∈ [1, V − 1]},
diff (L2,L2)={vU | v ∈ [2− V, V − 2]},
diff (L2,L4)={vU + 2L | v ∈ [2, 2V − 2]}.

(22)
To analyze the properties of diff(L,L), we present Propositions
1 to 4.
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FIGURE 3. An example of SSCA configuration co-array, where U = 3, V = 7, L = 14.

Proposition 1: The relationship between sets diff (L1,L4)
and diff (L2,L1) can be expressed as

diff (L1,L4) = diff (L2,L1) + UV. (23)

Proof : See Appendix A.
Proposition 2: In the range of diff (L2,L1), there are holes

at the following location

P2,1 = P1 ∪ ⌊(U + 1)/2⌋V ∪ P2 , (24)

where

P1 = {aU + bV + L | a ≥ 0, b > 0,

0 < aU + bV < U(V − 1)}, (25)
P2 = {L− (cU + dV ) | c ≥ 0, d > 0,

0 < cU + dV < U(V − 1)}. (26)

Proof : See Appendix B.
Proposition 3: In the diff(L1,L4) range, there are holes lo-

cated at

P1,4 = P3 ∪ {UV + ⌊(U + 1)/2⌋V } ∪ P4, (27)

where P3 = P1 + UV, P4 = P2 + UV .
Proof : See Appendix C.
Proposition 4: Let E1 = diff(L1,L4)∪diff(L2,L1), and the

positions where there are holes in set E1 are

Pe1 = P2 ∪ Pr
1,4 ∪ P3 ∪ {L,UV + L}, (28)

where

Pr
1,4 = {αV + L | L < αV + L < UV + L}. (29)

Proof : See Appendix D.
According to (22), we know that the position of the elements

in ± diff(L1,L3) are independent of L. To increase the num-
ber of continuous virtual elements of the proposed array, we
choose L = ⌊(U + 1)/2⌋V to make the holes in E1 filled by
the elements in ± diff(L1,L3) as much as possible. Therefore,
we have the following Proposition.
Proposition 5: The maximum number of continuous virtual

elements provided by a shifted coprime array is given by

He = [−UV − U − V − L, UV + U + V + L]. (30)

Proof : See Appendix E.

To illustrate Propositions 1 to 5 more intuitively, Fig. 3
shows an example of SSCA, where blue squares denote
the physical element of SSCA; black squares represent
virtual elements; red squares stand for holes. The number
of sensors Q = 10, array parameters (U, V ) = (3, 7),
L = 14; therefore, the set of physical array positions is L =
{−32,−29,−26,−23,−21,−20,−17,−7, 0, 7, 14, 17, 20, 21,
23, 26, 29, 32}.
As can be seen from Fig. 3, the hole in the diff(L2,L1) range

is located in P2,1 = {−3,−2, 0, 1, 4, 7, 14, 21, 24, 27, 28,
30, 31}, while the hole in the diff(L1,L4) range is located
at P1,4 = {18, 19, 21, 22, 25, 28, 35, 42, 45, 48, 49, 51, 52}.
Therefore, diff(L1,L4) can be seen as each element of
diff(L2,L1) plus the UV generated set, indicating that
diff(L2,L1) and diff(L1,L4) have a similar virtual array
structure. The holes in the E1 range are located at Pe1 =
{−3,−2, 0, 1, 4, 7, 14, 21, 28, 35, 42, 45, 48, 49, 51, 52}, in
which {0, 7, 14, 21, 28, 35, 42} are filled by diff(L1,L3). The
holes at {1, 4} are filled by diff(L1,L2). Therefore, the first
hole in the virtual array is located at {45}, and the number of
continuous virtual array elements generated by the SSCA array
is 89.

