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ABSTRACT: In this paper, a novel measurement matrix construction method based on adaptive cross-approximation (ACA) is proposed
to improve the performance of the compressive sensing-based method of moments (CS-MoM) for analyzing electromagnetic scattering
problems. ACA is based on a weight scheme and is able to recognize the rows and columns that contribute significantly to the matrix.
Thus, the object is divided into multiple blocks, and the impedance matrix is partitioned into near-field and far-field groups to establish
the condition for applying ACA. Then, the row indexes are extracted from the group with the highest number of ACA recognized rows
in the far-field groups of each block. Finally, by combining all row indexes to extract the impedance matrix, a lower-dimensional and
deterministic measurement matrix is constructed, thereby improving computational efficiency. Numerical simulation results validate the
accuracy and effectiveness of the proposed method.

1. INTRODUCTION

The method of moments (MoM) [1, 2] is widely used in the
numerical calculation of electromagnetic fields and is re-

garded as an evaluation standard. However, the computational
complexity of solving matrix equation in the electrically large
problems is relatively high. To alleviate this problem, various
fast algorithms have been proposed to accelerate thematrix vec-
tor products (MVPs), such as fast multipole method (FMM) [3]
and multilevel FMM (MLFMM) [4]. Another approach is us-
ing macro basis functions to reduce the number of unknowns to
achieve matrix dimensionality reduction, and the most typical
one is the characteristic basis function method (CBFM) [5, 6].
However, the construction of reduced matrix involves numer-
ousmatrix-vector products, and its construction process is time-
consuming.
In recent years, compressive sensing (CS) [7, 8] technique

has been introduced into MoM to reduce computational com-
plexity, called CS-based MoM (CS-MoM), providing a new
scheme to solve the above problems. Depending on the differ-
ence in solving the problem, CS-MoM has formed two compu-
tational models. One is novel excitation source model [9–11],
and the other is underdetermined equation model [12, 13]. The
former achieves efficient handling of monostatic problems by
compressing the number of excitations and decreasing the num-
ber of equations to be solved. In contrast, the latter changes
the algorithmic structure of MoM by transforming the matrix
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equation into an underdetermined equation, which is suitable
for solving bistatic problems.
The CS theory states that the signals can be recovered from

significantly fewer measurements than the original data. The
above properties indicate that constructing a well-performing
measurement matrix will have a positive impact on the com-
putational results. However, in the latter computational model,
the measurement matrix is commonly constructed by left-
multiplied Gaussian matrix [14] or randomly extracting certain
rows of the impedance matrix [15], and such randomness leads
to uncertain calculation results. Therefore, Gao et al. analyzed
the irrationality of constructing the measurement matrix by
randomly extracting the impedance matrix and proposed a
novel CS-MoM (NCS-MoM) [16], which uses uniform extrac-
tion instead of random extraction. While NCS-MoM analyzes
the formation of the measurement matrix from the perspec-
tive of the impedance matrix’s structure, uniform extraction
is just a simple sampling strategy and does not guarantee
obtaining the optimal measurement matrix. Considering that
NCS-MoM uses the Rao-Wilton-Glisson (RWG) [17] basis
functions as test functions, and each test function corresponds
one-to-one with the rows of the impedance matrix. However,
whether through random extraction or uniform extraction,
neither method can recognize the test functions that contribute
significantly to accuracy. Therefore, a method capable of
recognizing these test functions and delivering reliable accu-
racy is highly necessary. Besides, the induced currents are
normally non-sparse and need to be sparsely transformed.
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Up to now, the characteristic basis functions (CBFs) [18, 19],
characteristic modes (CMs), [20] and Krylov subspace [21, 22]
are applicable as sparse basis for analyzing three dimensional
(3D) problems. Taking into account that the construction of
basis functions is independent of the excitations and benefits
from the domain decomposition method, the CMs are more
suitable for analyzing the electrically large problems.
Different from previous works, to further enhance the perfor-

