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ABSTRACT: Brain tumors are characterized by the fast growth of aberrant brain cells, which poses a considerable risk to an adult’s
health since it can result in severe organ malfunction or even death. Magnetic resonance imaging (MRI) provides vital information for
comprehending the nature of brain tumors, directing treatment approaches, and enhancing diagnostic precision. It displays the diversity
and heterogeneity of brain tumors in terms of size, texture, and location. However, manually identifying brain tumors is a difficult and
time-consuming process that could result in errors. It is proposed that an enhanced You Only Look Once version 8 (YOLOv8) model
aids in mitigating the drawbacks associated with manual tumor detection, with the objective of enhancing the accuracy of brain tumor
detection. The model employs the C2f_DySnakeConv module to improve the perception and discrimination of tumors. Additionally,
it integrates Content-Aware ReAssembly of FEatures (CARAFE) to efficiently expand the network’s receptive area to integrate more
global contextual information, and Efficient Multi-Scale Attention (EMA) to improve the network’s sensitivity and resolution for lesion
features. According to the experimental results, the improved model performs better for brain tumor detection than both the open-source
model and the original YOLOv8 model. It also achieves higher detection accuracy on the brain tumor image dataset than the original
YOLOv8 model in terms of precision, recall, mAP@0.5, and mAP@0.5~0.95 above, respectively, of 2.71%, 2.34%, 2.24%, and 3.73%.

1. INTRODUCTION

Brain and spinal cord make up Central Nervous System
(CNS), which controls several essential processes like

decision-making and tissue organization [1]. Because of the
complex architecture of the brain, diagnosing and treating
CNS diseases, particularly brain tumors, present substantial
obstacles. These tumors come in over 130 different varieties,
ranging from benign to malignant [2]. They can be classified
as primary tumors, meaning that they originate within or
surrounding brain cells, or secondary tumors, meaning that
they occur from cancer spreading to the brain. Accurate
tumor diagnosis is crucial but challenging due to invasiveness,
subjectivity, and flaws in traditional biopsy and histological
grading systems. For effective therapeutic methods to be
developed for the management of brain tumors, a timely and
correct diagnosis is crucial [3].
Without question, Magnetic Resonance Imaging (MRI) has

established itself as a major tool for the diagnosis of brain
tumors. As a diagnostic modality, it is thorough and nonin-
vasive, providing a complete view of cerebral anatomy with-
out the dangers of ionizing radiation. Rich tissue contrast and
high-resolution visualization are presented by this sophisticated
imaging method, which makes use of axial, coronal, and sagit-
tal multiplanar imaging capabilities [4]. However, despite the
numerous advantages ofMRI, reliance on subjective interpreta-
tion of MRI scans by radiologists poses a number of significant
challenges. The inherent intricacies of neuroimaging, coupled
with the necessity to meticulously examine numerous imag-
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ing slices and planes, make the process time-consuming and
resource-intensive [5]. In addition, the potential for discrep-
ancies in diagnostic conclusions between different observers
highlights an important limitation, as it introduces an element
of uncertainty that may affect clinical decision-making and, in
turn, patient care.
Furthermore, the present techniques [6, 7] frequently fall

short of expectations in terms of diagnostic accuracy, partic-
ularly when it comes to MRI-detected brain tumors. The com-
plex and variable morphology of some brain tumors may lead
to delayed detection or misdiagnosis. Therefore, in order to
improve the accuracy and reliability of MRI diagnosis, better
detection techniques are desperately needed.
The research in brain tumor categorization, detection, and