3.3. Weight Functions
The effect of mutual coupling is considerably related to the el-
ement spacing. According to [6], weight functions w(1), w(2),
w(3) can be used to evaluate the effect of mutual coupling. The
first three weight functions of the SSCA are given by Proposi-
tion 6.
Proposition 6: The weight function of the SSCA can be ex-

pressed as
w(1) = w(2) = w(3) = 2. (31)

Proof: Let’s first prove that there are (U + 1)(V − 1) dif-
ferent elements of diff(L1,L2). According to Equation (22)
diff(L1,L2) = {uV − vV − L | u ∈ [0, U ], v ∈ [1, V − 1]}
and diff(L1,L2) = − diff(L2,L1). Let’s say that there are two
identical elements in diff(L1,L2), then the following formula
holds

u1V − v1U − L = u2V − v2U − L ⇒ v1 − v2
u1 − u2

=
V

U
, (32)
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where 0 ≤ u1, u2 ≤ U, 1 ≤ v1, v2 ≤ V − 1. Since v1 − v2 <
V , U and V are coprime, Equation (32) cannot be established.
Therefore, there are no repeating elements in diff(L1,L2), that
is, there are (U + 1)(V − 1) different elements.
Then, it is proved that when L = (U + 1)V /2, there are no

identical elements between sets diff(L1,L2) and diff(L2,L1).
Assuming that the same elements exist in both sets, the follow-
ing equation holds

u1V − v1U − L = v2U + L− u2V, (33)

where 0 ≤ u1, u2 ≤ U, 1 ≤ n1, n2 ≤ V − 1. Substituting
L = (U + 1)V /2 into (33) yields

u1 + u2 − U − 1

v1 + v2
=

U

V
. (34)

Since u1 + u2 −U − 1 < U , U and V are coprime, there is no
integer to make (34) true.

3.4. Compared with Other Arrays
SSCA performance is quantified by comparing it with
SNAI [28], SDNA [31], and SNAII [30] in two aspects, the
number of consecutive lags and mutual coupling leakage
coefficient.
As shown in Table 1, when numbers of sensors are equal,

the number of consecutive lags of SSCA is obviously larger
than that of SNAI and SDNA, and it is smaller than SNAII. But
SSCA has stronger anti-coupling ability than SNAII, which can
be seen in Table 2.

TABLE 1. The number of consecutive lags for different arrays.

Sensors number SNAI SDNA SNAII SSCA
31 112 141 239 229
35 163 177 305 277
37 181 196 379 317
39 201 217 379 341

TABLE 2. Mutual coupling leakage coefficient with c1 = 0.3.

Sensors number SNAI SDNA SNAII SSCA
31 0.3607 0.3394 0.3577 0.2791
35 0.3597 0.3408 0.3573 0.2647
37 0.3508 0.3503 0.3492 0.2539
39 0.3589 0.3420 0.3569 0.2508

It can be seen from Table 2 that under the same number of
physical array elements, SSCA can obtain the lower mutual
coupling leakage coefficient than SNAI, SDNA, and SNAII,
because the SSCA structure is more sparse. This means that
the SSCA can obtain higher accuracy for DOA and distance
estimation.

4. THE PROPOSED ALGORITHM
This section mainly introduces the parameter solving method
of mixed field sparse matrix. The solution method is spa-
tial smoothing MUSIC (SS-MUSIC) algorithm [34]. Based on
MUSIC algorithm and spatial smoothing technology, this algo-
rithm smooths the received data of continuous virtual array gen-
erated by difference coarray and then uses MUSIC algorithm to
estimate the parameters.

4.1. DOA Estimation
The cumulant matrix C1 is vectorized, and the continuous vir-
tual elements in C1 are extracted for column vectorization

z = vec {C1} = vec

[
K∑

k=1

c4,sk
(
b (θk) bH (θk)

)]

= (B∗ ⊙ B) p = B1p, (35)

where B1 = [b1(θ1), b1(θ2), . . . , b1(θk)] is the virtual array’s
equivalent manifold matrix. Vector z is a single snapshot data,
and when multiple signals are incident on the array, decorrela-
tion operation is required. The commonly used decorrelation
method is spatial smoothing.
Assume that the dimension of vector z is 2Lz +1, that is, the

continuous virtual array range is [−Lz, Lz]. Divide the vector z
intoLz+1 overlapping subvectors, with each containingLz+1
elements. The ith subvector zi is the ith element to the i+ Lz

element of the vector z. Calculate the covariance matrix of each
subvector and average it to obtain

Rss =
1

Lz + 1

Lz+1∑
i=1

Ri =
1

Lz + 1

Lz+1∑
i=1

(
zizHi

)
. (36)

After the above spatial smoothing operation, the DOA in-
formation of the mixed field can be solved using the classical
subspace algorithm based on the covariance matrix Rss

Rss = ESΛSEH
S + ENΛNEH

N . (37)

