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ABSTRACT: In order to solve the issues of large computation and control performance affected by motor parameters in the conventional
model predictive torque control (MPTC) of permanent magnet synchronous motors (PMSMs), a robust model predictive torque control
strategy with online parameter identification based on an improved differential evolution extended Kalman filter (IDEEKF-RMPTC) is
proposed To begin with, and a steady-state voltage vector at the next time is obtained through a low-pass filter and used as the reference
voltage vector to select the alternative voltage vector. The parameter robustness of the PMSM system is enhanced, and the computational
effort is reduced. In addition, an improved differential evacuation algorithm for the extended Kalman filter (EKF) is designed, and the
system noise matrix Q and measurement noise matrix R of the EKF are optimized. The estimation error is reduced; the stability of the
system is enhanced; and the accuracy of the identification of the motor parameters is improved. Finally, the computational effort of the
system is effectively reduced by the proposed IDEEKF-RMPTC strategy, and the parameter robustness of the PMSM drive system under
parameter mismatch conditions is enhanced which are proved by the experimental results.

1. INTRODUCTION

PMSM is extensively applied in industrial production,
aerospace and other fields because of its high efficiency,

small size, and high power density [1]. The control methods
primarily include field-oriented control (FOC) and direct
torque control (DTC) [2]. FOC selects voltage vectors based
on the torque and magnetic chain errors through a pre-given
switching table, which is a simple control method but has
limited optional voltage vectors, resulting in large torque and
magnetic chain pulsations [3]. To solve the problem of large
magnetic chain and torque pulsation in DTC, scholars have
tried to introduce model predictive control (MPC) into DTC
and achieved some success. MPC is generally used in power
electronics and can be categorized into continuous control set
MPC (CCS-MPC) and finite control set MPC (FCS-MPC) [4].
In a PMSM drive system, FCS-MPC methods can be catego-
rized into model predictive current control (MPCC) and MPTC
according to different control objectives [5].
MPTC suffers from the problems of large computation of

torque pulsation in the prediction process, and control perfor-
mance is strongly dependent on the model parameters. When
real parameters are affected by temperature rise, magnetic field
saturation, and other factors, the torque andmagnetic chain pre-
diction will produce errors, which deteriorate the control per-
formance [6, 7]. To address the above problems, scholars have
done much research and proposed various solutions.

* Corresponding author: Zhun Cheng (120277982@qq.com).

To address the problem of large MPTC calculations and high
torque and magnet flux linkage pulsations, scholars have done
the following researches. In [8], an advanced deadband direct
torque and flux control (ADB-DTFC) system is proposed. This
strategy automatically adjusts phase and duration of the voltage
vector to reduce torque fluctuation and stator flux ripple by de-
termining the magnitude of the error between the torque and its
reference value. But it requires a large computational cost for
this method. In [9], a model-predictive dual-target current con-
trol (MPTCC) scheme based on the model-predictive control
concept is proposed. First, a basic MPCC strategy is proposed
for dealing with torque generation problem of the base mem-
ber. Then, a modified cost function is proposed to provide a
more accurate torque generation voltage vector. This strategy
eliminates torque pulsations and reduces total harmonic distor-
tion (THD), but with some delay. In [10], a novel fast response
MPTC strategy for PMSM drives is proposed. The strategy
converts the reference torque to the magnetic chain in the dq-
axis, which reduces the computational effort of the system. But
it is highly dependent on the accuracy of the motor parameters.
Aiming at the problem that motor performance of control is

