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ABSTRACT: To address the problem of traditional speed loop controllers being unable to achieve rapid system convergence in the face of
complex external operating conditions, this paper designs a new nonsingular fast terminal slidingmode control algorithm (NNFTSMC) for
PMSMwith a super twisting sliding mode perturbation observer (STSMO). Firstly, the mathematical models of PMSM for ideal case and
parametric composite uptake are established. Secondly, a new non-singular fast terminal sliding mode control surface (NNFTSM) is pro-
posed to design the PMSM speed-loop controller, which is also pairedwith the STSMO to observe the total system perturbation in real time
and compensate the perturbation to the speed-loop NNFTSMC controller to form a new composite controller of NNFTSMC+STSMO.
Finally, the proposed composite control algorithm of NNFTSMC+STSMO is verified to be effective in improving the control of the
PMSM drive system during the parameters and load mutation by comparing simulation and RT-Lab semi-physical experiments.

1. INTRODUCTION

PMSMbecomes computer numerical control (CNC)machine
tools, instrumentation, aerospace, and other strict require-

ments for the system control performance of the field for re-
search hot spots because of its simple structure, control ac-
curacy, and other advantages [1]. Meanwhile, proportional-
integral (PI) controller is widely used in PMSM drive system
because of its simple structure [2]. However, PI controller of-
ten leads to substandard system control accuracy because of its
linearization. Therefore, a wide range of scholars have pro-
posed a variety of improved algorithms based on the PI control
mechanism in recent years, including Model Predictive Con-
trol (MPC) [3], Sliding Mode Control (SMC) [4], and Robust
Control (RC) [5].
The SMC algorithm has been developed in the field of non-

linear control, such as PMSM system, due to its low model
accuracy requirement, insensitivity to nonlinear perturbation,
and simplicity of physical implementation [6]. Compared with
traditional PI controller, the traditional SMC control algorithm
based on Sliding Mode Disturbance Observer (SMO) can sup-
press the effects of parameters uptake and load perturbation to
a certain extent. When SMO estimates the total system distur-
bance and feeds it back to the SMC controller, the convergence
performance of the linear integral sliding mode surface in tradi-
tional SMC is poor. In high-precision and high-quality applica-
tions, the system error cannot quickly converge to 0 in a finite
time [7]. In complex operating environments, PI controller and
SMO-based conventional SMC controller are difficult to sup-
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press the sudden increase of jitter in a PMSM drive system,
which affects the efficiency and safe operation of PMSM sys-
tem [8].
Ref. [9] proposes theModel Free SlidingMode Control (MF-

SMC) algorithm based on the traditional SMC combined with
the model-free theory, and the simulated and experimental re-
sults prove that it can improve the response speed of the PMSM
drive system compared with the traditional SMC. To improve
the large jitter problem of the conventional integral sliding
mode, [10] proposes a fast super-twisting non-singular fast ter-
minal sliding mode controller with a higher-order Kalman al-
gorithm instead of sensors to estimate the speed and rotor po-
sition. Ref. [11] proposes a new type of fast integrating termi-
nal sliding mode surface and uses it to design a higher-order
sliding mode controller and observer. The simulations and
experiments demonstrate that the higher-order terminal slid-
ing mode can effectively solve the large jittering defect in-
herent in the traditional integral SMC. Ref. [12] combines the
second-order super-twisting algorithm and fast terminal switch-
ing function to design a super-twisting fast terminal sliding
mode controller. Compared to [11], its composite controller
has a simpler structure with fewer parameters which can further
improve the anti-interference ability and tracking performance
of system. Ref. [13] suggests that the traditional second-order
super-twisting algorithm will cause the system to converge too
slowly due to the absence of the linear term, and the exponent
of its state vector is always 1/2, which does not minimize the
convergence of the system state. Therefore, [14] proposes a
third-order super-twisting algorithm, which adds a fast term to
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the second-order super-twisting algorithm, and it can perfectly
solve the problem that the system converges too slowly.
Aiming at the above problems, in order to ensure the fast

convergence of the system while weakening the system jitter
considering the complex working conditions such as PMSM
parameter uptake and external perturbations, this paper designs
a new non-singular fast terminal sliding mode composite con-
trol method (NNFTSMC) based on the Super-twisting Sliding
Mode Observer (STESMO).
The method designs a speed-loop controller for PMSM by

proposing a new non-singular fast terminal sliding mode sur-
face. It also proposes the super-twisting control law to design
STESMO, and STESMO can observe the total system pertur-
bation in real time and compensate the perturbation to NN-
FTSMC, which can effectively improve the anti-interference
ability and robustness of the PMSM speed control system. Fi-
nally, simulation and RT-Lab semi-physical experimental re-
sults verify the effectiveness and superiority of the proposed
algorithm.