mance of CS-MoM, an adaptive cross approximation (ACA)
based CS-MoM is proposed, called ACA-CS-MoM. Because
each test function has a different impact on accuracy, we intro-
duce the purely mathematical method ACA [23, 24] to recog-
nize the test functions contributing significantly to accuracy.
Thus, ACA-CS-MoM requires fewer observations to obtain
precise solution. Compared with the strategies of random ex-
traction and uniform extraction, the use of the row indexes ob-
tained via ACA to extract the impedance matrix for construct-
ing the measurement matrix is more convincing. Furthermore,
adjusting the threshold of ACA can control the number of rows
in the measurement matrix, making it possible to reduce time
costs by selecting an appropriate threshold. Meanwhile, the
least squares [25] is applied as the reconstruction algorithm to
solve the current coefficients. Due to the lower dimensional-
ity of the measurement matrix of the proposed method, it is
more efficient in both matrix construction and the solution of
the overdetermined equation.
The rest of this paper is organized as follows. In Section 2,

the theoretical content of compressive sensing and the proposed
method is presented. In Section 3, the complexity analysis of
several methods is given. In Section 4, the effectiveness of
the ACA-CS-MoM is evaluated through numerical simulations.
Finally, the conclusion is given in Section 5.

2. THEORY

2.1. Conventional CS-MoM
For the electromagnetic scattering problems of perfect electri-
cal conductor (PEC) objects, the MoM applies the RWG basis
functions to transform the electric field integral equation (EFIE)
into a matrix equation:

ZI = V, (1)

where Z denotes a full rank impedance matrix of size N ×N ,
and N is the number of unknowns. I and V denote the current
vector and excitation vector, respectively. The elements of Z
and V can be expressed as follows [2]:

zmn = jkη

∫
S

∫
S′

G

(
fm ·fn−

1

k2
∇·fm∇′ ·fn

)
dS′dS, (2)

vm =

∫
S

fm·VidS, (3)

where k, η, and G denote the wavenumber, wave impedance,
and Green’s function, respectively. fm is the mth RWG basis
function, and Vi is the incident wave. Obviously, the calcu-
lation of the impedance elements involves extensive Green’s

function factors and integration operations, which are quite
time-consuming.
Fortunately, the introduction of the CS technique decreases

the number of rows filled in the impedance matrix, while avoid-
ing the complex matrix product operations in the reduced ma-
trix construction, resulting in a more efficient solution. In CS-
MoM, there are three main components: measurement, spar-
sity, and reconstruction.
To begin with, CS-MoM establishes the underdetermined

equation by randomly extracting certain rows of Z and V as
measurement matrix Z̃ and measurement value ~V:

Z̃I = Ṽ. (4)

Recently, a new measurement matrix construction method has
been proposed [16], which forms a deterministic measurement
matrix by uniformly extracting the impedance matrix. The
schematic diagram of randomly extracted and uniformly ex-
tracted impedance matrix is shown in Figure 1.

(a) 

Random extraction

(b) 

Uniform extraction

Extracted rows Unextracted rows

FIGURE 1. Schematic diagram of randomly extracted and uniformly
extracted impedance matrix.

Because I is not sparse, a sparse transformation of I is per-
formed to satisfy the CS framework as follows:

I = Ψα, (5)

whereα is the vector of weight coefficients, andΨ is the sparse
basis. Thus, (4) transforms as:

Z̃I = Z̃Ψα = Θα = Ṽ, (6)

whereΘ is the sensing matrix. Typically, to ensure that (6) can
be solved with high probability, the sensing matrix Θ requires
to satisfy the restricted isometry property (RIP) [26]:

1− ω ≤
∥Θα∥22
∥α∥22

≤ 1 + ω, (7)

where constant ω ∈ (0, 1). However, the proofs and appli-
cations of RIP are relatively abstract, posing significant chal-
lenges in theory and practice. For this reason, Baraniuk pro-
posed a more intuitive equivalent condition [27]: the incoher-
ence between themeasurementmatrix Z̃ and the sparse basisΨ.
In simple terms, it means that the rows of the measurement ma-
trix and the columns of the sparse basis cannot represent each
other.
To obtain the recovery value, greedy algorithms such as or-

thogonal matching pursuit (OMP) [28] or generalized OMP
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(gOMP) [29] are commonly used as recovery algorithms to
solve (6).