segmentation has seen significant advancements. Various tech-
niques have been explored to enhance classification accuracy,
including residual networks [8] with skip connections to miti-
gate overfitting and reduce model complexity. U-Net architec-
ture, featuring convolutional and deconvolutional layers [9], is
well suited for biomedical image segmentation tasks. Innova-
tions such as integrated batch normalization in convolutional
neural networks (CNNs) have been proven effective for identi-
fying gliomas and stroke lesions [10]. Multi-layer models [11]
and machine learning [12] approaches have improved MRI tu-
mor detection and classification across different modalities.
Texture extraction methods [13], adaptive independent sub-
space analysis [14], and loss function optimization [15] have
also contributed to these advancements. Additionally, systems
combining CNNs with multimodal data [16] and transfer learn-
ing techniques [17] have enhanced tumor detection precision.
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FIGURE 1. MRI images. First column shows a sample of the partial dataset and Second column shows the results of the target detection, where the
boxes highlight the different tumor types, yellow for tumor core, blue for total tumor, and purple for enhanced tumor core.

Adaptive neuro-fuzzy systems [18] and genetic algorithms [19]
have further expanded the range of tools available for brain tu-
mor classification and grading.
A new era in medical image analysis has been ushered in by

the development of deep learningmodels in recent years, partic-
ularly in the area of object detection. The You Only Look Once
(YOLO) series, with YOLOv8 being the most developed, has
a lot of promise in these developments for improved real-time
object detection accuracy. YOLOv8 is a single-stage detection
algorithm that lowers latency while maintaining very competi-
tive detection performance in order to concurrently localize and
recognize objects. When being applied to the difficult task of
brain tumor object detection, it needs to be fine-tuned and de-
veloped in order to reach itsmaximumpotential in the particular
complexity of neuroimaging.
Thus, the purpose of this study is to enhance and modify the

YOLOv8 framework in order to overcome the limitations of
the existing brain tumor detection techniques. Our objective
is to precisely enhance YOLOv8’s brain tumor detection accu-
racy bymaking deliberate architectural modifications. Through
thorough assessment and verification of these enhancements,
our goal is to construct a more resilient and precise diagnostic
framework that diminishes the ambiguity linked to manual in-
terpretation, streamlines clinical judgment, and ultimately leads
to better patient treatment and results in the demanding domain
of brain tumor treatment.

2. MATERIALS AND METHODS

2.1. Datasets and Preprocessing
This work uses a publicly available dataset from uni-
verse.roboflow.com [20] to guarantee the validity and efficacy
of model training. There are 9,900 sample images in the
dataset, and every image has at least one tumor annotation.
They are T1-weighted images whose size is 139 × 132.

With 6,072 samples for tumor core, 9,651 samples for total
tumor, and 5,802 samples for enhanced tumor core, the dataset
specifically covers a range of tumor labels, offering a large
number of samples for model testing and training. We split the
dataset into a training set, a test set, and a validation set in a
7 : 2 : 1 ratio in order to make the most use of the data and
guarantee the scientific quality of model training. The model
was trained using the training set, which comprised 6,930
images. The validation set, which consists of 990 images, was
used to tune hyperparameters and provide an initial assessment
of the model. Finally, the model’s detection accuracy and
generalization capacity were evaluated using the 1,980 image
test set.
Figure 1 shows the before and after comparisons of prepro-

cessed brain tumorMRI dataset images after target detection. It
has been color-mapped to improve the visual effect and identify
various tissues or features. The grayscale values of the original
MRI image were mapped into different colors, which converted
the grayscale MRI images into RGB pseudo-color images. It is
essentially a visual depiction of the original grayscale MRI pic-
ture after processing, where important characteristics are made
more noticeable and easily identifiable by applying different
colors to distinct ranges of grayscale values.
To reduce the risk of overfitting and improve the model’s

capacity for generalization, we used a static cropping picture
preprocessing technique in this work. In order to focus on
the crucial information that contains the tumor and significant
surrounding anatomical structures, we systematically retained
24% to 82% of the horizontal width and 22% to 77% of the
vertical height of the central region of each image during the
preprocessing process using a four-week crop. By removing
unnecessary information from the image’s edge, it helps to con-
centrate the model’s training on the key diagnostic features.
This indirectly aids the model’s ability to fully comprehend and
learn about the tumor region and how it interacts with the sur-
rounding tissues. By doing this, it guarantees that the model
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Note: Conv is a convolution operation, Concat is the feature connection module, Upsample  is  upsampling  module,  Detect  is  the  detection  head,  SPPF  is  the spatial  pyramid  pooling  module,  Max  pool2d  is  

the  maximum  pooling,  Bbox.Loss is bounding box loss, Cls.Loss is classification loss. C2f_DySnakeConv  is  C2f with dynamic snake convolution  module,  Conv  is  a convolution operation, EMA is Efficient 