In (37),ES andEN represent the eigenvectors corresponding
to the large and small eigenvalues, respectively. According to
the basic idea of MUSIC method, the following spectral peak
search formula can be obtained

G(θ) =
1

bH1 (θk)ENEH
N b1 (θk)

. (38)

4.2. Estimating Distance

The estimated DOA angle value of the mixing field is {θ̂k, k =
1, . . . ,K}, and by sequentially inputting the estimated angle
values into spectral peak search function, the distance param-
eters of the corresponding near-field in the mixed field can be
obtained

r̄k = min
r

[
aH

(
θ̂k, r

)
UnU

H
n a

(
θ̂k, r

)]−1

, (39)
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(a) (b)

FIGURE 4. Normalized spatial spectrum of SSCA array. (a) Spatial spectrum for DOA estimation by using SSCA array. (b) Spatial spectrum for
range estimation by using SSCA array.

whereUn ∈ C(2M+1)×(2M+1−K) is composed of eigenvectors
of R = E{xi(t)xHi (t)} corresponding to the (2M + 1 − K)
smallest eigenvalues. According to the set distance range, it is
easy to identify the near-field and far-field sources in the mixed
field. When r̄k ∈ [0.62(D3/λ)1/2, 2D2/λ], the kth source is a
near-field one. When r̄k > 2D2/λ, the kth source is far field.
Therefore, we easily distinguish NF and FF targets.
After summarizing the principle of the algorithms mentioned

above, the localization of mixed NF and FF sources algorithm
based on fourth-order cumulants proposed in this paper is cal-
culated in Table 3 which describes the method.

TABLE 3. Implementation steps of mixed NF and FF sources localiza-
tion algorithm based on fourth-order cumulants.

Input: the signals received by physical sensors x(t).
Output: DOA and distance estimation (θ̂k, r̄k).
Specific algorithm steps:
1: Calculate the fourth-order cumulants matrix C1 via (14).
2: Vectoring C1 to generate z via (35).
3: According to (36), calculate a spatial smoothing matrix Rss.
4: Calculate EN via (37).
5: Obtaining DOA estimates θ̂k via (38).
6: Calculate Un, and obtaining distance estimates r̄k via (39).

5. RESULTS OF THE SIMULATION
In order to verify the performance of the proposed SSCA for
localization of mixed field sources simulations are conducted.
Firstly, we present the weight functions of the proposed SSCA,
SNAI [28], SDNA [29], and SNAII [30]. Secondly, we sim-
ulate the root mean square error (RMSE) of different signal-
to-noise ratios (SNRs), the number of snapshots, and level of
mutual coupling. The RMSE is defined as

RMSE =

√√√√ 1

K̃N

N∑
i=1

K̃∑
k=1

(
âik − ak

)2
, (40)

where N = 2000 is the number of Monte Carlo trials; ak rep-
resents the true DOA or range of the kth source; âik is the esti-

mated DOA or distance of the ith source obtained from the k-th
trial. For the RMSE of near-field sources, we can set K̃ = K1,
while for that of far-field sources, K̃ = K −K1.
1)Music Spectral: In this simulation, we assume that four

sources are incident on the SSCA withQ = 29. The directions
and ranges of the four mixed field sources are (−30◦, 200λ),
(−10◦, 300λ), (10◦,∞), and (30◦,∞). Fixed parameters are
set to SNR= 10 dB, T = 1000 snapshot. Fig. 4 shows the spa-
tial spectra of signal DOA parameter estimation and distance
parameter estimation in turn. In Fig. 4(a), the DOA values of
the above four mixed sources are estimated. Fig. 4(b) presents
the spectral obtained by searching the spectral peak of the sig-
nal distance in the Fresnel region by substituting different DOA
estimates. The two red lines in the figure have peaks within
the search range, which are the distance estimates of the two
near-field sources. The two black lines have no peaks within
the search range of near-field sources, indicating that the corre-
sponding signal source is located in the far-field source.
2) Weight Functions: In this simulation, we set the num-

ber of sensors Q = 29. Fig. 5 shows the weight functions of
SNAI, SDNA, SNAII, and the proposed SSCA. It can be seen
that, for the SNAI, SDNA, and SNAII, their weight functions
are w(1) = 16, w(2) = 15, w(3) = 14, w(1) = 14, w(2) =
13, w(3) = 12, and w(1) = 14, w(2) = 13, w(3) = 12, re-
spectively. This can be attributed to their design originating
from nested arrays, which have a relatively dense array struc-
ture. Compared with other three arrays, the weight functions
of SSCA are much smaller, which are w(1) = 2, w(2) =
2, w(3) = 2, leading to stronger anti-mutual coupling ability
of SSCA.
3) RMSE Performance: The following simulations focus

on the relationship between RMSE performance and the input
SNR, number of snapshots, and c1 modulus of the coupling
coefficient. The mutual coupling model is characterized by
B = 100, c1 = 0.3ejπ/3, cl = c1e