2. METHODS MATHEMATICAL MODEL OF PMSM

2.1. Mathematical Model of PMSM under Ideal Operating Con-
dition
Neglecting all losses [15], the d-q axis stator voltage equation
with the PMSM in ideal operation is expressed as:{

ud = Rsid +
d
dt ψd − ωeψq

uq = Rsiq +
d
dt ψq + ωeψd

(1)

In Eq. (1), the equation for the stator magnetic chain is ex-
pressed as: {

ψd = Ldid + ψf

ψq = Lqiq
(2)

From Eq. (1) and Eq. (2), the following expression can be
expressed as:{

ud = Rsid + Ld
did
dt − ωeLqiq

uq = Rsiq + Lq
diq
dt + ωe (Ldid + ψf )

(3)

where Rs is the stator resistance; ψf is the chain of permanent
magnet; ωe is the electrical angular velocity; ud is the stator
voltage component in the d-axis; uq is the stator voltage com-
ponent in the q-axis; id is the stator current component in the
d-axis; iq is the stator current component in the q-axis; Ld is
the stator inductance in d-axis; Lq is the stator inductance in
q-axis.
The d-q axis electromagnetic torque equation for the PMSM

is expressed as [16]:

Te =
3

2
np [ψf + (Ld − Lq) id] iq =

3

2
npψeiq (4)

where Te is the electromagnetic torque output; np is the pole
number; ψe = ψf + (Ld − Lq)id, ψe is the effective flux.

The mechanical equation of motion for PMSM is expressed
as [17]:

J

np
· dωe
dt

= Te − TL −Bωm (5)

whereB is the damping coefficient; J is the moment of inertia;
ωm is the mechanical angular speed; TL is the load torque.
Substituting Eq. (4) into Eq. (5), the rotational speed equation

of state is expressed as [18]:

dωe
dt

=
3n2p
2J

ψeiq −
B

J
ωe −

np
J
TL (6)

2.2. Mathematical Model of PMSM under Varying Condition of
Motor Parameters
In the actual operating environment, the PMSM electromag-
netic parameter variation equation can be expressed as:

R̃s = Rs +∆Rs

L̃d = Ld +∆Ld

L̃q = Lq +∆Lq

ψ̃f = ψf +∆ψf

(7)

where R̃s, L̃d, L̃q , ψ̃f are the actual values of electromagnetic
parameters for PMSM under parameters ingestion and exter-
nal time-varying disturbance; ∆Rs, ∆Ld, ∆Lq , ∆ψf are the
corresponding values of the uptake.
In the actual operating environment, the equations for the

mechanical parameters of the PMSM and the variation of the
external load are expressed as:

B̃ = B +∆B

T̃L = TL +∆TL

J̃ = J +∆J

(8)

where B̃ and J̃ are the actual values of mechanical parame-
ters for PMSM under parameters ingestion and external time-
varying disturbance; T̃L is the actual value of load for PMSM;
∆B, ∆J , ∆TL are the corresponding values of the uptake.
From Eq. (7) and Eq. (8), Eq. (1) can be rewritten as:{

ud = Rsid +
dψd

dt − ωeψq +∆ud

uq = Rsiq +
dψq

dt + ωeψd +∆uq
(9)

where ∆ud, ∆uq are the perturbation of the d-q axis voltage,
and they can be expressed as:{

∆ud = ∆Rsid +
d∆ψd

dt − ωe∆ψq

∆uq = ∆Rsiq +
d∆ψq

dt + ωe∆ψd
(10)

When the parameters of the PMSM are subjected to com-
pound ingress, the electromagnetic torque equation of the
PMSM is transformed by Eq. (4) as:

Te =
3

2
np

[
ψ̃f + (L̃d − L̃q)id

]
iq
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=
3

2
np [ψf + (Ld − Lq)id] iq +∆Te

=
3

2
npψextiq +∆Te (11)

where ∆Te is the uptake of the electromagnetic torque, and it
can be expressed as:

∆Te =
3

2
np [∆ψf + (∆Ld −∆Lq) id] iq (12)