Multi-Scale Attention, CARAFE is upsampling network  structure,  Concat  is  the  feature  connection  module,  Detect  is  the detection head.
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FIGURE 2. Structure comparison diagram.

may focus more on examining and recognizing the minute al-
terations and anatomical characteristics that are essential for di-
agnosis when working with actual cases, enhancing the local-
ization accuracy and resilience to intricate situations in brain
tumor detection jobs.

2.2. YOLOv8 Model Structure
In the evolution of YOLO framework, YOLOv8 stands out
for striking a remarkable balance between speed and accuracy,
alongwith noticeably enhanced detection capabilities. The ease
with which it operates in practical application scenarios demon-
strates its efficacy. Please refer to Figure 2 for the model’s spe-
cific architecture arrangement. Three main components make
up the architecture of YOLOv8: Head, Neck, and Backbone.
The Backbone is based on CSPDarkNet53, which recovers fea-
tures and optimizes them with residual connections for deep
learning by using Cross Stage Partial (CSP) Networks. The
Cross Convolutional Fusion (C2f) module of the neck effi-
ciently integrates multi-scale features, and structural simplifi-
cation refines the feature hierarchy, which is akin to the Ad-
vanced Feature Pyramid Network (FPN). Lastly, by manag-
ing categorization and bounding box prediction separately, the
Head uses a decoupled design to increase detection accuracy
and processing efficiency. YOLOv8’s tripartite structure in-
creases processing efficiency and detection accuracy in a syn-
ergistic way.

2.3. Improvement Methods
With improved YOLOv8 as its core, this study suggests a new
brain tumor detection approach that aims to address the is-
sues of low detection accuracy, high misdiagnosis rate, and

difficulty in early identification in existing brain tumor detec-
tion methods. To achieve better detection performance, the
method’s primary objective is to optimize and improve three
crucial factors.
The enhanced model utilized in this study is known as

YOLOv8-DEC network, and Figure 2 depicts its architectural
layout. In this work, we offer a sophisticated YOLOv8-based
brain tumor detection model that has been improved by inte-
grating three critical technologies: Content-Aware ReAssem-
bly of FEatures (CARAFE) on the Neck structure, Efficient
Multi-Scale AttentionModule (EMA) interspersed in the Back-
bone structure, and Dynamic Snake Convolution (DSConv)
fused in the Backbone.
By combining DSConv with the C2f module of YOLOv8

to generate C2f_DySnakeConv, the model achieves a substan-
tial improvement in detection accuracy. EMA improves the
model’s capacity to identify tiny lesions at different sizes, and
CARAFE enhances feature upsampling, enhancing global con-
text knowledge, and increasing computational efficiency and
detection precision. When taken as a whole, these improve-
ments enable the model to diagnose complex brain tumor situ-
ations with increased accuracy and resilience.

2.4. C2f_DySnakeConv

The original YOLOv8 model may have difficulties in effec-
tively detecting minor changes in complicated tumor morphol-
ogy and surrounding structures, especially when the tumor is
close to vascular structures, in the context of brain tumor de-
tection. We address these issues by adding dynamic snake con-
volution (DSConv) [21] to the YOLOv8 C2f module, creating
a new module called C2f_DySnakeConv.
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FIGURE 3. DySnakeConv structure.