−j(l−1)π/8/l (except in
the case of changes in c1). Fixed parameters are set to SNR
= 10 dB, T = 500 snapshots. The directions and ranges of
the four mixed field sources are (−30◦, 200λ), (−10◦, 300λ),
(10◦,∞) and (30◦,∞).
Figure 6 presents the RMSEs versus SNR for the four kinds

of sparse arrays. As can be seen from Fig. 6, when SNR is less
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(a) (b)

(c) (d)

FIGURE 5. The weight functions for four kinds of SLAs. (a) SNAI. (b) SNAII. (c) SDNA. (d) SSCA.

(a) (b)

(c)

FIGURE 6. RMSE curves for DOA estimation and distance estimation under different SNR. (a) DOA estimations for FF sources. (b) DOA estimations
for NF sources. (c) Range estimations.
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(a) (b)

(c)

FIGURE 7. RMSE curves for DOA estimation and distance estimation under different Snapshots. (a) DOA estimations for FF sources. (b) DOA
estimations for NF sources. (c) Range estimations.

(a) (b)

(c)

FIGURE 8. RMSE curves for DOA estimation and distance estimation under different |c1|. (a) DOA estimations for FF sources. (b) DOA estimations
for NF sources. (c) Range estimations.
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than 5 dB, the RMSE curves of SSCA array present a downward
trend, while the decline trend of SNAI, SDNA and SNAII is not
obvious. When the SNR exceeds 5 dB, the RMSE curves are
relatively stable. This is because mutual coupling has become
an important factor hindering estimation performance improve-
ment. In addition, we see that the RMSE curve of the proposed
SSCA is the lowest among the four arrays, indicating that the
proposed array can provide the most excellent estimation per-
formance among them. This is attributed to the proposed array
having good anti mutual coupling ability.
Figure 7 shows the RMSE curves of DOA and ranges for

mixed field sources under different snapshots. From Fig. 7,
it can be seen that RMSE curves of all arrays show a down-
ward trend with the increase of the number of snapshots, and
SSCA arrays show an obvious downward trend, with more ac-
curate estimation accuracy. The RMSE curves of other arrays
change slowly with the increase of number of snapshots due to
the influence of mutual coupling. When number of snapshots
T ≥ 500, the RMSE curve of SSCA array becomes stable,
which indicates that the increase of number of snapshots has no
decisive effect on the estimation accuracy of DOA parameters.
The RMSE of DOA and range estimates versus mutual cou-

pling coefficient |c1| is shown in Fig. 8. With the increase of
|c1|, the RMSE curves of all arrays show an increasing trend,
and the parameter estimation performance deteriorates gradu-
ally. This is because the larger the mutual coupling coefficient
|c1| is, the more serious the mutual coupling leakage is between
the array elements. Additionally, we see that when the mutual
coupling coefficient |c1| = 0, SNAII array has the highest esti-
mation accuracy. The reason for this is that if |c1| = 0, the per-
formance curves of DOA parameter estimation are determined
by the number of consecutive lags generated by the array, while
SNAII array can provide more consecutive lags than other three
arrays. When the mutual coupling coefficient |c1| > 0.2, the
RMSE curves of SNAI, SDNA, and SNAII rise significantly,
while the RMSE curves of SSCA arrays do not change signif-
icantly. When |c1| > 0.5, the RMSE curves of SSCA show
an upward trend, but the parameter estimation performance of
SSCA arrays is still better than that of the other three sparse
arrays. It indicates that the proposed SSCA outperforms other
arrays when the mutual coupling is very severe.