When the parameters of the PMSM are subjected to com-
pound ingress, Eq. (6) can be rewritten as:

dωe
dt

=
np

J̃

(
Te − T̃L − B̃ωm

)
+∆Pn (13)

where ∆Pn is the unknown perturbation caused by the uptake
of the B and J .
When the parameters of the PMSM are subjected to com-

pound ingress, fromEqs. (11) and (13), Eq. (14) can be obtained
as [19]:

dωe
dt

=
3n2p

2J̃
ψextiq −

B̃

J̃
ωe −

np

J̃
T̃L

=
3n2p
2J

ψextiq −
B

J
ωe

+
[np
J

(∆Te − TL +∆TL) + ∆Pn +∆D
]

= λ1iq + λ2ωe + F (14)

where λ1 = 3n2pψext/2J ; λ2 = −B/J ; F is the total bounded
perturbation.

3. DESIGN OF THE NNFTSMC BASED ON STESMO

3.1. Design of Speedloop Controller of NNFTSMC for PMSM
From Eq. (14), the control law for designing the speed con-
troller can be expressed as:

i∗q =
ω̇∗
e − λ2ωe − F + u1

λ1
(15)

where ω∗
e is the given speed; u1 is the output of NNFTSMC; i∗q

is the given q-axis current.
From Eq. (15) and Eq. (14), ω̇∗

e − ω̇e+ u1 = 0, and the state
error of the controller is e = ω∗

e−ωe. Eq. (16) can be expressed
as: {

ė1 = e2 = ω∗
e − ωe

ė2 = ė = ω̇∗
e − ω̇e

(16)

Based on the traditional NFTSM surface, the new NFTSM
surface (NNFTSM) is designed as [20]:

s = e1 + a1e
l1
1 + a2e

l2
2 + e2 (17)

where a1 > 0; a2 > 0; l1 = p/q, l2 = g/h, g > 0, h > 0,
p > 0, q > 0; 1 < l1 < 2, l2 > l1.

Taking the derivative of Eq. (17):

ṡ = ė1 + a1l1e
l1−1
1 e2 + a2l2e

l2−1
2 ė2

= e2 + a1l1e
l1−1
1 e2 +

(
a2l2e

l2−1
2 + 1

)
ė2 (18)

The design index convergence law is expressed as [21]:

ṡ = −η1sgn(s)− η2s (19)

where η1 > 0; η2 > 0.
Let the s in Eq. (17) be equal to 0:

e2 = −e1 − a1e
l2
1 − a2e

l1
2 (20)

Let the s and ṡ in Eq. (17) be equal to 0, and u1 is expressed
as:

u1 =

 (1 + a2l2e
l2−1
2

)−1

·
(
e2 + a1l1e2e

l1−1
1

)
+η1sgn(s) + η2s

 (21)

From Eqs. (21) and (15), Eq. (22) can be obtained as i∗q for:

i∗q =
1

λ1

 (1 + a2l2e
l2−1
2

)−1

·
(
e2 + a1l1e2e

l1−1
1

)
+ω̇∗

e − λ2ωe + η1sgn(s) + η2s− F

 (22)

Theorem 1: According to Eqs. (17), (19), and (21), while

η1 ≥
∥∥∥F̃∥∥∥ + ρ, the designed NNFTSMC is stabilized, and the

convergence time Ts can be expressed as:

Ts ≤
ln
(
1 + expετt V τ(0)

)
ετ

(23)

Proof: To illustrate the stability of NNFTSMC, the Lya-
punov function V1 is chosen as:

V1 =
1

2
s2 (24)

Taking the derivative of V1:

V̇ = s
[
e2 + a1l1e

l1−1
1 e2 +

(
a2l2e

l2−1
2 + 1

)
ė2
]

= s


e2 + a1l1e

l1−1
1 e2 +

(
a2l2e

l2−1
2 + 1

)
·

 −
(
1 + a2l2e

l2−1
2

)−1

·
(
e2 + a1l1e2e

l1−1
1

)
−η1sgn(s)− η2s




= s

 e2 + a1l1e
l1−1
1 e2 −

(
e2 + a1l1e2e

l1−1
1

)
+
(
a2l2e

l2−1
2 + 1

)(
F̂ − F − η2s− η1sgn(s)

)


= s
[(
a2l2e

l2−1
2 + 1

)(
∥F̂∥ − η2s− η1sgn(s)

)]
≤
(
a2l2e

l2−1
2 + 1

)((
∥F̂∥ − η1

)
∥s∥ − η2∥s∥2

)
(25)