The DSConv can detect tiny structural changes in brain tu-
mors and the vasculature around them with great sensitivity by
adaptively focusing on local elongated and tortuous features. In
Figure 3, the intricate construction is displayed. This improves
the model’s ability to detect small lesions and complex tumor
boundaries. Standard convolution kernels in DSConv are de-
signed to freely deform along the x and y axes in order to ac-
count for the twisted morphology of tubular structures. Using
a 3 × 3 convolution kernel as an example, all of the elements’
initial positions are fixed. But in DSConv, these places are dy-
namically adjusted according to the offset of the position that
comes before it. In order to ensure that the convolution ker-
nel bends with the structure while paying attention to the object
structure, this adjustment is made by adding up previous off-
sets.
Multi-view feature fusion strategy is the cornerstone of the

C2f_DySnakeConv module. Figure 3 shows the architecture in

detail. The objective is to proficiently handle the intricate and
varied worldwide morphology of tubular formations and en-
hance the precision of segmentation by thoroughly examining
their inherent structural data. The technique discussed is clev-
erly built on DSConv, which uses a thorough grasp of tubular
structure morphology to build a large collection of morphologi-
cal kernel templates. The key feature of DSConv is its ability to
learn deformations based on input feature maps, allowing it to
adaptively zero in on slender and winding local features while
ensuring that the receptive field does not veer off-target due to
significant deformation offsets, which is especially important
when dealing with thin-walled tube structures.
Learning deformation is applied to the Image/Feature map,

producing various Offest degrees dependent on convolution. At
each layer of the Offset, features are extracted in both the X-
and Y -axis directions, and DSConv is used to adaptively fo-
cus on the tubular structure to create numerous sets of multi-
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FIGURE 4. EMA network structure.

view Templates. During training, a Random Drop technique is
applied to reduce fusion redundancy and prevent overfitting.
By doing this, the model is able to better identify the target
structure, increasing accuracy and decreasing needless compu-
tational effort.

2.5. Attention Mechanism Module
By supportingmulti-scale feature learning and attaining, amore
effective allocation of contextual attention, the Efficient Multi-
ScaleAttention (EMA) [22]mechanism, addresses these issues.
This improvement effectively addresses the previously noted
issues and boosts YOLOv8’s performance in brain tumor iden-
tification tasks by significantly increasing sensitivity to tumor
details and overall detection accuracy.
Figure 4 shows the EMAmodule’s architecture in detail. Be-

fore exploring the EMA module’s architecture and operation,
let us explain its fundamental design principle: an inventive
feature grouping technique expertly strikes a balance between
computing efficiency and the variety of feature representations.
To bemore precise, the input featuremap’s C channels are sepa-
rated into subsets of G equal or nearly equal numbers, and each
subset, that is, a feature group, contains C/G channels. More-
over, it sets up a parallel processing environment, makes full
use of the multi-core and parallel computing power of current
computing platforms, and speeds up the process of training and
inferring models. The job requirements, computing resources,
and model complexity should all be considered when determin-

ing the number of groupings G. The choice of G is closely tied
to the feature space’s subdivision and the model’s capacity for
parallel processing.
The dual-path parallel processing technique of the EMA

module is its essential component. In order to optimize the fea-
ture map from a global perspective, the 1×1 convolutional ker-
nel’s channel attention branching concentrates on two things:
first, fine-tuning the global contextual information and realign-
ing each channel’s contribution; conversely, the 3 × 3 convo-
lutional kernel is introduced with the intention of capturing the
local features, specifically the fine-grained representation of the
spatial structure. This allows the model to recognize and make
use of themultiscale properties that span across themicroscopic
to the macroscopic scale. This two-pronged approach gives the
model a thorough and in-depth comprehension of visual fea-
tures.
The fusing mechanism of the EMA module is notably its

essence. Cross-dimensionality is used to interactively fuse the
outputs of two parallel branches. This strengthens information
exchange between channels and preserves spatial position in-
formation at the pixel level, greatly enhancing the model’s the-
oretical and practical understanding and representation of com-
plex scenes. Equation (1) illustrates how the 2D global average
pooling process works.