2.2. The Sparse Basis Construction
Consider that CMs are generated independently of the excita-
tions and solved efficiently, and [15] also demonstrates that
CMs are more advantageous than CBFs. Thus, CMs are used
as sparse basis to achieve the sparse transformation of currents.
According to the CM theory of PEC, CMs are obtained by solv-
ing the generalized eigenvalue equation [30]. To accelerate the
solution of CMs, the object is divided into m blocks, and the
impedance matrix Z is transformed into the following form:

Z =


Z11 Z12 . . . Z1m

Z21 Z22 . . . Z2m

...
...

. . .
...

Zm1 Zm2 . . . Zmm

 , (8)

where Zii and Zij (i, j = 1, 2, . . . ,m) denote the self-
impedance matrix and mutual impedance matrix, respectively.
Meanwhile, each block extends 0.15 wavelength outward to
ensure the continuity of the current. Afterwards, the CMs
for each block are generated from the generalized eigenvalue
equation formed by the self-impedance matrix:

Xe
iiJei = λiRe

iiJei , (9)

in which, Ze
ii = Re

ii + jXe
ii. λi and Jei represent the eigenvalue

and their corresponding CM. e indicates extension. Then, low-
order CMs are selected by modal significance (MS):

MS =

∣∣∣∣ 1

1 + jλi

∣∣∣∣ . (10)

A threshold τ is set, and the CMs corresponding to the eigen-
values that satisfy the condition MS > τ are low-order CMs.
Finally, the sparse basisΨ is formed after removing the exten-
sions in these CMs.

2.3. ACA-CS-MoM
In the MoM, the RWG basis function is used as basis function
combined with the Galerkin method to construct the impedance
matrixZ. Thus, (1) can be transformed into the following form:

Z =


⟨w1, L (f1)⟩ ⟨w1, L (f2)⟩ . . . ⟨w1, L (fN )⟩
⟨w2, L (f1)⟩ ⟨w2, L (f2)⟩ . . . ⟨w2, L (fN )⟩

...
...

. . .
...

⟨wN , L (f1)⟩ ⟨wN , L (f2)⟩ . . . ⟨wN , L (fN )⟩

 ,

(11)

V =


⟨w1, g⟩
⟨w2, g⟩

...
⟨wN , g⟩

 , (12)

where (wm = fm) denotes the test function. L (·) and g repre-
sent linear operator and known excitation source, respectively.

Obviously, the test function corresponds to each row of Z re-
spectively, and each test function contains distinct spatial dis-
tribution information, resulting in different impacts on the com-
putational results. In other words, different test functions con-
tribute differently to the accuracy. Therefore, in CS-MoM, the
participation of measurement matrix constructed from different
rows in the computation leads to different results.
In previous CS model, it was common to randomly extract

certain rows of the impedance matrix to use as measurement
matrix. But this randomization strategy results in unstable cal-
culations. Likewise, NCS-MoM [16] constructs the measure-
ment matrix by uniformly extracting the impedance matrix and
obtains stable computational results, but it is still a simple ex-
traction method. Although more test functions can achieve
higher accuracy, extracting the rows corresponding to test func-
tions that contribute higher can also generate satisfied results.
Evidently, random extraction and uniform extraction are hardly
guaranteed to find these highly contributive test functions, es-
pecially at low extraction ratios. In contrast, the ACA algo-
rithm, based on weight scheme and independent of Green’s
functions, can recognize the rows and columns with significant
influence within the matrix. Therefore, the proposed method
introduces ACA to recognize the rows corresponding to these
test functions.
To begin with, we divide the objects into blocks and then set

a control parameter δ to split the impedance matrix into near-
field and far-field groups. Once the condition Cd >= 0.05λ
and Cd >= δbs is met, ACA processing is performed to com-
press Zij , where λ denotes the wavelength, and Cd and bs are
the center distance between two blocks and the block size, re-
spectively.
The purpose of ACA is to approximate Zij by transforming

it into a product of two matrixes, namely:

Za×b
ij ≈ Ua×r · Vr×b, (13)

where Ua×r and Vr×b are two rectangular matrixes, and r is
the effective rank of the matrix Za×b

ij , which is also the number
of rows and columns recognized by ACA. The major procedure
of the ACA algorithm is given in Algorithm 1. In Algorithm 1,
ri is the row index we need. uk and vkdenote the kth column of
Ua×r and the kth row of Vr×b, respectively. It should be noted
that unlike the traditional ACA used to accelerate the MVPs,
this method involves only ri in the subsequent computation.

