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ABSTRACT: Aiming at the current distributed array subarray optimization design and DOA estimation problem, a robust and effective
distributed array subarray optimization method is proposed, and a discrete quantum electromagnetic field optimization algorithm is
designed to quickly solve the resulting objective function to obtain the optimal subarray structure. Then, based on this array structure,
the infinite-norm exponential kernel maximum likelihood method is utilized for direction of arrival (DOA) estimation. The simulation
results show that the proposed method can still be effective in the case of impulsive noise, small snapshots, and low signal-to-noise ratio,
which further verifies that the proposed method can obtain a better subarray layout and superior DOA estimates.

1. INTRODUCTION

Distributed array is an innovative array configuration that
can be considered as multiple uniform sub-arrays spatially

dispersed [1]. Its flexible array layout and unique sub-array
structure endow it with greater reconfigurability, enhanced mo-
bility, and improved resilience against attacks. Distributed co-
operative detection is a crucial method for enhancing spatial
resolution capabilities and facilitating precise target localiza-
tion, where direction of arrival (DOA) estimation plays a piv-
otal role [2–6]. Consequently, exploring the optimal arrange-
ment of distributed sub-arrays and conducting DOA estimation
research based on distributed arrays represent significant re-
search topics in the field of array signal processing.
Currently, distributed arrays predominantly employ greedy

algorithms, threshold-based algorithms, and convex optimiza-
tion sparse recovery methods for estimating the DOAs of
incoming signals [7]. Representative greedy sparse recovery
algorithms include the orthogonal matching pursuit (OMP)
method [8] and compressive sampling matching pursuit
(CoSaMP) method [9]. The core idea of these algorithms is
to iteratively select the DOA corresponding to the target echo
that best matches the residual received signal. The advantages
of these algorithms lie in their low computational complexity
and broad applicability. However, their drawback is that each
DOA estimation relies on the accuracy of the previous esti-
mations, making them susceptible to noise. Threshold-based
sparse recovery algorithms are represented by the iterative
hard thresholding (IHT) algorithm [10] and hard thresholding
pursuit algorithm [11]. Their core concept involves designing a
threshold to determine the descent direction of the cost function
for the ℓ-norm minimization sparse optimization problem.
Compared to greedy methods, threshold-based methods better
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represent the iterative direction of sparse characteristics, but
solving the ℓ-norm minimization problem is inherently a non-
convex optimization problem, making it challenging to ensure
iterative convergence speed and global optimality. Convex
optimization sparse recovery algorithms are exemplified by the
basis pursuit (BP) algorithm [12], iterative soft thresholding
(IST) algorithm [13], and fast iterative shrinkage-thresholding
algorithm (FISTA) [14]. The central idea here is to relax
the non-convex ℓ-norm optimization problem into a convex
optimization problem of ℓ1-norm minimization, providing
faster convergence speeds and guarantee global optimal
performance. It has been demonstrated that these methods
can achieve precise sparse solutions when the observation
matrix meets specific conditions, such as the mutual coherence
criterion [15] and restricted isometry property (RIP) [16].
Most of the aforementioned methods operate under the

premise of uniformly distributed subarrays, without exploring
the optimal subarray arrangement structure. Consequently,
they do not fully leverage the advantages of distributed array
concepts. Furthermore, the DOA estimation methods for dis-
tributed arrays often fail to achieve superior direction-finding
performance in complex environments such as impulsive
noise, low generalized signal-to-noise ratio (GSNR), and
small snapshot scenarios, indicating significant room for
improvement.
To achieve more accurate estimation under impulsive noise,

we utilize the infinite norm exponential kernel (INEK) [17]
to suppress impulsive noise and then minimize the root mean
square error (RMSE) of the DOA estimation. The correspond-
ing distributed array layout structure represents the optimal
structure. However, this approach incurs high computational
costs. To address this drawback, we draw inspiration from
electromagnetic field optimization mechanisms [18] and quan-
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tum computing and design a discrete quantum electromagnetic
field optimization (DQEFO) algorithm. Finally, we employ the
INEK-based maximum likelihood (ML) method for DOA es-
timation [17]. Simulations comparing our method with tradi-
tional algorithms in various scenarios demonstrate the superi-
ority of our approach. The main contributions are as follows:
1. A distributed array optimization scheme based on INEK