153 www.jpier.org



Wang, Zhou, and Liu

a2l2e
l2−1
2 +1 > 0, from Eq. (25), while η1 ≥

∥∥∥F̃∥∥∥+ρ (ρ >
0), V̇ ≤ 0, the designed of NNFTSMC is stable [22]. To fur-
ther demonstrate the convergence time of the system Ts, the
Lyapunov function V is chosen to be

V =
1

2
e21 (26)

Taking the derivative of Eq. (26)

V̇ = e1ė1 = e1e2 = e1

(
−e1 − a1e

l1
1 − a2e

l2
2

)
= −e21 − a1e

l1+1
1 − a2e1e

l2
2

= −2V − 2a1V
(l1+1)/2 − a2e

l2−1
2 V̇ (27)

Eq. (27) is rewritten as:(
1 + a2e

l2−1
2

)
V̇ = −2V − 2a1V

(l1+1)/2 (28)

From Eq. (28), V̇ follows as:

V̇ = −2
V + a1V

(l1+1)/2

1 + a2e
l2−1
2

(29)

Since 1 < l2 = g/h < 2, g > 0, and h > 0, the equation as
in Eq. (30) can be obtained as:

l2 − 1 =
g − h

h
=

2k

h
, (k = 1, 2 · · ·) (30)

Then a2el2−1
2 = a2e

2k/h
2 ≥ 0, Eq. (31) can be obtained as:

dV

dt
≤ −V + a1V

(l1+1)/2

1 + a2e
2k/h
2

= −ε
(
V + a1V

(l1+1)/2
)

(31)

where µ = (1 + a2e
2k/h
2 )−1 > 0. Multiplying both sides by

V 2/(l1+1)(l1 + 3)/(l1 + 1) at the same time, Eq. (32) can be
obtained as:

l1 + 3

l1 + 1
V

2
l1+1

dV

dt
≤−µ l1 + 3

l1 + 1
V

2
l1+1

(
V +a1V

l1+1
2

)
(32)

Rewriting Eq. (32) as follows:

dV τ

dt
≤ −µτ (V τ + a1) = −µτV τ − µτa1 (33)

where (l1 + 3)/(l1 + 1) = τ > 0.
From Eq. (33):

dV τ

dt
+ µτV τ ≤ −µτa1 (34)

Multiplying both sides by expµτt at the same time:

expµτt
(
dV τ

dt
+ µτV τ

)
≤ −µτa1 expµτt (35)

Rewriting Eq. (35) as follows:

d (expµτt V τ )
dt

≤ −µτa1 expµτt (36)

From Eq. (36), Ts is designed as
∫ Ts

0
dV = V(Ts)−V(0), and

V(Ts) = 0.
Integrating both sides of Eq. (36) simultaneously:

− expµτt V τ(0) ≤ −µτa1
ετ

(
expµτTs −1

)
= −a1

(
expµτTs −1

)
(37)

Eq. (37) can be rewritten as:

expµτTs ≤ 1 +
expµτt V τ(0)

a1
(38)

Taking exp as the base logarithm for Eq. (38):

µτTs ≤ ln

(
1 +

expµτt V τ(0)
a1

)
(39)

From Eq. (39), the final expression of Ts is rewritten as:

Ts ≤
ln
(
1 +

expµτt V τ
(0)

a1

)
µτ

(40)

3.2. Design of STSMO for NNFTSMC
Defining x = ω̂e − ωe, Eq. (41) can be rewritten as:{

dω̂e

dt = λ1iq + λ2ω̂e + F̂ + ustsmo
dF̃
dt = G · ustsmo

(41)

where ω̂e and F̂ are the observed values of ωe and F , respec-
tively; ustsmo is the control law of the STSMO.
From Eq. (14) and Eq. (41), Eq. (42) is rewritten as:{

ẋ = λ2x+ F̃ + ustsmo
dF̃
dt = G · ustsmo − ℓ(t)

(42)

where F̃ = F̂ − F ; ℓ(t) = dF/dt.
Taking s1 = x = ω̂e−ωe to be the sliding mold surface, the

design of the ST control law is [23]:{
ṡ1 = −r1 |s1|

1
2 sgn (s1) + g + F

ġ = −r2sgn (s1)
(43)

From Eq. (42)∼Eq. (44), ustsmo can be expressed as:

ustsmo =

[
−λ2x− r1 |s1|

1
2 sgn (s1)