6. CONCLUSION
In this article, we propose a symmetric shifted coprime array
for localization of far-field and near-field sources. For the pro-
posed array, the analytical expression is provided, which makes
the array design convenient. The DOFs of the proposed ar-
ray are improved, and the sensor pairs with small inter-element
spacing are reduced by translating the subarray of the traditional
prime array. The expressions of DOFs and weight functions of
the proposed array are also derived. The first three weight func-
tions of SSCA are w(1) = w(2) = w(3) = 2, which are less
than the weight functions of SNAI, SDNA, and SNAII. Nu-
merical results show that the anti-coupling ability of proposed
array is improved while the DOFs are guaranteed. Therefore,
it has higher DOA and range estimation accuracy than existing
arrays. However, because the statistics used are fourth-order

cumulants, it will bring relatively high computational complex-
ity.

APPENDIX A. PROOF OF PROPOSITION 1
Any element in set diff(L2,L1) is d2,1. According to formula
(22), d2,1 can be represented as

d2,1 = v1U − u1V + L (A1)

where 1 ≤ v1 ≤ V −1, 0 ≤ u1 ≤ U . Adding UV to d2,1 gives

d2,1 + UV = v2U + u2V + L = diff (L1,L4) , (A2)

where v1 = v2 and u2 = U − u1. According to (22), it can
be concluded that {d2,1 + UV } ∈ diff(L1,L4). Similarly, it
can be proven that {d1,4 − UV } ∈ diff(L2,L1), where d1,4
represents any element in set diff(L1,L4).

APPENDIX B. PROOF OF PROPOSITION 2
Here, contradiction is used to show that element p1 in P1 does
not belong to set diff(L2,L1). Supposing p1 ∈ diff(L2,L1),
then the following equation is obtained

aU + bV + L = vU + L− uV, (B1)

where a ≥ 0, b ≥ 0, 1 ≤ v ≤ V − 1, and 0 ≤ u ≤ U . The
following conclusion can be derived from (B1)

U

V
=

u+ b

v − a
. (B2)

Because of v− a < V and the coprime of U and V , there is no
integer u that satisfies Equation (B2). Therefore, assume that
p1 ∈ diff (L2,L1) does not hold, that is, the elements located
in set P1 are holes within the range of diff (L2,L1). Similarly,
it can be proven that the sets {L} and P2 are also holes within
the range of diff (L2,L1).

APPENDIX C. PROOF OF PROPOSITION 3
By proving p1 /∈ diff(L2,L1) in Propositions 2, {h1 +UV } /∈
diff(L2,L1) + UV is obtained. According to Propositions 1,
diff(L1,L4) = diff(L2,L1)+UV , {h1+UV } /∈ diff(L1,L4)
can be obtained. Therefore, the virtual array corresponding to
the set diff(L1,L4) can be generated by the virtual array corre-
sponding to diff(L2,L1) moving to the right UV , and holes in
set diff(L1,L4) can be obtained by shifting P1, P2, and {L} to
the right UV .

APPENDIX D. PROOF OF PROPOSITION 4
The range of values of elements in sets diff(L1,L4) and
dif(L2,L1) can be obtained according to Equations (21) and
(22) {

U + L ≤ d1,4 ≤ UV + U(V − 1) + L,
L− U(V − 1) ≤ d2,1 ≤ U(V − 1) + L,

(D1)

where d1,4 ∈ diff(L1,L4), d2,1 ∈ diff(L2,L1). There-
fore, there is a range of overlap between diff(L1,L4) and
diff(L2,L1), which can be given by

H1 = {h1 | U + L ≤ h1 ≤ U(V − 1) + L} . (D2)
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Within this overlap, some holes in P2,1 may be filled by ele-
ments in diff(L1,L4), while some holes in P1,4 may also be
filled by elements in diff(L2,L1). Therefore, the next step
is to explore which holes are filled and which remain in the
diff(L1,L4) ∪ diff(L2,L1) range. The values of elements in
the sets P1, P2, P3, and P4 can be obtained from Propositions
2 and 3 

L < p1 < L+ U(V − 1)
L− U(V − 1) < p2 < L
L+ UV < p3 < L+ 2UV − U
L+ U < p4 < L+ UV,

(D3)

where p1 ∈ P1, p2 ∈ P2, p3 ∈ P3, and p4 ∈ P4. The overlap
range in Equation (D2) is compared with the range of hole (D3)

H1 ∩ P1 ̸= ∅
H1 ∩ P2 = ∅
H1 ∩ P3 = ∅
H1 ∩ P4 ̸= ∅
H1 ∩ {L,UV + L} = ∅.