was designed, achieving superior array layout under impulsive
noise conditions, which not only mitigates the severe perfor-
mance degradation of distributed arrays under certain extreme
conditions but also enhances the DOA estimation performance
of distributed array systems.
2. By leveraging quantum encoding and quantum evolution

mechanisms to address the limitations of electromagnetic field
optimization in discrete optimization problems, the designed
DQEFO algorithm effectively searches for the optimal subarray
layout structure, reducing the computational complexity and
ensuring the superiority of the resultant subarray layout.
The following is the rest of this work. Section 2 shows the

distributed array optimization model. Section 3 shows DOA
estimation using DQEFO-based distributed array optimization.
Section 4 conducts the simulations, and Section 5 concludes
this paper.

2. DISTRIBUTED ARRAY OPTIMIZATION MODEL
First, we arrangeN narrowband far-field auxiliary sources with
precisely known azimuths in space, with a wavelength of λ.
The azimuth angle of the n̂th source is θn̂, n̂ = 1, 2, · · · , N −
π/2 ≤ θn̂ ≤ π/2. The number of array elements in the dis-
tributed system is M , with each subarray containing G ele-
ments. The subarrays are arranged in a uniform linear array
(ULA) configuration, with an element spacing of d̂. The num-
ber of subarrays is Z,M = G×Z. The spatial arrangement of
the subarrays follows a one-dimensional layout, as depicted in
Fig. 1, with the spacing between subarrays dh being an integer
multiple of the element spacing d̂, i.e.,

dh = s̄h · d̂ (1)

where s̄h ∈ Z, h = 1, · · · , Z − 1. Therefore, the spacing vec-
tor between subarrays d = [d1, d2, · · · , dZ−1] represents the
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FIGURE 1. Schematic diagram of distributed array subarray layout op-
timization.

layout structure information of the distributed array to be opti-
mized. Given that the subarray spacing is an integer multiple
of the element spacing d̂, the optimization parameters can be
further simplified to obtain s̄ = [s̄1, s̄2, · · · , s̄Z−1].
The RMSE of source estimation in distributed arrays can be

obtained through the following process. First, given an arbi-
trary layout s̄ for the distributed array, place the array in a spa-
tial environment configured with auxiliary sources and corre-
sponding noise. The mathematical model for the lth snapshot
of the received data by the array is

B(l) = A(θ)s(l) + n(l) (2)

where B(l) = [B1(l), B2(l), . . . , BM (l)]T represents the re-
ceived signal vector; s(l) is the source signal vector; n(l) de-
notes the impulsive noise vector, which follows the SαS dis-
tribution described by scale γ and characteristic exponent α;
A(θ) = [a(θ1), a(θ2), . . . , a(θN )] is the array manifold matrix
with

a(θn̂)=

[
1, e(−j 2πb̄

λ sin(θn̂)), · · · , e

(
−j

2πb̄M−1
λ sin(θn̂)

)]T

(3)

denoting the steering vector, with the position of the first el-
ement set at the origin. The goal is to optimize the subarray
spacing s̄ such that the RMSE of the DOA estimation is mini-
mized under the given noise conditions.
Due to the presence of impulsive noise, it is necessary to pre-

process the received data to mitigate its impact. Consequently,
we employ the INEK technique, which has proven to be very
robust against impulsive noise [17]. The (̄i, j̄)th of INEK ma-
trix is given by

R̂ij =
1

L

L∑
l=1

zi(l)z
∗
j (l) exp

(
−η|zi(l)− µz∗j (l)|

)
(4)

z(l) =
B(l)

max{|B1(l)|, |B2(l)|, · · · , |BM (l)|}
(5)

where L denotes the number of snapshots, η a kernel constant
within [0, 1], and µ a constant within [0, 2].
Further, perform eigenvalue decomposition on R̂, given by