Algorithm 1 Procedure Index generation
for i = 1, 2, 3, . . . ,m do
Setmax_num = 0
for j = 1, 2, 3, . . . ,m do
if Zij compliance with ACA do
Obtain rj
if rj ≥ max_num do
Letmax_num = rj
end if
end if
end for
Let ri = max_num
end for
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Algorithm 2 gOMP
Input: sensing matrix Θ measurement value Ṽ, sparsity K number of indexes for

each selection S.
Initialize: iteration count k residual vector r0 = Ṽ, estimated support set Λ0 = ∅.
1: while k < K and

∥∥rk∥∥
2
> σ (σ > 0) do

2: k = k + 1;

3: Select indexes ϕ1, ϕ2, . . . , ϕS corresponding to S largest entries inΘT rk−1;
4: Λk = Λk−1 ∪ {ϕ1, ϕ2, . . . , ϕS};
5: α̂Λk = argmin

u

∥∥Ṽ−ΘΛku
∥∥
2
=

(
ΘT

Λk
ΘΛk

)−1 (
ΘT

Λk
Ṽ
)
;

6: rk = Ṽ−ΘΛk α̂Λk ;
7: end while
Output: α = α̂.

Specifically, if there is a matrix that satisfies the condition Cd,
it is subjected to ACA compression, and the row indexes gen-
erated during the process are recorded. As for the Ua×r and
Vr×b matrix, it will not be involved in the subsequent vector
product operations.
As shown in Figure 2, ACA is utilized to recognize far-field

groups, and a set of row indexes is obtained, corresponding to
the test functions. However, the dimension of each far-field
group is different, resulting in varying number of test functions
recognized by ACA. To ensure accuracy, we select the far-field
group that recognizes more test functions and output the row
indexes corresponding to the test functions. For example, in
far-field groups Z03 to Z07 in Figure 2, if Z03 recognizes the
highest number of test functions, the row indexes correspond-
ing to the test functions therein are output. This is because each
far-field group definitely contains the same test functions, and
selecting the far-field group that recognizes the higher number
of test functions maximizes the retention of test functions that
contribute significantly to accuracy. Therefore, following this
approach, a set of deterministic row indexes can be obtained.

00Z 01Z 02Z 04Z 05Z 06Z 07Z

10Z 11Z 12Z 13Z 14Z 15Z 16Z 17Z

20Z 21Z 22Z 23Z 24Z 25Z 26Z 27Z

30Z 31Z 32Z 33Z 34Z 35Z 36Z 37Z

40Z 41Z 42Z 43Z 44Z 45Z 46Z 47Z

50Z 51Z 52Z 53Z 54Z 55Z 56Z 57Z

60Z 61Z 62Z 63Z 64Z 65Z 66Z 67Z

70Z 71Z 73Z72Z 74Z 75Z 76Z 77Z

03Z

Near-field group Far-field group

The far-field group with the most 
recognized rows by ACA

3r

5r

7r

6r

7r

2r

1r

4r

ACA

Index r

FIGURE 2. The process of recognizing significant rows in the matrix
using ACA.

Subsequently, a determined measurement matrix can be ob-
tained by extracting the impedance matrix according to these
row indexes correspondingly. In addition, different ACA
thresholds recognize varying number of test functions, result-
ing in different dimensions of the constructedmeasurement ma-
trixes. Similar to NCS-MoM, which controls the accuracy by
adjusting the extraction step size, the proposedmethod achieves
the effect of controlling the accuracy by changing the dimen-
sion of the measurement matrix through adjusting the threshold
of ACA. However, the step size of uniform extraction in NCS-
MoM is integer, making it difficult to control the number of ex-
tracted rows. It is worth mentioning that the proposed method
avoids generating unstable computational results and enables
finely adjusted number of extracted rows, which possesses the
advantages of both random extraction and uniform extraction.
To facilitate comparison, the CMs are adopted as the sparse