dependent on the accuracy of model parameters, scholars have
done the following studies. In [11], a preliminary online pa-
rameter identification algorithm for PMSM deadband control
(DBC) is proposed. The method establishes a well-recognized
model to estimate the parameter error of the DBC offset to re-
duce the system’s dependence on parameters. But the model
needs to be continuously adjusted for complex and variable sit-
uations. In [12], a parametric identification method using a
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high-frequency (HF) equivalent impedance model of PMSM
is proposed. The method identifies resistance and dq-axis in-
ductance offline and online, and identifies magnetic flux link-
age online. In [13], a disturbance feedforward compensation-
based-model predictive torque control (DFCB-MPTC) of in-
duction machine is proposed to compensate the lumped dis-
turbances and enhance the parameter robustness of the system.
But it requires more computational cost. In [14], a robust model
predictive voltage control (MPVC) scheme is proposed to im-
prove the parametric robustness of MPVC for SPMSM drivers.
But it is difficult to debug and design. In [15], a current pre-
diction error model considering the uncertainty of model pa-
rameters is proposed to effectively reduce the current harmonic
content, current fluctuation, and current tracking error due to
parameter mismatch. But this model model design is complex
and computationally intensive.
Scholars have carried out the following studies from the per-

spective of EKF to address the issue that motor control per-
formance is dependent on the accuracy of the model parame-
ters. In [16], two Kalman filter (KF) based online recognition
solutions are proposed. One scheme consists of an extended
KF, and the other scheme uses a double extended KF. Both the
schemes are applicable to any identifiable combination of elec-
trical parameters, but the computational complexity is higher.
In [17], an extended Kalman filter (EKF)-based inductance es-
timation strategy for single-phase open DTP-PMSMs is pro-
posed to improve the control performance of DTP-PMSMs un-
der open-phase faults. But because the Q and R of the EKF
are constant values, it recognizes the parameters inaccurately.
In [18], a noninvasive online method is proposed. The ap-
proach uses Vold-KF order tracking (VKF-OT) and dynamic
Bayesian network (DBN) to detect the rotor demagnetization
in real time. The electromagnetic interference of the torque is
eliminated. Uniform demagnetization is detected in wide range
of motor speed. But the method requires training and optimiza-
tion of a large amount of experimental data. In [19], a robust
DPCC (RDPCC) is proposed. It uses KF based on extended
state modeling (ESM) to estimate states and disturbances. Al-
though the KF can reduce disturbances in prediction and distur-
bances caused by changes in estimated parameters, it still pro-
duces some delay effects. In [20], a scheme for the fusion of
electrical model-based estimation and mechanical model-based
observers is proposed. The strategy employs extended Kalman
filter (EKF) to fuse the mechanical motion sensing and esti-
mation information, and introduces a disturbance suppressor
to counteract the parameter imprecision and inconstancy of the
EKF model. But this method occupies large computational re-
sources of the system. In [21], a method for filtering measure-
ment noise using EKF and adaptive linear active disturbance re-
jection control (LADRC) strategies is proposed, but it requires
a large computational cost.
To address the problem that MPTC calculation and torque

pulsation are large in PMSM drive systems and the control per-
formance is affected by motor parameters, a novel IDEEKF-
RMPTC strategy is proposed. Compared to the conventional
MPTC, this method has better parameter robustness and less
computation of the system, and the major contributions of this
paper are as follows:

1) The RMPTC strategy utilizes feature that actual voltage
vector position is fixed during the steady state operation of the
motor to select alternative voltage vectors based on the steady
state voltage vector, which reduces system computation and en-
hances the parameter robustness of the PMSM.
2) The IDEEKF strategy replaces the original fixed-invariant

mutation strategy of differential evolutionary (DE) with four
test vector generation strategies, which allows the Q and R of
the EKF to be adaptively adjusted according to the changes of
motor parameters. It improves the recognition accuracy of EKF
and enhances the parameter robustness of PMSM
The rest of this paper is as follows. Section 2 introduces the

mathematical model of the PMSM. Section 3 introduces the ba-
sic principle of conventional MPTC and EKF. Section 4 intro-
duces The basic principle of IDEEK-RMPTC. Sections 5 show
The experimental validation and simulation analysis. Finally,
Section 6 briefly summarizes this paper.