zc =
1

H ×W

H∑
j

W∑
i

xc(i, j) (1)
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In this case, the value at location (i, j) in the input feature
map is represented by xij , whereH andW stand for the feature
map’s height and breadth, respectively. A preliminary attention
map is then obtained by nonlinearly transforming the pooled
results using the Softmax function. Then, to create a richer fea-
ture representation, features from two concurrent branches are
combined by matrix multiplication.
The EMA module can improve the breadth and depth of fea-

ture learning, particularly when working on very complicated
tasks that need to meet precise accuracy requirements, such as
brain tumor image recognition. This highlights the model’s
enormous potential and importance in the field of medical im-
age analysis, as it significantly enhances the model’s perfor-
mance while preserving high efficiency in areas like tumor de-
tection.

2.6. CARAFE

While YOLOv8 has received a lot of attention for its effective
speed and overall detection performance in brain tumor ob-
ject identification, it has several drawbacks when it comes to
small, complicated, and ambiguously bordered brain tumor ob-
jects. The main reason for this is that the convolutional neural
network’s upsampling processes may cause the loss of subtle
local characteristics, especially in the network’s neck region.
Wang et al. [23] presented an inventive architecture named
Content-Aware ReAssembly of FEatures (CARAFE) to solve
this problem. By increasing the receptive field of the model and
employing input feature maps to direct the upsampling process,
they hoped to improve the integration of contextual information
and feature utilization.
Figure 5 shows the CARAFE upsampling mechanism’s com-

plete architecture. A content-aware reconstruction module plus
a kernel prediction module make up CARAFE’s core division.
To reduce the complexity of subsequent operations, the first
input H × W × C dimensional feature map is channel re-
duced in the kernel prediction module and transformed into
a Cm × H × W format. Through efficient dimension com-
pression, computational optimization is accomplished in this
step. Subsequently, convolutional kernels of size kup × kup
are employed for the content encoding process, with the goal
of producing the reassembly kernel, which is one of the essen-
tial parts for feature reassembly. After the formula explanation,
this procedure finally produces a feature map size transforma-
tion that reflects an effective input information reorganization
technique. Equation (2) is as follows:

Cm = σ2 × k2up (2)

Among these, σ, the upsampling ratio, is usually set to 2 with
the intention of enhancing the feature representation, whileCm

indicates the number of channels in the feature layer following
dimensionality reduction. The dimension size that is utilized
to predict the upsampling kernel is represented by the variable
kup. This is followed by a spatial expansion and reconfigura-
tion of the channel data to create an upsampling kernel structure
of size σH×σW ×kup

2. The Softmax function is then applied
right after this to make sure that all weights add up to one, and
normalization is achieved.

An efficient up-sampling kernel is used to recover and extract
feature information before moving on to the content-aware re-
arrangement stage. A small area with a side length of kup is
chosen around each specified coordinate in the output feature
map, and an element-wise multiplication with the upsampling
kernel for that coordinate is then carried out. This operation’s
result is then merged back into the initial feature map, rebuild-
ing a σH × σW × C feature representation.

3. EXPERIMENT AND ANALYSIS
3.1. Experimental Environment and Parameter Configuration
The experiment was conducted on a 64-bit Ubuntu operating
system with kernel version 4.15.0-213-generic. The GPU used
was NVIDIA GeForce RTX 3090 with 24GB of memory, and
the host had 32GB of RAM. The programming language uti-
lized was Python 3.8.10, with CUDA v11.1 employed for GPU
acceleration. The training was performed based on the deep
learning framework PyTorch 1.9.1. Table 1 displays the train-
ing parameter configurations.

TABLE 1. Training parameter setting.