basis to establish the overdetermined equation. However, us-
ing the greedy algorithm to reconstruct the current coefficients
tends to pursue local optimality, leading to lose sight of the
overall accuracy. Although gOMP improves accuracy by in-
creasing the sampling rate without increasing the sampling
time, the identification process for the sensing matrix remains
time-consuming. The procedure of gOMP is shown in Algo-
rithm 2. Because the columns to be recognized in sensing ma-
trix Θ correspond to the sparse basis (CMs), it is possible to
skip the recognition process and directly use least squares to
obtain the coefficient vector instead of iterative solving. The
form of the least squares solution is as follows. Substituting
(14) to (5), the approximate current I is obtained.

α =
(
ΘTΘ

)−1 (
ΘT Ṽ

)
. (14)

Compared to recent methods CS-CMs [15] and NCS-
MoM [16], the proposed method ACA-CS-MoM employs
ACA to recognize crucial rows within the impedance matrix for
constructing the measurement matrix. While ensuring stability
and accuracy, the proposed method improves computational
efficiency due to the smaller dimension of the constructed
measurement matrix.
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FIGURE 4. Calculation errors and time for CS-CMs under random ex-
traction.

3. COMPLEXITY ANALYSIS
In this section, the comparisons of CS-CMs, NCS-MoM, and
ACA-CS-MoMare performed in terms of themeasurement ma-
trix construction, the sparse basis generation, and the current
reconstruction. For the sake of comparison, it is assumed that
the unknowns in each block are equal, and the number of ex-
tracted rows is controlled to be the same for both CS-CMs and
NCS-MoM.
(1)Measurement matrix construction: Suppose that the num-

ber of rows extracted by CS-CMs and NCS-MoM is M , and
the number of rows extracted by ACA-CS-MoM is P . Thus,
the complexity of the former is O (MN). For ACA-CS-MoM,
this portion also contains the time that the ACA calculates in-
dexes, then its complexity is:

O

(
1

2
m2r

(
N

m
+

N

m

)
+ PN

)
= O ((mr + P )N) ≈ O (PN) , (15)

since P is commonly much smaller thanM , the complexity of
ACA-CS-MoM in this process is much lower.
(2) Sparse basis generation: In this step, the main solution is

to solve (9) by LU factorization, and its complexity is:

O

(
m

(
N

m

)3
)

= O

(
1

m2
N3

)
. (16)

(3) Current reconstruction: This step primarily consists of
constructing the sensing matrix Θ and solving (6). Assuming
that the total number of CMs isK, the complexity of CS-CMs
is:

O (MNK + SMK) = O (K (MN + SM)) . (17)

In contrast, the computational complexity of ACA-CS-MoM
is:

O (PNK + PK) = O (K (PN + P )) . (18)
Clearly, ACA-CS-MoM has the lowest complexity in this

process. In summary, compared to CS-CMs and NCS-MoM,
the proposed method ACA-CS-CMs has lower computational
complexity and significantly improves the computational effi-
ciency.

4. NUMERICAL RESULTS
To test the effectiveness of the proposed method, different ob-
jects are simulated and analyzed. The root mean square error
(RMSE) is used to evaluate the accuracy of calculating the radar
cross section (RCS) by different methods, denoted as:

RMSE =

√√√√ 1

Na

Na∑
i=1

(σcal − σMoM )
2
, (19)

whereNa is the sample number, and σcal and σMoM denote the
calculation results of the method used and MoM, respectively.
In addition, in all simulations, the number of rows extracted in
the impedance matrix is controlled to be equal for CS-CMs and
NCS-MoM.
First, the bistatic RCS of a perfect electric conductor (PEC)

cylinder with a radius of 0.2m and a height of 1m at the in-
cident frequency of 1.5GHz is analyzed. The surface of the
cylinder is discretized into 15,184 triangular patches and 22,776
unknowns. Meanwhile, the cylinder is divided into 16 blocks.
The threshold τ of MS is set to 0.0002, and each block is ex-
tended by 0.15λ, obtaining 1915 CMs and 35,564 unknowns.
The variation of errors with threshold under different exten-