(D4)

which indicates that some holes in P1 may be filled by
diff(L1,L4), while some holes in P4 may be filled by
diff(L2,L1). Assuming that some holes in P1 can be filled by
diff(L1,L4), the following equation is true.

aU + bV + L = vU + uV + L. (D5)

Next, the discussion (D5) is divided into two cases: a > 0 and
a = 0. When a > 0, U + V + L < h1 < U(V − 1) + L
is obtained according to Equation (25), indicating that p1 is in
the overlapping rangeH1. If a ̸= n, then Equation (D5) can be
rewritten as

u− b

a− v
=

U

V
. (D6)

Because of u − b < U and the coprime of U and V , Equa-
tion (D6) cannot be established. Similarly, Equation (D5) is
not valid for b ̸= u. Therefore, Equation (D5) holds if a = v
and b = u. It can be further inferred that when a > 0, the hole
located in P1 can be filled with elements from diff (L1,L4).
When a = 0, Equation (D5) can be rewritten as

bV = vU + uV ⇒ b− u

v
=

U

V
. (D7)

Because of v−a < V and the coprime ofU and V , Equation
(D7) cannot be established. It means that when a = 0, holes lo-
cated in P1 cannot be filled by elements in diff(L1,L4). Thus,
after being filled with elements from diff(L1,L4), the remain-
ing elements in the set P1 can be represented as

Pr
1 = {aV + L | L < αV + L < U(V − 1)}. (D8)

Similarly, after being filled by diff(L2,L1), the remaining
holes in P4 are located at

Pr
4 = {aV + L | L+ U < αV + L < UV + L}. (D9)

The combination of (D8) and (D9) is obtained

Pr
1 ∪ Pr

4 = {aV + L | L < αV + L < UV + L}. (D10)

Moreover, because the intersection of overlapping regions
H1 and P2 ∪ P3 ∪ {L,UV + L} is empty, the holes in the
P2 ∪ P3 ∪ {L,UV + L} region do not change at all.

APPENDIX E. PROOF OF PROPOSITION 5
Let L = gV . Depending on whether c is zero, the set P2 can
be divided into

P2 = P1
2 ∪ P2

2, (E1)
where

P1
2 = {L− (cU + dV ) | c > 0, d > 0,

0 < cU + dV < U(V − 1)}, (E2)
P2
2 = {d̄V | −U(V − 1) + L < d̄V < L}, (E3)

where d̄ = g − d, d > 0. Then the union of the sets Pr
1,4, P2

2,
and {L,UV + L} can be expressed as
Pg = {αV | −U(V N − 1) + L < αV < UV + L}. (E4)

Therefore, the hole in the E1 range can be rewritten as

Pds = P1
2 ∪ P3 ∪ Pg. (E5)

Next, the proof discusses sets Pg , P1
2, and P3 in turn.

First, according to Equation (22) and ± diff(L1,L3)) =
{uV | u ∈ [−2U, 2U ]}, when g is satisfied

0 < g ≤ U, (E6)

all holes in Pg can be filled by elements in set ± diff (L1,L3).
Secondly, the relationship between P1

2 and diff (L1,L2) will be
analyzed below. According to Equation (22), the overlap range
of the mirror images of sets diff (L1,L2) and diff (L2,L1) can
be expressed as

H2 = {h2 | L− U(V − 1) ≤ h2 ≤ U(V − 1)− L} . (E7)

Because L < U(V − 1), H2 ̸= ∅, which indicates that
holes in the diff (L2,L1) range may be filled by elements in
diff (L1,L2).
Contrasting formulas (E2) and (E7) give an H2 ∩ P1

2 ̸= ∅.
Suppose that there are holes in P1

2 that can be filled by the ele-
ments of set diff (L1,L2), then the equation

−cU − dV + L = −vU − L+ uV. (E8)

Because of c > 0 and d > 0,−U(V −1)+L < p12 ≤ L−U−V
is obtained according to Equation (E2), where p12 ∈ P1

2. If p12 is
in the overlapping region H2 and c ̸= v, we get by substituting
L = gV into Equation (E8)

d+ u− 2g

v − c
=

U

V
. (E9)