Parameter Value Parameter Value
epochs 300 optimizer SGD
patience 50 weight_decay 0.0005
batch 16 momentum 0.937

image_size 640 mask_ratio 4
workers 8 close_mosaic 10

final_learning_rate 0.01 patience 50

3.2. Evaluation Metrics
In this experiment, mean Average Precision (mAP), recall, and
precision are used to evaluate the model. The mean is de-
noted by ‘m’ in mean Average Precision (mAP), and the av-
erage precision for this class of samples when the confusion
matrix’s Intersection over Union (IoU) threshold is set to 0.5
is denoted by AP@0.5. The mean accuracy of every sample
class, or mAP@0.5, illustrates how the accuracy of the model
varies with recall. A greater number signifies that the model
sustains greater accuracy even at elevated recall percentages.
With a step size of 0.05, the average mAP values at various
IoU thresholds, spanning from 0.5 to 0.95, are represented by
the variable mAP@0.5~0.95.

3.3. Experimental Result

3.3.1. Comparison Experiment of Mainstream Algorithms

Focused on brain tumor detection, a thorough comparative
analysis was systematically conducted. This study’s main goal
is to thoroughly test and assess our newly proposed model’s
technical benefits and practical usefulness for the task of brain
tumor object identification. In addition to comparison ex-
periments with the original model YOLOv8. We have care-
fully chosen a number of representative models for comparison
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FIGURE 5. CARAFE upsampling network structure.

TABLE 2. Comparison experiments.

Models Precision Recall mAP@0.5 mAP@0.5~0.95
Faster R-CNN 0.712 0.621 0.623 0.305

SSD 0.735 0.712 0.674 0.348
YOLOv5n 0.768 0.655 0.690 0.360
YOLOv7 0.889 0.748 0.809 0.514

YOLOv7-tiny 0.875 0.759 0.808 0.512
YOLOv7x 0.895 0.726 0.792 0.489
YOLOv8n 0.885 0.726 0.802 0.536
YOLOv9 0.863 0.682 0.757 0.480

RCS-YOLO 0.862 0.728 0.722 0.415
BGF-YOLO 0.854 0.721 0.807 0.401
YOLOv8-DEC 0.909 0.743 0.820 0.556

in order to guarantee the evaluation’s comprehensiveness and
authority. These models include RCS-YOLO [6] and BGF-
YOLO [7], which are enhanced, and open-source versions of
our proposed models, which are specifically intended to in-
crease the accuracy of brain tumor detection. We have added a
number of well-known YOLO family variations, such as the in-
credibly effective Faster R-CNN, SSD, YOLOv5n, YOLOv7,
YOLOv7-tiny, YOLOv7x [24] and YOLOv9 [25], which have
been proven to perform exceptionally well under a variety of
performance conditions. This extensive coverage of the com-
parative framework was intended to guarantee a thorough and

representative assessment and to offer a strong basis for the per-
formance of the models to be compared scientifically.
Particularly crucially, all models’ training processes are re-

peated under the same experimental conditions to guarantee the
comparability and reliability of the evaluation results. More-
over, consistency and transparency are prioritized at every stage
of the process, from data preprocessing to model configuration
to final performance metrics. Table 2 shows the outcomes of
the experiment.
It is important to note that variations in data preparation,

training and validation protocols, and computational resources
make direct comparisons in research challenging. Every model
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TABLE 3. Ablation experiment.

EMA CARAFE C2f_DySnakeConv Precision Recall mAP@0.5 mAP@0.5~0.95
0.885 0.726 0.802 0.536

√ 0.903 0.732 0.807 0.543
√ 0.899 0.735 0.809 0.545

√ 0.895 0.736 0.808 0.548
√ √ 0.914 0.742 0.817 0.552

√ √ 0.906 0.746 0.817 0.551
√ √ 0.887 0.745 0.815 0.551
√ √ √ 0.909 0.743 0.820 0.556

utilized in the comparison studies was obtained from the open-
source website GitHub, and every experiment’s outcome was
repeated in the same way.
The revised YOLOv8-DEC model has a slightly lower recall

than YOLOv7-tiny, according to Table 2’s testing results. In
contrast, Precision, mAP@0.5, and mAP@0.5~0.95 are higher
than those of the previous models, coming in at 90.9%, 82.0%,
and 55.6%, respectively. These findings highlight the promise
of the trustworthy brain cancer diagnostic approach that has
been suggested. Comparisons between the outcomes of various
experiments should be done carefully. However, the accuracy
attained indicates the potential for enhancing the identification
of brain tumors and emphasizes the superiority of the suggested
optimized YOLOv8 model. It is clear from the study’s research
above that the YOLOv8-DEC algorithm performs better across
a range of metrics.