2. MATHEMATICAL MODEL OF PMSM
In this paper, the surface-mounted PMSM is studied, and the
voltage and magnet flux linkage equations in the two-phase ro-
tating dq coordinates system are as follows:{

ud=Rsid+
dψd

dt − ωeψq

uq=Rsiq+
dψq

dt + ωeψd
(1)

{
ψd = Lsid + ψf

ψq = Lsiq
(2)

The electromagnetic torque equation is as follows:

Te =
3

2
pψf iq (3)

where ud, uq are the dq-axis components of stator voltage vec-
tor; id, iq are the dq-axis components of stator current vector;
ψd, ψq , and ψf are the dq-axis components of the stator and the
rotor magnetic flux linkage vector; Rs and Ls are stator resis-
tance and stator inductance; and ωe is the rotor angular velocity
of the motor
Using the first-order Eulerian discretization method to dis-

cretize (1), the resulting current prediction model is as follows:{
id(k+1)= id(k)+

Ts
Ls

[ud(k)−Rsid(k)+Lsωeiq(k)]

iq(k+1)= iq(k)+
Ts
Ls

[uq(k)−Rsiq(k)−Lsωeid(k)−ωeψf ]
(4)

where k represents the sampling value at current moment, and
k+1 represents the sampling value at next time. Ts is the value
of the sampling period.

3. THE BASIC PRINCIPLE OF CONVENTIONAL MPTC
AND EKF

3.1. The Principle of MPTC
The main steps of the conventional MPTC (CMPTC) include
the division of voltage vectors, the design of the cost function,
and the optimal voltage vector selection.
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FIGURE 1. The schematic diagram of EKF.

1) The division of voltage vectors
A three-phase two-level voltage source type inverter has

eight switching states, i.e., six non-zero voltage vectors and two
zero vectors.
2) The design of cost functions
The MPTC mainly uses torque and magnet flux linkage as

the control objectives, and the formula is as follows:

g =
∣∣T ref
e − Te(k + 1)

∣∣+ λ
∣∣ψref
s − |ψs(k + 1)|

∣∣ (5)

where λ is the weighting factor usually established through em-
pirical methods.
3) The optimal voltage vector selection
Firstly, bring seven basic voltage vectors into the current pre-

diction model (4) to derive the predicted value of current af-
ter one Ts for each basic voltage vector, and derive predicted
values of torque and magnetic chain from this predicted value.
Secondly, the predicted values are substituted into cost func-
tion and voltage vector with the smallest cost function selected
as the optimal voltage vector. Finally, apply the switching state
corresponding to optimal voltage vector to the inverter to gener-
ate the superimposed three-phase currents to control the motor.
The MPTC needs to traverse seven optimization searches,

which is computationally intensive, and the control perfor-
mance of the motor is strongly dependent on the motor parame-
ters. Therefore, in this paper, the RMPTC strategy is proposed
to reduce the computational effort and enhance the robustness
of the system parameters.

3.2. The Basic Principle of Parameter Identification Based on
EKF Algorithm
The EKF algorithm is an optimal recursive estimation algo-
rithm for nonlinear systems. In the parameter identification of
PMSM, the motor parameters that vary with the running time
are considered as part of the extension, and thesemotor parame-
ters are estimated through the filtering process for identification
purposes [22].
The nonlinear system yields a linear model expression as fol-

lows: {
x(k + 1) = ϕ(k)x(k) +B(k)u(k) + w(k)
z(k) = H(k)x(k) + v(k)

(6)

where x(k) is the state vector of the system; u(k) is the input
vector of the system; z(k) is the observation vector of the sys-
tem; w(k) is the process noise; v(k) is the observation noise; k
is the current iteration number;B(k) is the control input matrix;
H(k) is the state observation matrix; φ(k) is the state transfer
matrix. w(k) and v(k) are white noises with mean value, and
their expectation values satisfyE{W (k)} = 0, E{V (k)} = 0.