R̂ = USΣ̂SUH
S + UN Σ̂NUH

N (6)

where US and UN are the signal and noise subspaces spanned
by the eigenvectors corresponding to the N large eigenvalues
and remaining small eigenvalues; Σ̂S and Σ̂N are the diagonal
matrices formed by the correspondingN large eigenvalues and
remaining small eigenvalues. Next, we construct the following
spectral function

P (θ) =
1

aH(θ)ÛNUH
Na(θ)

(7)

Subsequently, using the spectral peak search method, we iden-
tify the N maxima of (7), which correspond to the estimated
DOAs θ̂ = [θ̂1, θ̂2, · · · , θ̂N ] for the distributed array. Finally,
the RMSE of the DOA estimates is computed to evaluate the
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direction-finding performance of the distributed array under
this layout serving as the objective function to be optimized in
our proposed method, i.e.,

F (s̄) =

√√√√√ N∑
i=1

(
θi − θ̂i

)2

N
(8)

A smaller RMSE indicates better array performance. s̄ denotes
a potential solution for the distributed array’s subarray layout.
Upon defining the objective function for optimization, we

propose a DQEFO algorithm in the next section to search for the
optimal sub-array arrangement. This approach not only reduces
the computational complexity of the optimization problem but
also ensures the superiority of the resulting sub-array layout.

3. DOA ESTIMATION USING DQEFO-BASED DIS-
TRIBUTED ARRAY OPTIMIZATION

3.1. DQEFO Algorithm
In the discrete quantum electromagnetic field optimization al-
gorithm, we first assume the presence of K quantum electro-
magnetic particles in the electromagnetic field, each with a cor-
responding quantum position. The quantum position of the kth
quantum electromagnetic particle at the tth iteration is denoted
as

ytk = [ytk,1, y
t
k,2, · · · , ytk,Q] (9)

where 0 ≤ ytk,q ≤ 1. By measuring, we obtain the measure-
ment position

xtk = [xt
k,1, x

t
k,2, · · · , xt

k,Q] (10)

where xt
k,q ∈ {0, 1}, q = 1, 2, · · · , Q, with Q being the maxi-

mum dimension of the solution space.
Calculating the fitness function value and the local optimal

position of the kth quantum electromagnetic particle until the
tth iteration is denoted as

ptk = [ptk,1, p
t
k,2, · · · , ptk,Q,] (11)

The global optimal position of the entire electromagnetic
field until the tth iteration is denoted as

gtk = [gtk,1, g
t
k,2, · · · , gtk,Q,] (12)

Based on the characteristics of the actual electromagnetic
field and referencing the fitness values of the particles, the
quantum electromagnetic particles in the field are divided into
three polarities: positive, neutral, and negative, with propor-
tions of β̂, ϑ̂, and ζ̂, respectively. All electromagnetic particles
update their positions using the following two quantum update
strategies.
Strategy 1: Generate a random number δk,q uniformly dis-

tributed between [0, 1]. If δk,q < ρ, ρ is the selection proba-
bility, then the qth quantum rotation angle of the kth quantum
electromagnetic particle at the tth iteration is defined as

vt+1
k,q = r1(x

t
β,q − xt

k,q) + r2(p
t
σ,q − xt

k,q) (13)

If δk,q ≥ ρ, the corresponding quantum rotation angle is de-
fined as

vt+1
k,q = r3(g

t
q−xt

k,q)+φr4(x
t
β,q−xt

k,q)−r5(x
t
ζ,q−xt

ϑ,q) (14)

where r1, r2, r3, r4, and r5 are random numbers uniformly dis-
tributed between [0, 1], φ is a scaling factor; xt

β,q is the qth
dimension of the βth positively polarized particle in the tth it-
eration; xt