3.3.2. Ablation Experiment

The baseline model YOLOv8n is used as the reference to de-
termine the effectiveness of each enhancement module in the
proposed research algorithm. Evaluation metrics such as pre-
cision, recall, mAP@0.5, and mAP@0.5~0.95 are employed.
Several combinations of several enhancement modules are used
in ablation tests, and the outcomes are outlined in Table 3.
This study has used a series of carefully planned trials us-

ing ablation analysis to systematically evaluate the contribu-
tions of the EMA, CARAFE, and C2f_DySnakeConv modules
to the performance of the YOLOv8 brain tumor identification
model. To enable thorough and in-depth examination, eight it-
erative experiments were conducted, each combining various
combinations of these components into the YOLOv8 architec-
ture. The experimental sequence was carefully designed: first,
the EMA module was integrated alone to see its effect; next,
the CARAFE and C2f_DySnakeConv modules were indepen-
dently tested for efficacy; and last, all three modules were in-
tegrated for thorough optimization training while keeping the
core structure of YOLOv8.
It is clear from the analysis of the experimental results

in Table 3 that the accuracy, recall rate, mAP@0.5, and
mAP@0.5~0.95 of the model have all improved by 2.0, 0.74,
0.62, and 1.26 percentage points, respectively, as a result of
the independent application of the EMA model to improve
the Backbone of the original YOLOv8n model. Comparably,

accuracy, recall rate, mAP@0.5, and mAP@0.5~0.95 have
all increased, by 1.58, 1.24, 0.87, and 1.68 percentage points,
respectively, as a result of the CARAFE module’s exclusive
incorporation into the neck portion. Similarly, the accuracy,
recall rate, mAP@0.5, and mAP@0.5~0.95 have all increased,
by 1.13, 1.38, 0.75, and 2.24 percentage points, respectively,
when the C2f-DSConv module was included. Moreover, the
model outperforms both the individually improved models and
the original YOLOv8n model when the modules are merged
in pairs. For instance, when the EMA and CARAFE modules
are combined, the accuracy, recall rate, mAP@0.5, and
mAP@0.5~0.95 are increased relative to the original model by
2.37, 2.76, 1.87, and 2.8 percentage points, respectively. The
EMA module and C2f-DSConv module together also lead to
increases of 0.23, 2.62, 1.62, and 2.8 percentage points, in that
order. Furthermore, there are increases of 3.28, 2.2, 1.87, and
2.99 percentage points for accuracy, recall rate, mAP@0.5, and
mAP@0.5~0.95 when the CARAFE module and C2f-DSConv
module are combined. When all three modules are integrated
into the improved YOLOv8n original model, the accuracy
of the comprehensive model is 0.005 percentage points less
than when the CARAFE module and C2f-DSConv module are
combined. All things considered, though, the comprehensive
model outperforms the original YOLOv8n model, separately
improved models, and pairwise merged models in terms of
accuracy, recall rate, mAP@0.5, and mAP@0.5~0.95. The
complete model has enhanced accuracy, recall rate, mAP@0.5,
mAP@0.5~0.95, and mAP@0.5 by 2.71, 2.34, 2.24, and 3.73
percentage points, respectively, compared with the previous
model.