In the online identification of motor parameters by using
EKF, there are two parameters particularly important. The first
one is the process noise covariance matrixQ, which represents
uncertain random noise generated in dynamics of the motor
drive system. The other is the measurement noise covariance
matrix R, which represents the random noise caused by mea-
surement errors in the measurement process. Either large or
small Q and R will cause the parameter estimation error and
the control performance of the motor to deteriorate.
In the EKF Q = E{WWT }, R = E{V V T }. W and V

represent the noise vectors. The EKF schematic is shown in
Fig. 1. It consists of two steps: prediction and update.
The PMSM is a fifth-order nonlinear strongly coupled sys-

tem, so in this paper, the reduced-order parallel dual EKFs are
used to recognize the parameters of the PMSM in order to re-
duce the coupling of motor parameters and improve parameter
identification ability.
Firstly, the value ofRs is observed by the EKF observer, and

then its value is used to recognize the magnetic flux linkage and
inductance [23]. The recognition equations are as follows:

d

dt


id1
iq1
ψf
Ls

 =


−Rs

Ls
ωe 0 0

−ωe −Rs

Ls
0 0

0 0 0 0
0 0 0 0



id1
iq1
ψf
Ls



+


1
Ls

0

0 1
Ls

0 0
0 0

[
ud
uq

]
+


0

−ωeψf

Ls

0
0

 (7)

The Eulerian discretization of (7) yields the following Jacobi
matrices ϕ1 for the magnetic chain and inductance as follows:

ϕ1=I +
∂f(x1)

∂x1

∣∣∣∣∣x1 = x̂1(k)

=


1−LRsTs ωeTs 0 −Rsid1Ts
−ωeTs 1− LRsTs −LωeTs −(Rsiq1+ωeψf )Ts

0 0 1 0
0 0 0 1

(8)
where x1 = [id1, iq1, ψf , Ls]

T is the state-variable matrix of
the chains and inductors, and L is the inverse of the inductor
Ls.
The measurement equations are shown as follows:

z1 =

[
1 0 0 0
0 1 0 0

] [
id1 iq1 ψf Ls

]T (9)
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Equally, the identified magnetic chain and inductance are used
as fixed values to identify the resistance, and the identified ex-
pression is as follows:

d

dt

 id2
iq2
Rs

 =

 −LRs ωe 0
−ωe −LRs 0
0 0 0

 id2
iq2
Rs



+

L 0
0 L
0 0

[
ud
uq

]
+

[
0

−ωeψfL

]
(10)

By discretizing (10) according to the antecedent Euler, one ob-
tains the Jacobian of the resistance ratio ϕ2 as follows:

ϕ2 = I +
∂f(x2)Ts
∂x2

|x2 = x̂2(k)

=

 1− LRsTs ωeTs −Lid2Ts
−ωeTs 1− LRsTs −Liq2T

0 0 1

 (11)

where x2 = [id2, iq2, Rs]
T is the state variable matrix of the

recognized resistance.
The measurement equations are shown as follows:

z2 =

[
1 0 0
0 1 0

] [
id2 iq2 Rs

]T (12)

The EKF-based PMSM parameter identification deals with the
nonlinearity of the motor by linearizing its nonlinear model,
which is able to adapt to the variation of the motor drive sys-
tem parameters in order to achieve its online identification func-
tion. Since the EKF combines state and parameter estimation
and utilizes filtering for parameter estimation, it is particularly
important to obtain the matrix R of the filter and the matrix Q
of the system. In this paper, IDEEKF is introduced to correct
the Q and R of the system, which reduces filtering errors and
prediction delays and improves the recognition accuracy of the
EKF.