sion sizes is given in Figure 3. It can be observed that the overall
trend of the error is reduced as τ decreases. Meanwhile, as the
extension size increases, the computational accuracy improves,
but the computational time increases accordingly. To balance
time and accuracy, the extended size and τ are set to 0.15λ and
0.0002, respectively.
Subsequently, the variations in accuracy and computation

time for CS-CMs, NCS-MoM, and ACA-CS-MoM under dif-
ferent influencing factors are demonstrated in Figure 4, Figure
5, and Figure 6, respectively. It is clearly found that among the
three extraction strategies, extracting more rows to construct
the measurement matrix leads to higher accuracy. The reason
is that more test functions are involved in the testing proce-
dure. However, as the number of extracted rows increases, the
time cost gradually grows. The blue points in Figure 4, Figure
5, and Figure 6 show that the RMSE is 2.3 when rows 3188
are extracted randomly, 0.64 when rows 3253 are extracted
uniformly, and 0.3 when rows 3129 are extracted using ACA.
Therefore, to balance the time and accuracy, the extraction step
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size and the threshold of the ACA are set to 4 and 1E-6, respec-
tively.
Our aim is to make the dimension of the measurement matrix

constructed by CS-CMs and NCS-MoM consistent.
The number of rows extracted for CS-CMs is equal to that of

NCS-MoM, and its extraction ratio is set to 0.25. Based on this,
250 experiments are conducted for the three methods, and the
computational results are shown in Figure 7. Obviously, the
error of CS-CMs fluctuates between 0.2 and 0.5, while NCS-
MoM and ACA-CS-MoM are capable of ensuring the stability
of the computational results. In addition, Figure 8 illustrates
the sparsity of induced currents on the sparse basis constructed
by CMs. The amplitude of the induced currents on the sparse
basis is mostly close to zero, with a few elements dominating
and displaying fine sparsity.
To confirm the reasonableness of ACA-CS-MoM, the cor-

relation coefficients [12] between the measurement matrix and
the sparse basis under three extraction strategies are compared
shown in Table 1. The correlation coefficient is calculated as:

µ (Θ) = max
i ̸=j

|θ∗i θj |
∥θi∥ · ∥θj∥

, (20)

where θi and θj are the ith and jth columns inΘ, respectively.
As can be seen in Table 1, the correlation coefficients calcu-

TABLE 1. Correlation coefficient between the measurement matrix and
the sparse basis.

Method Extracting strategy µ

CS-CMs Random extraction 0.0133
NCS-MoM Uniform extraction 0.0141

ACA-CS-MoM The row index of ACA 0.0138

lated under three extraction strategies are close to zero, which
indicates that the proposed method is feasible.
Eventually, the dimensions of the measurement matrixes

constructed by CS-CMs and NCS-MoM are both 5694×22776.
Under the condition of similar accuracy, the dimension of the
measurement matrix constructed by ACA-CS-MoM is 3129×
22776. It is clearly found that the dimension of the measure-
ment matrix in the proposed method is lower making the re-
construction of the current become more efficient. In addition,
the bistatic RCS results of the cylinder in vertical polarization
are given in Figure 9. The computational results demonstrate a
high accuracy of the proposed method.
Next, the bistatic RCS of a PEC almond with the length of

504.748mm is considered. The incident frequency is 4GHz,
and the surface of the almond is discretized into 39,186 trian-
gular patches by the RWG basis function, generating 58,779
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FIGURE 9. The bistatic RCS results of the cylinder in vertical polariza-
tion.
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FIGURE 10. The bistatic RCS results of the almond in vertical polariza-
tion.

TABLE 2. Simulation time for different processes.