ζ,q is the qth dimension of the ζth negatively polar-

ized particle in the tth iteration; xt
ϑ,q is the qth dimension of

the ϑth neutrally polarized particle in the tth iteration; ptσ,q is
the qth dimension of the σth local optimal position in the tth
iteration; and gtq is the qth dimension of the global optimal po-

sition in thetth iteration and vt+1
k = [vt+1

k,1 , vt+1
k,2 , · · · , vt+1

k,Q ],
q = 1, 2, · · · , Q.
Then update the quantum position of the electromagnetic

particle as

yt+1
k,q =

√
1− (ytk,q)

2 vt+1
k,q = 0, ηt+1

k,q < c1∣∣∣ytk,q × cos vt+1
k,q

−
√
1− (ytk,q)

2 × sin vt+1
k,q

∣∣∣ vt+1
k,q ̸= 0

(15)

where ηt+1
k,q is a random number uniformly distributed between

[0, 1], and c1 is the probability of flipping the qubit when the
quantum rotation angle is 0, which is a constant within the range
of [0, 1/Q]. Then, the position xt

k,q is obtained by measuring
the quantum position, with the measurement equation given by

xt+1
k,q =

{
1, jt+1

k,q > (yt+1
k,q )2

0, jt+1
k,q ≤ (yt+1

k,q )2
(16)

where jt+1
k,q is a uniformly distributed random number between

[0, 1], q = 1, 2, · · · , Q.
Strategy 2: Updating the quantum rotation angle again, the

update formula for the qth dimension of the quantum rotation
angle of the kth quantum electromagnetic particle is given by

vt+1
k,q = u1(b

t
q − xt

k,q) + u2(g
t
q − xt

k,q) (17)

where u1 and u2 are random numbers following a standard

Gaussian distribution; btq = (1/K)
K∑

k=1

ptk,q represents the qth

dimension of the mean value of K local optimal positions;
bt+1
k = [bt+1

k,1 , b
t+1
k,2 , · · · , b

t+1
k,Q], q = 1, 2, · · · , Q. Then update

the quantum position of the electromagnetic particle as

yt+1
k,q =

√
1− (ytk,q)

2 vt+1
k,q = 0, η̃t+1

k,q < c1∣∣∣ytk,q × cos vt+1
k,q

−
√
1− (ytk,q)

2 × sin vt+1
k,q

∣∣∣ vt+1
k,q ̸= 0

(18)
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where η̃t+1
k,q is a random number uniformly distributed between

[0, 1], and the corresponding measurement equation is given by

xt+1
k,q =


1, j̃t+1

k,q > (yt+1
k,q )2

0, j̃t+1
k,q ≤ (yt+1

k,q )2
(19)

where j̃t+1
k,q is a uniformly distributed random number between

[0, 1], q = 1, 2, · · · , Q.

3.2. DQEFO-Based Distributed Array Optimization and DOA Es-
timation
In DQEFO, the quantum positions of the population are uni-
formly initialized in the range of [0, 1], and the fitness function
is defined as

F̄ (xtk) =

√√√√ N∑
i=1

(θi − θ̂i)2

N
(20)

Note that the optimization parameter is an integer vector
s̄ = [s̄1, s̄2, · · · , s̄Z−1], while the potential solution, repre-
sented by the measurement position of the quantum electro-
magnetic particles in the DQEFO algorithm, is composed of
Q-bit binary numbers. Therefore, a data conversion is neces-
sary to achieve a one-to-one correspondence between the mea-
surement position potential solution xtk and s̄tk. The conver-
sion method is as follows: for the measurement position xtk =
[xt

k,1, x
t
k,2, · · · , xt

k,Q], eachQ/(Z−1) position is transformed
into a decimal integer group, resulting in theZ−1 subarray lay-
out structure potential solution s̄tk = [s̄tk,1, s̄

t
k,2, · · · , s̄tk,Z−1].