4. THE BASIC PRINCIPLE OF IDEEKF-RMPTC

4.1. The Design of Robust Model Predictive Torque Control
The conventionalMPTC uses the parameters of the motor when
calculating the reference voltage vector and predicting the cur-
rent value at the next moment. When the motor parameters are
inaccurate, the problems of inaccurate prediction model and de-
teriorated control performance occur. To address this problem,
an RMPTC strategy is proposed.
Since there is a delay in predictive control of PMSM, the

optimal vector selected in the MPTC cannot be applied to the
PMSM until the next control cycle, which leads to poor system
performance. In this paper, the effect of delay on the control
performance of the system is eliminated by compensating the

delay in the current. The prediction model of current value,
magnetic chain value, and torque value at (k+2) is as follows:

ψd(k+2)=ψd(k+1) +Ts [ud(k+1)
−Rsid(k+1)+ωeψq(k+1)]

ψq(k+2)=ψq(k+1) +Ts [uq(k+1)
−Rsiq(k+1)−ωeψd(k+1)]

iq(k+2)= iq(k+1)+ Ts

Ls
[uq(k+1)

−iq(k+1)Rs−Lsωeid(k+1)−ωeψf ]
Te(k+2)= 3

2pψf iq(k+2)

(13)

According to the deadbeat control of torque and magnetic flux
linkage, the expression for the reference voltage vector is de-
rived as follows:
urefd =ud(k+1)= 1

Ts
[ψd(k+2)−ψd(k+1)

+TsRsid(k+1)−Tsωeψq(k+1)]

urefq =uq(k+1)= 1
Ts
[ψq(k+2)−ψq(k+1)

+TsRsiq(k+1)+Tsωeψd(k+1)]

(14)

Transforming (14) to the equations in the two-phase stationary
αβ coordinate system is as follows:[

urefα
urefβ

]
=

[
cosθe − sin θe
sin θe cos θe

] [
urefd
urefq

]
(15)

where θe represents the angle between d-axis and α-axis.

TABLE 1. The table of alternative voltage vector.

Sector
number

Reference Voltage
Vector Ang θs

Alternative
Voltage Vector

1 (0, π/3] u1, u2, u0(u7)

2 (π/3, 2π/3] u2, u3, u0(u7)

3 (2π/3, π] u3, u4, u0(u7)

4 (π, 4π/3] u4, u5, u0(u7)

5 (4π/3, 5π/3] u5, u6, u0(u7)

6 (5π/3, 2π] u6, u1, u0(u7)

The alternative voltage vector table is shown in Table 1, in
which θs is the angle between the reference voltage vector uref
and the α-axis. The expression is as follows:

θs =


arccos

(
uref
α

uref

)
urefβ ≥ 0

− arccos
(
uref
α

uref

)
+ 2π urefβ < 0

uref =
√

(urefα )2 + (urefβ )2

(16)

The voltage vector to be selected is then chosen by determining
the range of θs in order to reduce the number of predictions
made by the system, thus reducing the computational effort of
the system.
By analyzing the reference voltage vector angle θs, it can be

concluded that θs is closely related to the motor parameters of
PMSM. When PMSM parameters are inaccurate, θs is calcu-
lated incorrectly; the optimal voltage vector is excluded; and
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FIGURE 2. The control diagram of RMPTC strategy.

the system control performance is degraded. To address these
existing problems, an MPTC control strategy with parameter
robustness is proposed in this section.
When the motor runs to a steady state, state variables such as

speed and stator current change slowly and can be considered
as constants. Compared to one control cycle, the slow changes
in motor parameters can be approximated as constant, and the
corresponding steady state voltage vector is little affected by the
changes in motor parameters. Using this feature, the RMPTC is
designed, and the control block diagram of the system is shown
in Fig. 2.
Since the signals generated by the inverter contain high-

frequency switching signals, the high-frequency switching sig-
nals must be filtered out to obtain the low-frequency switching
signals corresponding to the steady-state voltage vector. In this
paper, by designing a low-pass filter, the voltage vector acting
on each cycle is filtered through the low-pass filter to obtain the
steady-state voltage vector corresponding to the low-frequency
switching signal. The steady state voltage of the current cycle
is as follows:

{
ûs(k) = us(k − 1)Q(s)
Q (s) = 1

1+τs

(17)

where ûs(k) is the steady state voltage in the dq coordinate sys-
tem at the current cycle, us(k − 1) the voltage vector in the dq
coordinate system that is applied to the motor at the k − 1 cy-
cle,Q(s) the first-order low-pass filter, and τ the time constant,
which is the inverse of the value of angular frequency.
Since there is a positional deviation between the steady-state

voltage vector of the current cycle and the steady-state voltage
vector of the next cycle, the steady-state voltage vector is cor-
rected for the positional deviation after it is obtained through
the filter. The expression of the corrected steady state voltage
vector is as follows:

ûs(k + 1) = ûs(k)ejωeTs (18)

After obtaining the reference voltage vector for the next cycle,
the candidate voltage vectors are selected by Table 1 to reduce
the number of predictions of the system and to enhance the ro-

bustness of the parameters of the system during steady state
operation.
The strategy for selecting alternative voltage vectors based

on steady-state voltage vectors is as follows:
1) If the optimal voltage vector selected in the previous cy-

cle is a zero vector, the alternative voltage vectors are all the
fundamental voltage vectors.
2) If a connected zero vector is selected for two consecutive

cycles, the alternative voltage vectors are that vector and the
effective electric vectors neighboring that vector.
3) In the remaining cases, the alternative vectors are selected

according to Table 1.
The proposed RMPTC strategy is designed to select an al-

ternative voltage vector table based on the steady state voltage
vector in this paper by utilizing the characteristic of the actual
voltage vector position being fixed and unchanged during the
steady state operation of the motor. The optimal voltage vector
that was originally excluded from the alternative voltage vector
group due to parameter mismatch is reincluded in the candidate
voltage vector table, allowing the optimal voltage vector to be
selected as the output voltage vector one or two cycles after the
parameter mismatch. This improves the control performance
of the system and reduces the computational effort.

4.2. The Design of Improved Differential Evolution EKF
Since the PMSM drive system is highly dependent on the mo-
tor parameters, the ability of RMPTC to enhance the robust-
ness of the motor parameters is limited. Therefore, we enhance
the parameter robustness of the system from the point of view
of recognizing the motor parameters by EKF, whereas Q and
R in EKF are fixed values with nonuniform setting standard,
and repeated experiments and adjustments are required to ob-
tain the correct values. The intelligent algorithm can realize the
dynamic adjustment of Q and R.
There are many algorithms to improve the Q and R of EKF,

such as Genetic Algorithm (GA), Particle Swarm Algorithm
(PSO), and Differential Evolutionary Algorithm (DE). GA re-
quires larger population size and more iterations, and have
slower convergence speed. PSO is more sensitive to the ini-
tial parameter selection and may stall near the local optimal so-
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lution. DE has the advantages of simplicity, ease of use, few
parameters, and fast convergence speed, but it lacks flexible
parameter adjustment and adaptive mechanism, which makes
it less adaptive and robust [24].
The IDE algorithm designed in this paper replaces the origi-

nal fixed and unchanging mutation strategy of DEwith four test
vector generation strategies, which has the ability of dynami-
cally adjusting the mutation factor and crossover probability,
and can optimizeQ andRmore efficiently under different mu-
tation conditions, thus improving the ability of EKF to identify
the parameters and enhancing the robustness of the system pa-
rameters.
The control diagram for the IDEEKF-RMPTC strategy is

shown in Fig. 3 where IDEEKF inputs are the operating param-
eters such as current and voltage of the motor, and the outputs
are the real-time estimates of the motor parameters. This mod-

ule is able to identify the motor parameters accurately in time,
thus making the prediction model more accurate and improving
the control performance of the system.
The flowchart of IDEEKF operation is shown in Fig. 4,

which consists of two parts: the IDE optimizes the Q and R
of the EKF and recognizes the motor parameters online by the
EKF. When the EKF obtains the optimized Q and R from the
IDE, the error and time for the EKF to identify the motor pa-
rameters are reduced. The parameter robustness of the system
is enhanced.
The IDE algorithm is designed to replace the original fixed

mutation strategy of the DE algorithm with four test vector
generation strategies. The experience of learning the optimal
solution in the previous generation through experimental vec-
tor generation strategies leads to adaptive and more appropriate