Model Method
Time to
calculate
indexes (s)

Number
of rows
extracted

Constructing
measurement
matrix time (s)

Solving
time (s)

Total
time (s)

RMSE
(dBsm)

Memory of
measurement
matrix (GB)

Cylinder
CS-CMs 5694 606.8 430.1 1235.4 0.34 1.93
NCS-MoM 5694 603.9 325.6 1104.7 0.29 1.93

ACA-CS-MoM 71.5 3129 324.2 168.3 736.1 0.30 1.06

Almond
CS-CMs 19593 5862.1 17246.0 23708.6 0.41 17.12
NCS-MoM 19593 5863.7 12177.9 18671.1 0.53 17.12

ACA-CS-MoM 969.1 12410 3565.9 7240.1 12271.2 0.47 10.86

Cone-sphere
with gap

CS-CMs 26226 10133.3 37234.4 48726.2 0.19 30.74
NCS-MoM 26226 10128.5 28221.6 39520.3 0.19 30.74

ACA-CS-MoM 1599.0 18798 6823.2 19197.2 28864.9 0.21 22.03

unknowns. Then, the object is divided into 36 blocks, and
each block is extended by 0.15 wavelength to yield 105,181 un-
knowns. The threshold of MS is set to 0.0002, resulting in 5675
CMs. Afterwards, the extraction ratio and extraction step for
CS-CMs and NCS-MoM are set to 1/3 and 3, respectively, and
the dimensions of the constructed measurement matrixes are
both 19593 × 58779. Under comparable accuracy conditions,
the threshold for ACA in ACA-CS-MoM is set to 1E-8, yield-
ing a measurement matrix dimension of 12410×58779. More-
over, the calculation of bistatic RCS for vertical polarization of
almond using different methods is illustrated in Figure 10. The
computational results indicate that the proposed method has ex-
cellent computational accuracy.
Finally, the bistatic RCS of a PEC cone-sphere with gap, ap-

proximately 0.7m in length, is calculated at an incident fre-
quency of 8GHz. The surface of the object is discretized to
form 52,452 triangular patches and 78,678 unknowns. The
threshold of MS is set to 0.0002. Subsequently, the object is
divided into 56 blocks, and each block is extended separately
by 0.15λ, which generates 7690 CMs and 149,319 unknowns.
Moreover, the extraction ratio and extraction step for CS-CMs
and NCS-MoM are set to 1/3 and 3, respectively, and the di-
mensions of the constructed measurement matrices are both
26226×78678. In the case of similar accuracy, the threshold of

ACA is 1E-8 in ACA-CS-MoM, and the dimension of the con-
structed measurement matrix is 18798 × 78678. In contrast,
the proposed method extracts fewer rows, resulting in higher
computational efficiency. Meanwhile, the bistatic RCS results
of cone-sphere with gap are shown in Figure 11. Obviously,
the calculated results of the proposed method are in excellent
agreement with the MoM.
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FIGURE 11. The bistatic RCS results of the cone-sphere with gap in
vertical polarization.
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The simulation times of different processes corresponding
to Figure 9, Figure 10, and Figure 11 are given in Table 2.
Note that CS-CMs and NCS-MoM use gOMP and the least
squares method for current recovery, respectively. Therefore,
these two methods are different in terms of solution time and
RMSE. Clearly, the proposedmethod extracts fewer rows while
ensuring accuracy, resulting in a significant reduction in the
construction time of the measurement matrix, as well as the
time for solving the overdetermined equation. Although ACA-
CS-MoM requires additional time to recognize the row indexes
corresponding to the test functions in advance when construct-
ing the measurement matrix, this time is relatively small com-
pared to the overall reduction in computation time. From the
point of view of computing memory for the measurement ma-
trix, the new method reduces 45%, 36%, and 26% in three in-
stances, respectively. The accuracy and efficiency of the pro-
posed method are demonstrated through the above numerical
simulation analysis.

5. CONCLUSION
In this paper, a novel scheme is proposed to improve the perfor-
mance of CS-MoM. By introducing ACA to recognize the sig-
nificant test functions in the impedance matrix, the impedance
matrix is extracted based on its row indexes correspondingly to
construct the measurement matrix. Higher accuracy is achieved
with fewer observations. Meanwhile, the least squares is em-
ployed as the recovery algorithm to achieve efficient recon-
struction of the induced currents. Theoretical and simulation
analyses demonstrate that, in comparison to CS-CMs and NCS-
MoM, the proposed ACA-CS-MoM reduces the computation
time while ensuring the computational accuracy.
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