−
∫ t
0
r2sgn (s1) dt

]
(44)
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Theorem 2: According to Eq. (41)∼Eq. (44), the STSMO is
stabilized when the selected gain satisfies Eq. (45) [23] r1 >

(4r2+r21)ϑ
(2r2+r21)

r2 >
16r2ϑ+r1ϑ

2

8r1

(45)

Proof: the Lyapunov function V1(x) is chosen as:

V1 (x) = 2r2 |s1|+
1

2
g2 +

1

2

(
r1 |s1|

1
2 sgn (s1)− g

)2
=

1

2

(
4r2 + r21

)
|s1|+ g2 − r1g |s1|

1
2 sgn (s1) (46)

From Eq. (46):
V1 = σTYσ (47)

where r1 > 0, r2 > 0; σ =

[
|s1|

1
2 sgn (s1)
g

]
; Y =

1
2

(
4r2 + r21 −r1
−r1 2

)
.

From Eq. (47), taking the derivative of σ:

σ̇ =

[ 1
2

1

|s1|
1
2
· ṡ1

ġ

]

=
1

|s1|
1
2

[
− 1

2 r1 |s1|
1
2 sgn (s1) + 1

2 g +
1
2 F

−r2 |s1|
1
2 sgn (s1)

]

=
1

|s1|
1
2

[[
− 1

2 r1
1
2

−r2 0

]
σ +

[
F
2

0

]]

=
1

|s1|
1
2

(Bσ + η) (48)

where B =

[
− 1

2r1
1
2

−r2 0

]
; ηT =

[
F
2 0

]
.

Eq. (48) can be reduced as:

σ̇ =
1

|s1|
1
2

(Bσ + η) (49)

Taking the derivative of V1(x):

V̇1 = σ̇TYσ + σTYζ̇

=
1

|s1|
1
2

[
σTBT

+ηT

]
Yσ +

1

|s1|
1
2

σTY
[
Bσ
+η

]

=
1

|s1|
1
2

[
σTBTYσ
+ηTYσ

]
+

1

|s1|
1
2

[
σTYBσ
+σTYη

]

= − 1

|s1|
1
2

σTXσ +
F

|s1|
1
2

qT1 σ

≤ − 1

|s1|
1
2

σTXζ + ϑqT1 σ (50)

where F ≤ ϑ|s1|
1
2 ; X = r1

2

[
2r2 + r21 −r1
−r1 1

]
; qT1 =

[(
2r2 +

r21
2

)
− r1

2

]
.

From Eq. (50), the range of ϑqT1 σ is:

ϑqT1 σ = ϑ

[(
2r2 +

r21
2

)
− r1

2

] [
|s1|

1
2 sgn (s1)
g

]

=
ϑ

|s1|
1
2

 (
2r2 +

r21
2

)
|s1|

1
2 |s1|

1
2 sgn (s1)

− r1
4
g |s1|

1
2 − r1

4
g |s1|

1
2



≤ 1

|s1|
1
2


[

|s1|
1
2 sgn (s1) g

]
[ (

4 r2
r1

+ r1
)
ϑ − 1

2

− 1
2
ϑ 0

][
|s1|

1
2 sgn (s1)
g

]
· r1

2


=

1

|s1|
1
2

σTNσ (51)

where N = r1
2

[ (
4 r2r1 + r1

)
ϑ − 1

2ϑ

− 1
2ϑ 0

]
.

From Eq. (50) and Eq. (51):

V̇1 ≤ − 1

|s1|
1
2

σTXσ + δ1q
T
1 σ

≤ − 1

|s1|
1
2

σTXσ +
1

|s1|
1
2

σTNσ

= − 1

|s1|
1
2

σT [X− N]σ

= − 1

|s1|
1
2

σT

[
r1
2

(
2r2 + r21 −

(
4r2
r1

+ r1
)
ϑ −r1 + 1

2
ϑ

−r1 + 1
2
ϑ 1

)]
σ

= − 1

|s1|
1
2

σT [X̃]σ (52)

Considering the nature of complement of Schur:
2r2 + r21 −

(
4r2
r1

+ r1

)
ϑ > 0

1−
(
−r1 + 1

2ϑ
)2[

2r2 + r21−
(

4r2
r1

+ r1

)
ϑ
]−1

>0
(53)

Simplifying Eq. (53), Eq. (54) can be expressed as:{
2r2r1 + r31 −

(
4r2 + r21

)
ϑ > 0[

2r2 + r21 −
(

4r2
r1

+ r1

)
ϑ
]
>
(
−r1 + 1

2ϑ
)2 (54)
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FIGURE 1. The control flowchart of NNFTSMC based on STSMO.