Because of v − c < V and the coprime of U and V , Equa-
tion (E8) cannot be established. Similarly, if d + u ̸= 2g,
Equation (E8) is not valid. Therefore, the conditions for for-
mula (E8) are c = v and d + u = 2g. It follows that the holes
in P1

2 can all be filled by elements in diff (L1,L2). However,
as L increases, some of P1

2’s holes will go beyond the overlap
range H2 and cannot be filled by diff (L1,L2). In order for all
holes in A to be filled, conditions should be ensured

L− U − V ≤ U(V − 1)− L. (E10)
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SinceL = gV and g are positive integers, according to Equa-
tion (E10), we obtain

0 < g ≤
⌊
U + 1

2

⌋
. (E11)

Finally, for P3, when a = 0 and b = 1, the minimum value
P3 of p13 can be expressed as UV + gV + V . In order for hole
h1
3 to be filled with elements from diff (L1,L3), it is necessary

to ensure UV + gV + V ≤ 2UV , so we obtain

0 < g ≤ U − 1. (E12)

When a = 1 and b = 1, the second hole in P3 can be ex-
pressed as

p23 = UV + U + V + gV. (E13)
Next it will be shown that hole p23 cannot be filled by el-

ements of diff (L1,L4). Assuming that p23 can be filled with
elements from diff (L1,L4), there is a positive integer n such
that

U + V + UV + gV = 2uV ⇒ 2u− U − 1 =
U

V
. (E14)

When a = 1 and b = 1, the second hole in P3 can be repre-
sented as

p23 = UV + U + V + gV. (E15)
Next it will be shown that hole p23 cannot be filled by el-

ements of diff (L1,L3). Assuming that p23 can be filled with
elements from diff (L1,L3), there is a positive integer v such
that

U + V + UV + gV = 2uV ⇒ 2u− U − 1 =
U

V
. (E16)

Due to the coprime of U and V , it is impossible to find an
integer u that holds Equation (E16). So p23 cannot be filled with
elements from diff (L1,L3).
In addition, comparing the maximum values of p23 and

diff (L2,L4) can be obtained

max diff (L2,L2) = (V − 2)U < h2
3. (E17)

Therefore, hole p23 cannot be filled by the elements of
diff (L2,L4).
Next, it will be shown that hole p23 can be filled with elements

from diff (L2,L4) only if g = 1. Assuming that p23 can be filled
with elements from diff (L2,L4) = {vU + 2L | v ∈ [2, 2U ]},
there must be an integer u that makes

U + V + UV + gV = vU + 2gV. (E18)

Therefore
U + 1− g

1 + v
=

U

V
. (E19)

Because of 0 ≤ v ≤ V − 1 and the coprime of U and V ,
Equation (E18) holds under the condition g = 1. When g > 1,
Equation (E18) does not hold, so hole p23 cannot be filled by
elements in diff (L2,L4). Because of the primacy of U and V ,
U ≥ 2, ⌊

U + 1

2

⌋
≤ U − 1. (E20)

Therefore, according to (E6), (E11), (E12), and (E20), 0 <
g ≤ ⌊(U + 1)/2⌋ can ensure that all holes of Pg and P1

2 and
the first hole of P3 can be filled, that is, holes smaller than
Pe1 in the range of UV + U + V + L can be filled. Specif-
ically, Pg ∩ p13 can be filled by elements in diff (L1,L3), and
P1
2 can be filled by elements in diff (L1,L2). It can therefore

be further inferred that the first hole in the non-negative range
of ±E1 ∪ ± diff (L1,L3) is located in UV + gV + U + V ,
that is, the number of continuous virtual elements in the set
±E1 ∪± diff (L1,L3) is 2(UV + gV +U + V )− 1. It means
that in the 0 < g ≤ ⌊(U +1)/2⌋ range, the greater the g is, the
higher the degree of freedom of the array is. Therefore, in order
to translate the mutual-prime array to be able to obtain higher
degrees of freedom, choose

g =

⌊
U + 1

2

⌋
. (E21)

Therefore, L = ⌊(U +1)/2⌋V is the optimal translation dis-
tance. Based on the two cases discussed above, the following
conclusions can be drawn: In order to maximize the number of
continuous virtual elements of the translation mutual prime ar-
ray, L = ⌊(U +1)/2⌋V is the optimal translation distance, and
the number of continuous virtual elements that can be generated
is 2(UV + L+ U + V )− 1.
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