4. DISCUSSION
In this work, we present an improved version of the YOLOv8
model for precise target identification of various brain tumor
types. The C2f_DySnakeConv module, EMA attention mech-
anism, and CARAFE sampling module are all carefully incor-
porated into our suggested model through optimization.
The higher predictive performance of our suggested ar-

chitecture is highlighted by comparison evaluations with
current state-of-the-art models (see Table 2 for details).
The same dataset and configuration environment were used
for these comparisons, and the experimental results for
the ablation experiments that examine the function of the
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EMA attention mechanism, CARAFE sampling module, and
C2f_DySnakeConv module are displayed in Table 3 and
provide insight into the individual and combined contributions
of these improved enhancements to the efficacy of the Yolov8-
based brain tumor detection model. Understanding the role of
each component through a methodical approach to ablation
guides the improvement and efficiency optimization of this
state-of-the-art procedure for the detection of brain cancers.
Our proposed enhanced model achieves significant outper-

formance in several key performance metrics, such as preci-
sion, recall, and average precision improvement in the range of
mAP@0.5 and mAP@0.5~0.95 of 2.71%, 2.34%, 2.24%, and
3.73%, respectively, compared with the existing publicly avail-
able state-of-the-art models and the original YOLOv8. This ac-
complishment not only validates the efficacy of the suggested
enhancement, but also represents a technological advance in the
area of automated brain tumor identification.
The results of ablation experiments affirm the higher tumor

detection accuracy achieved by C2f_DySnakeConv, validating
its superior edge-awareness and detail-resolution capabilities.
As a result, the utility of C2f_DySnakeConv extends to general
and small target detection, including tumors.
In the clinical context, early and precise brain tumor diag-

nosis is essential for creating treatment regimens that work, in-
creasing patient survival, and enhancing quality of life. The
study’s findings show that the improved YOLOv8 model can
be a useful tool for clinicians, particularly in situations where
resources are scarce, or the workforce is underqualified. It can
also efficiently lighten doctors’ workloads and expedite the di-
agnostic process, which speeds up the course of treatment.
Our study still has a lot of obstacles to overcome despite the

amazing outcomes, one of which is how to better optimize the
model for uncommon or unique forms of tumor patients. Fur-
thermore, even with the increased precision of the model, the
judgment of the model still requires professional verification in
cases that are extremely complicated or ambiguous in order to
guarantee the accuracy of the diagnosis.
Deep learning architectures have a strong dependence on

training data, limiting recognition to similar input patterns.
With this in mind, different MRI modalities have their own
advantages and disadvantages for tumor detection. If an in-
tegrated multimodal deep learning framework can simultane-
ously analyze and fuse data from different MRI sequences, it is
expected to optimize detection accuracy and robustness through
synergy. However, the key obstacle is still the lack of rich mul-
tisequence MRI datasets, which hinders research progress and
model refinement.
Future directions for research include investigating cross-

modality fusion, which combines this model with data from
other medical imaging modalities (such as PET or CT) to ben-
efit from the complementary qualities of multimodal informa-
tion and provide a more thorough and precise tumor character-
ization. Our focus on 2D MRI reflects its practical superiority
in computational efficiency and accessibility, making it ideal
for resource-constrained settings. Despite 3D MRI’s higher
fidelity, 2D MRI’s pragmatic benefits underpin our YOLOv8
framework development, ensuring broad applicability. Future

work will explore integrating 3D MRI for enhanced precision,
while preserving our commitment to accessible diagnostics. By
creating an interpretation mechanism that is more visible, po-
tential biases or inaccuracies can be identified and corrected
while also helping patients and doctors to better understand the
model’s decision-making process and maintain trust.

5. CONCLUSION
In this study, a novel YOLOv8-DEC model based on YOLOv8
has been developed for accurate detection of brain tumors from
MRl. It was shown that by optimizing the YOLOV8 structure,
introducing CARAFE on the Neck structure, EMA interspersed
in the Backbone structure, and DSConv fused in the Backbone.
The contribution of each module to the model was also veri-
fied under ablation experiments. These improvements enhance
the target detection capability of the model corresponding to
the brain tumor detection task. In addition, it is also superior
to other excellent models under comparison experiments with
other models.
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