From Eq. (54), the range of values of r1 and r2 can be ob-
tained:  r1 >

(4r2+r21)ϑ
(2r2+r21)

r2 >
16r2ϑ+r1ϑ

2

8r1

(55)

If the range of values of the parameters satisfies Eq. (55),
then X̃ can be made positive definite.

V̇1 ≤ − 1

|s|
1
2

σT X̃σ ≤ − 1

|s|
1
2

λmin
{
X̃
}
∥σ∥22

≤ −γV
1
2
1 ≤ 0 (56)

The STSMO is stabilized from Eq. (56). From
Eq. (42)∼Eq. (44), the expression for F̂ is expressed
as:

F̂ = G

∫ t

0

[
−λ2x+ r1 |s1|

1
2 sgn (s1)

+
∫ t
0
r2sgn (s1) dt

]
dt (57)

Substituting Eq. (57) into Eq. (22), i∗q is expressed as:

i∗q =
1

λ1

 (1 + a2l2e
l2−1
2

)−1

·
(
e2 + a1l1e2e

l1−1
1

)
+ω̇∗

e − λ2ωe + η1sgn(s) + η2s− F̂

 (58)

The saturation functionH(s) is designed as [24]:

H(s) =
s

|s|+ ε
(59)

where ε > 0. Figure 1 shows the control flowchart of NN-
FTSMC based on STSMO. Figure 2 shows the structure of
STSMO.

FIGURE 2. The structure of STSMO.

4. ANALYSIS OF SIMULATION
Comparing the NNFTSMC algorithm based on STSMOwith PI
and SMC+SMO in the MATLAB/Simulink platform, Table 1
shows the parameters of PMSM, and Table 2 shows the control
parameters of PI/SMC+SMO/NNFTSMC+STSMO. Figure 3

TABLE 1. The parameters of PMSM.

Parameters Units Values
Dc voltage/udc V 600

Stator resistance/Rs Ω 2.75
Rated speed/nN r/min 1900
Pole number/np pairs 2

q-axis inductance/Lq H 0.009
d-axis inductance/Ld H 0.004

Inertia/J kg·m2 0.029
Coefficient of viscous friction/B N·m·s/rad 0.001

Magnetic flux/ψf Wb 0.12

TABLE 2. The control parameters of PI/SMC+SMO/NNFTSMC
+STSMO.

PI SMC+SMO NFTSMC+STSMO
Kp = 100 C1 = 105 a1 = 0.006
KI = 1000 k1 = 0.52 a2 = 0.03

/ k2 = 0.0051 l1 = 7/5
/ k3 = 1050 l2 = 5/3
/ λ1 = 20 η1 = 0.1
/ / η2 = 0.01
/ / r1 = 5000
/ / r2 = 0.5
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FIGURE 3. The general block diagram of the control of the PMSM drive system.

shows the general block diagram of the control of the PMSM
drive system.
Remark 1: The values of λ1 and λ2 in the algorithm of

this paper are rounded by λ1 = 3n2pψext/2J and λ2 =
−B/J . In the SMC+SMO algorithm, the sliding mode sur-
face is s = c1e1 + e2; the exponential convergence law is
ṡ = −k1sgn(s) − k2s; and the SMO is designed to estimate
the total system perturbation in real time and to feedback the
SMC. The experimental working condition of the setup PMSM
is shown in Table 3.

TABLE 3. The experimental condition of PI/SMC+SMO/NNFTSMC
+STSMO.

time/s magnitude of change Scope of change
1.0 Rs/Ω 2 → 2.6
1.5 ψf /Wb 0.12 → 0.09
2.0 n∗/r/min 1000 → 2000
2.5 Ld/H 0.004 → 0.0031
3.0 Lq/H 0.009 → 0.0061
3.5 B/N·m·s/rad 0.001 → 0.0041
4.0 J /kg·m2 0.029 → 0.041
4.5 TL/N·m 15 → 20