Once the optimal subarray layout is obtained, we perform
DOA estimation using INEK-based ML method [17] to obtain
the optimal angular estimate for this array structure, given by

θ̂ = argmax
θ

tr
(
PA(θ)R̂

)
(21)

The steps of the proposed method are as follows:

4. SIMULATION RESULTS
The RMSE is used for performance evaluation, defined as

RMSE =

√√√√√ N∑
i=1

Er∑
o=1

(
θi − θ̂io

)2

NEr
(22)

where θ̂io denotes the ith estimated DOA in the oth trial, and
Er is the number of simulation trials.
In addition, in the presence of impulsive noise, the general-

ized signal-to-noise ratio (GSNR) is used instead of the SNR,

GSNR = 10 lg

{
E[∥s(t)∥2]

γα

}
(23)

where E[·] and ∥·∥ stand for the expectation and the Euclidean
norm.

Algorithm 1 DOA estimation using DQEFO-based distributed
array optimization
1 Input: Distributed array system parameters and parameters
for DOA Estimation;
2 Initialize: Parameters of DQEFO algorithm;
3 Let t = 1 //the first iteration;
4 Initialize the quantum electromagnetic particles, including
their respective quantum positions and measured positions, and
obtain a set of local optimal measured positions;
5 Transform the measured position of the electromagnetic par-
ticle into the subarray spacing vector, then evaluate the fitness
function, and obtain the global optimal measurement position;
6 while t ≤ tmax //tmax represents the maximum number of it-
erations
7 Update quantum positions using two strategies;
8Calculate the fitness value of the updated electromagnetic par-
ticle;
9 Update the set of local optimal measurement positions;
10Update the global optimal measurement position in a greedy
manner;
11 Let t = t+ 1;
12 end while
13 Transform the global optimal solution into the required sub-
array structure;
14 Output: Optimal subarray spacing vector;
15 Conduct DOA estimation using INEK-based ML method;
16 Output: DOA estimates.

In the simulations, M = 100, G = 10, Z = 10, d̂ = λ/2.
For the DQEFO algorithm K = 40, Q = 72, T = 300, β̂ =
0.1, ϑ̂ = 0.5, ζ̂ = 0.4, ρ = 0.2, and φ = (

√
5 + 1)/2 [17].

The number of auxiliary sources isN = 4, with incident angles
θ1 = 55.74

◦ , θ2 = 15.64
◦ , θ3 = 5.76

◦ , and θ4 = −30.5
◦ . The

characteristic exponent is α = 1.5. The generalized signal-
GSNR = 3 dB. The step size of spectral peak search is 0.1◦,
L = 20, η=0.5, µ=0.35 [17].
Under the aforementioned parameter settings, the optimal

sub-array layout structure of the distributed system is obtained
by selecting the best value through multiple tests. The inter-
sub-array spacing is determined as follows

D = [169d̂, 108d̂, 4d̂, 70d̂, 92d̂, 56d̂, 94d̂, 54d̂, 112d̂] (24)

To further validate the superiority of the proposed array
structure, we tested the DOA estimation performance un-
der various adverse conditions, such as limited snapshots,
impulsive noise, and low GSNR scenarios. Employed with
the obtained optimal array structure, our method using
INEK-based ML method for DOA estimation (denoted as
DQEFO-INEKML), which is compared to the classical
MUSIC method with a spectral peak search step size of 0.1◦
(denoted as DQEFO-MUSIC). Additionally, we compare the
proposed method with conventional equally spaced uniform
arrays using MUSIC method, including distributed arrays
with sub-array spacings of 10d̂, 20d̂, and 50d̂ (denoted as
10-fold spacing-MUSIC, 20-fold spacing-MUSIC, and 50-fold
spacing-MUSIC, respectively), and a uniform linear array
(denoted as ULA-MUSIC). For all scenarios, Er = 500.
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FIGURE 2. RMSE curves with the variation of snapshot number under
different array structures.

FIGURE 3. Success probability curves with the variation of snapshot
number under different array structures.

FIGURE 4. RMSE curves with the variation of GSNR under different
array structures.

FIGURE 5. Success probability curves with the variation of GSNR un-
der different array structures.