Figure 4 shows the simulation comparison of
PI/SMC+SMO/NNFTSMC+STSMO. Figure 4(a) shows
the comparison of speed for PI/NNFTSMC+STSMO.
Figure 4(b) shows the comparison of speed for
SMC+SMO/NNFTSMC+STSMO. From Figure 4(a) and
Figure 4(b), in the speed regulation condition 0 r/min–
1000 r/min–2000 r/min, there is a large overshoot of the PI,
which takes some time to recover. The SMC+SMO does
not have a large overshoot compared with PI, but it has a
longer time to converge to a given speed compared with
NNFTSMC+STSMO. Overall, the average convergence
time of rotational speed of PI is 0.35 s, while the average
convergence time of rotational speed of SMC+SMO is 0.2 s
due to its nonlinear characteristics, which makes the control
better than PI; NNFTSMC+STSMO adopts a new NFTSM

surface, which solves the problem of slow convergence of
the traditional ISM surface in SMC+SMO, and the average
convergence time of the rotational speed is 0.15 s, with the
optimal overall control effect.
Figure 4(c) shows the comparison of torque for

PI/NNFTSMC+STSMO, 4(d) shows the comparison
of torque for SMC+SMO/NNFTSMC+STSMO. From
Figure 4(c) and Figure 4(d) when the internal electro-
magnetic parameters (Rs, Ld, Lq, ψf ) and mechanical
parameters (J , B) of the PMSM are subject to nonlinear
time-varying regression, the overall PMSM system con-
trolled by PI/SMC+SMO/NNFTSMC+STSMO is affected
to some extent but the torque of the PMSM driven by
NNFTSMC+STSMO is the most stable, and the torque
pulsation is the smallest. With the PMSM controlled by PI and
SMC+SMO in the nonlinear change of J and B, the output
torque pulsation of the PMSM drive system becomes larger,
which generates pulsating harmonics to a certain extent, and
it is not conducive to the stable operation of the PMSM drive
system. With the PMSM controlled by PI and SMC+SMO in
the nonlinear change of Rs, Ld, Lq , and ψf , the output torque
of PMSM drive system has a large overshoot at the moment
of change, and the transient steady state control accuracy of
NNFTSMC+STSMO is optimal.
Figure 4(e) shows the comparison of d-axis current for PI

/NNFTSMC+STSMO, and Figure 4(f) shows the comparison
of d-axis current for SMC+SMO/NNFTSMC+STSMO.
Figure 4(g) shows the comparison of q-axis current for
PI/NNFTSMC+STSMO, and Figure 4(h) shows the compari-
son of q-axis current for SMC+SMO/NNFTSMC+STSMO.
From Figure 4(e)∼Figure 4(h), the d-q axis currents con-

trolled by PI and SMC+SMO have some overshoot in the sys-
tem transient state and large pulsations in the system steady
state. In contrast, the d-q axis currents pulsation response of
the NNFTSMC+STSMO is fast enough to reach the reference
value quickly, and the steady state pulsation is small. This is
mainly attributed to the fact that the STSMO in NNFTSMC+
STSMO can accurately estimate the total system disturbance
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 4. Simulation comparison of PI/SMC+SMO/NNFTSMC+STSMO. (a) Comparison of speed for PI/NNFTSMC+STSMO. (b) Com-
parison of speed for SMC+SMO/NNFTSMC+STSMO. (c) Comparison of torque for PI/NNFTSMC+STSMO. (d) Comparison of torque
for SMC+SMO/NNFTSMC+STSMO. (e) Comparison of d-axis current for PI/NNFTSMC+STSMO. (f) Comparison of d-axis current for
SMC+SMO/NNFTSMC+STSMO. (g) Comparison of q-axis current for PI/NNFTSMC+STSMO. (h) Comparison of q-axis current for
SMC+SMO/NNFTSMC+STSMO.

F and feed back to NNFTSMC. Figure 5 shows the simula-
tion comparison of the SMO/STSMO. From Figure 5(a), SMO
has poor performance in tracking the rotational speed of sys-
tem, and the rotational speed tracking error does not converge
to 0; while STSMO can track the rotational speed of system
quickly, and the rotational speed tracking error converges to 0
stably. From Figure 5(b), both SMO and STSMO can effec-
tively estimate the F of the system, but when the electromag-
netic and mechanical parameters of the PMSM are changed,

there is some jitter in the total disturbance of the system ob-
served by SMO, and the overall observational performance is
poor, which is mainly due to the large gain of the k3 in SMO.
If k3 is used with small gain, SMO cannot accurately track the
rotational speed of system, and it cannot accurately observe the
F . The STSMO can effectively solve this problem by accu-
rately tracking the speed of system while better observing the
F of the system.
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(a) (b)

FIGURE 5. Simulation comparison of SMO/STSMO. (a) The tracking error of rotational speed. (b) The unknown part of the total perturbation F .

(a)

(c)

(e) (f)

(b)

(d)

FIGURE 6. The THD analysis for PI/SMC+SMO/NNFTSMC+STSMO. (a) A-phase current of PI. (b) The THD value of PI. (c) A-phase current of
SMC+SMO. (d) The THD value of SMC+SMO. (e) A-phase current of NNFTSMC+STSMO. (f) The THD value of NNFTSMC+STSMO.

Figure 6 shows the Total Harmonic Distortion (THD)
analysis for PI/SMC+SMO/NNFTSMC+STSMO under
1.5 s–2.0 s steady state operation conditions. From Fig-
ure 6(a)∼Figure 6(f), the total waveform of ia for PI has
more harmonic components with THD value of 13.23%. The

SMC+SMO uses the SMO to observe the F of the system
and feeds back to the SMC, which effectively reduces the
harmonic components in the total waveform of ia, and the
value of THD is reduced to 8.70%. Compared with PI and
SMC+SMO, NNFTSMC+STSMO has lower total waveform
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FIGURE 7. The experimental platform of RT-LAB.

(a) (b)

(c)

FIGURE 8. The RT-LAB experimental comparison of PI/SMC+SMO/NNFTSMC+STSMO. (a) PI. (b) SMC+SMO. (c) NNFTSMC+STSMO.

THD value of 6.05%, which is is mainly attributed to the fact
that NNFTSMC is paired with the more accurate observer,
which further reduces the harmonic content, effectively sup-

presses the current pulsation, and improves the quality of the
currents in the PMSM drive system.
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TABLE 4. The performance comparison of PI/SMC+SMO/NNFTSMC+STSMO.

Performance indicators PI SMC+SMO NNFTSMC+STSMO
torque pulsation 14.11% 10.16% 7.56%

ia THD 13.23% 8.70% 6.05%
static differential of speed 0.1/0.2 0.05/0.1 0.02/0.03
Response time of speed 0.35/0.35 0.2/0.2 0.14/0.16

5. ANALYSIS OF RT-LAB SEMI-PHYSICAL EXPERI-
MENTS
Figure 7 shows the semi-physical experimental platform of RT-
LAB [25]. In Figure 7, the PMSM drive system is simulated by
RT-LAB [26]. Figure 8 shows the RT-LAB experimental com-
parison of PI/SMC+SMO/NNFTSMC+STSMO, and the sim-
ulation parameters are consistent with the experimental ones.
From Figure 7, RT-LAB (OP5600) uses a real DSP controller

of model TMS320F2812 for simulate the rest of the compo-
nents of the PMSM system, such as the PMSM and the in-
verter. The HILP system used in this paper adopts the struc-
ture of real controller + virtual controlled object to model
the controlled object of the system, and the real-time simula-
tor runs the solved model to interact with the real controller.
Through the HILP semi-physical simulation platform experi-
ment, experimental results consistent with the actual motor can
be obtained. The implementation of the control algorithm is
mainly to modify the algorithm in the Simulink environment,
and then download it into the RT-Lab controller to ensure that
the platform parameters and indicators are normal and start run-
ning. Comparing the simulation results in Figure 4 with the ex-
perimental results in Figure 8, it can be seen that the overall
performance of the drive system controlled by PI is limited.
Compared with the PI, the performance of the drive system
with SMC+SMO is increased, but the speed convergence is
slower, and the transient overshoot is still present in the out-
put torque and d-q axis currents. The PMSM drive system of
NNFTSMC+STSMO can effectively improve the shortcom-
ings of PI and SMC+SMO to achieve the requirement of high
precision control. Table 4 shows the performance comparison
of PI/SMC+SMO/NNFTSMC+STSMO.

6. CONCLUSION
Aiming at the problem that the speedloop PI and SMC+SMO
controllers cannot realize the fast convergence of the system
when the PMSM undergoes parameters ingress, this paper de-
signs an algorithm ofNNFTSMCbase on STESMO for PMSM.
This method proposes a new NFTSM surface to design the
PMSM speedloop controller. Then, it proposes a super-twisting
control law to design STESMO to observe the total system per-
turbation in real time and performs perturbation compensation
to NNFTSMC. By comparing the simulation and RT-Lab semi-
physical experiments, it is verified that the proposed algorithm
can effectively suppress the system jitter and weaken the steady
state pulsation while preventing the transient overshoot during
the parameters ingress and load mutation of PMSM.
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