Scenario 1: Consider three independent sources with inci-
dent directions of θ1 = 55.74

◦ , θ2 = 15.64
◦ , and θ3 = −30.5

◦ .
Fig. 2 and Fig. 3 show the impact of the number of snapshots
on the RMSE and success probability of different array struc-
tures under impulsive noise with GSNR = 10 dB and α = 1.5.
The estimation is deemed successful if the error between the
estimated value and actual value is less than 2.5◦.
From the figures, it is evident that under a low number of

snapshots, the proposed method based on the optimized dis-
tributed array demonstrates superior direction-finding accuracy
and robustness compared to other array structures. This indi-
cates a clear advantage in DOA estimation and shows that the
proposed layout structure is capable of adapting to applications
with a low number of snapshots, overcoming the limitations of
existing layout structures.
Figures 4 and 5 illustrate the impact of GSNR on the RMSE

and success probability of different array structures under im-
pulsive noise, with a snapshot number of 20. From the figures,
it is evident that under conditions of low snapshots and low
GSNR, the proposed array structure significantly outperforms

other structures in DOA estimation performance. The proposed
DQEFO-INEKMLmethod shows a substantial improvement in
DOAestimation performance as theGSNR conditions improve,
demonstrating a clear and significant advantage.
Scenario 2: To validate the direction-finding performance

of the proposed array structure under different numbers of
sources, we first consider four independent sources with inci-
dent angles of θ1 = 55.74

◦ , θ2 = 15.64
◦ , θ3 = 5.76

◦ , and
θ4 = −30.5

◦ . Fig. 6 presents the impact of snapshot numbers
on RMSE for different array structures under impulsive noise
with GSNR = 10 dB and α = 1.2. The results demonstrate
that under conditions of impulsive noise and low snapshots, the
proposed array structure and direction-finding method exhibit
significant superiority. The RMSE of the proposed distributed
array optimization-based direction-finding method is substan-
tially lower than that of other methods.
Figure 7 shows the impact of snapshot numbers on success

probability. It can be observed that, under low snapshot condi-
tions, the direction-finding method based on the proposed array
structure achieves a higher estimation success probability than
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FIGURE 6. RMSE curves with the variation of snapshot number under
different array structures.

FIGURE 7. Success probability curves with the variation of snapshot
number under different array structures.

FIGURE 8. RMSE curves with the variation of GSNR under different
array structures.

FIGURE 9. Success probability curves with the variation of GSNR un-
der different array structures.

other structures. The proposed distributed array optimization-
based direction-finding method exhibits superior robustness
and performance. The simulation results indicate that the pro-
posed layout structure can adapt to low snapshot application
conditions, overcoming the limitations of existing array layout
structures.
Figures 8 and 9 illustrate the impacts of GSNR on RMSE and

success probability, with a snapshot number of 20. The results
show that the proposed DOA estimation method based on dis-
tributed array optimization exhibits superior angular accuracy
and a higher angle estimation success probability compared to
other array structures. As the GSNR increases, the performance
of the proposed method improves significantly, demonstrating
notable advantages in DOA estimation.

5. CONCLUSIONS
This paper introduces a novel DQEFO algorithm, designed to
effectively solve discrete optimization problems. Addressing

the issue of suboptimal accuracy and severe performance degra-
dation under adverse conditions in existing distributed array
methods, which often utilize uniform array configurations, we
construct an objective function based on the RMSE of the es-
timated DOA of sources. The DQEFO algorithm is then em-
ployed to solve this objective function, resulting in the op-
timal sub-array configuration. Utilizing this optimized array
structure, we apply the INEK-ML method for DOA estima-
tion. Comparative simulations across different array structures
demonstrate that the proposed method effectively achieves ac-
curate DOA estimates even in the presence of impulsive noise,
low snapshots, and lowGSNR. However, the designed DQEFO
algorithm employs serial evolution during execution. Without
a high-speed parallel executor, the runtime will increase with
the population size. Additionally, it may encounter issues with
slow convergence speed and poor convergence accuracy when
handling large-scale integer optimization problems, to be ex-
plored in our future research focus.
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