70 www.jpier.org



Progress In Electromagnetics Research C, Vol. 146, 65-76, 2024

generation strategies. The equation for the strategy for gener-
ating the four test vectors is as follows:
1) The DE/rand/1/bin policy. Its equation is as follows:

U j
i =

{
Xj

r1+F (Xj
r2−X

j
r3), rand[0, 1)<CR or j=jrand

Xj
i , otherwise

(19)

2) The DE/rand-to-best/2/bin policy. Its equation is as fol-
lows:

U j
i =


Xj

r1 + F (Xj
best −Xj

i ) + F (Xj
r1 −Xj

r2)+
F (Xj

r3−X
j
r4), if rand [0, 1) < CR or j = jrand

Xj
i , otherwise

(20)

3) The DE/rand/2/bin policy. Its equation is as follows:

U ji =


Xj
r1 + F (Xj

r2 −Xj
r3) + F (Xj

r4 −Xj
r5),

if rand [0, 1) < CR or j = jrand
Xj
i , otherwise

(21)

4) The DE/current-to-rand/1 policy. Its equation is as fol-
lows:

Ui,G = Xi,G+K(Xr1,G−Xi,G)+F (Xr2,G−Xr3,G) (22)

where U ji is the new individual produced by the mutation op-

eration, Xj
i (i = r1, r2, . . .) a randomly selected individual in

the population, F the mutation operator, CR the crossover op-
erator. F is used to introduce randomness in each generation
to maintain the diversity of populations and to find new solu-
tions in the search space. CR is used to generate new offspring
individuals by combining the characteristics of different indi-
viduals. i is the sequence of the individual in the population,D
the vector dimensionality, and j = {1, 2, . . . , D}K a random
number between (0, 1).
The IDE algorithm is designed to find out the optimal indi-

viduals (the optimal individuals are the optimalQ andR) in the
population by iteratively initializing the population, evaluating
the fitness, performing mutation and crossover operations, and
selecting the good individuals. The specific steps are as fol-
lows:
1) The initialized strategy probabilities Pn,G and LP, and a

set of populations with NP of 50 are randomly generated with
initial population formulas as follows:

Xj
i,G = xjmin + rand(0, 1)(Xj

max −Xj
min)

Xi,G =
{
X1
i,G, X

2
i,G, X

3
i,G, . . . , X

D
i,G

}
Xmin =

{
x1min, x

2
min, x

3
min, . . . ., x

D
min

}
Xmax =

{
x1max, x

2
max, x

3
max, . . . ., x

D
max

}
i = {1, 2, 3, . . . , NP}

(23)

where D is the vector dimension.
2) The boundedness handling process: new individuals that

do not meet the boundary constraints are reinitialized in the
search space.
3) The strategy selection: randomly select a strategy for each

target vector Xi,G and compute the strategy probability Pn,G
and update the success and failure memories.

4) The variation and crossover operation: a variation opera-
tion is performed on the experimental vector generation strat-
egy with the highest strategy after boundary processing [25].
The expression for the crossover operation is as follows:

Hi,G+1 =

{
Ui,G+1, if rand(j) ≤ CR
Xi,G, otherwise

(24)

f = w1e1 + w2e2 (25)
e = (iE − i)

2 (26)

where w1 and w2 are the weights of the corresponding state
variables of Q and R, and e is the error term of the dq-axis
current observation iE and the EKF estimate i. e1 corresponds
to the error of the d-axis current, and e2 corresponds to the error
of the q-axis current.
5) The selection operation: bring the individual Xi,G+1 of

the new population and the individualXi,G of the previous gen-
eration population into (25) for size comparison, and select the
one with the highest value of f as the new individual of the
current population. If the current population has evolved to the
maximum number of iterations, the new individual of the cur-
rent population is output as the optimal solution, and if not, the
mutation operation is continued. The expression for the selec-
tion operation is as follows:

Xi,G+ 1 =

{
Ui,G+1, f(Ui,G+1) < f(Xi,G)
Xi,G, otherwise

(27)

The proposed IDE algorithm can be used to optimize theQ and
R of EKF. It takes Q and R as the variables of the optimiza-
tion problem and dynamically adjusts Q and R through oper-
ations such as population evolution, selection, crossover, and
mutation. It makes the EKF obtain better filtering effect in the
process of parameter estimation and state estimation. The es-
timation error and time of EKF are reduced. When parameter
mismatch occurs, the system can obtain more accurate motor
parameters, which leads to improved parameter robustness.

5. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the correctness and effectiveness of the proposed
method IDEEKF-RMPTC, simulation experiments are carried
out on an RT-LAB semi-physical simulation platform based on
a TMS320F2812 controller, comparing the schemes of EKF-
RMPTC and EKF-MPTC. The model is first downloaded to the
simulation platform to realize the building of the hardware-in-
the-loop system of the PMSM drive system, and then the Oscil-
loscope DPO 4034 to show the experimental results. The RT-
LAB semi-physical simulation platform is shown in Fig. 5(a),
The schematic diagram of the RT-LAB hardware in the loop is
shown in Fig. 5(b), and the parameters of PMSM are shown in
Table 2.
Because the parameters cannot be set arbitrarily when the

PMSM is running, in this experiment, the parameters of the
motor under parameter mismatch are replaced by setting the
corresponding step change module. The working conditions
are set as follows: the rotational speed is 750 r/min; the motor
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FIGURE 5. (a) The diagram of RT-LAB semi-physical simulation platform. (b) The schematic diagram of the RT-LAB hardware.
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FIGURE 6. The waveforms of dq-axis current. (a) EKF-MPTC. (b) EKF-RMPTC. (c) IDEEKF-RMPTC.

TABLE 2. The parameters of PMSM system.

Parameter Symbol Value
Number of pole pairs
Stator inductance
Stator resistance

Magnet flux linkage
DC voltage
Rated torque
Rated speed
Rated power

Inertia

np

Ls

Rs

ψf

Udc

Te

N

PN

J

4
8.5mH
2.875Ω
0.3Wb
380V
12N ·m
750/min
1 kW

0.00816 kg ·m2

is started with load, 0.2 s loading operation, 0.4 s load reduc-
tion operation, 0.6 s inductance mismatch (IM), 0.8 s resistance
mismatch, and 0.9 s magnetic flux linkage mismatch (MFLM).
This experiment is organized as follows:
1) The parameter robustness of MPTC and RMPTC under

parameter mismatch is verified by comparing EKF-MPTCwith
EKF-RMPTC, and the experimental results show that RMPTC
is more parameter robust under the same experimental condi-
tions.
2) Compare EKF-RMPTC with IDEEKF-RMPTC to verify

the ability of IDEEKF and EKF to recognize the motor param-
eters under parameter mismatch, and the experimental results
show that IDEEKF is more capable of recognizing the param-
eters under parameter mismatch.

5.1. The Dynamic Working Condition Analysis of dq-Axis Cur-
rent
A waveform of the dq-axis current under the three control
strategies is shown in Fig. 6. It can be seen that the dynamic
tracking ability of the dq-axis current is basically the same un-
der the three sets of experiments. With 0.6 s as the dividing
line, it is divided into no parameter mismatch and parameter
mismatch. By parameter identification the motor parameters
are recognized in real time and returned to the control strat-
egy to participate the calculation. During stable operation of
the motor, the dq-axis current amplitudes of the three meth-
ods are different. By observing Figs. 6(a)-(b) and Table 3, it is
seen that the dq-axis current amplitude gets reduced in RMPTC
compared toMPTCwhen parametric mismatch occurs between
the inductance and stator magnet flux linkage. By comparing
Fig. 6(b) and Fig. 6(c), it can be seen that IDEEKF signifi-
cantly improves the accuracy of motor identification compared
to EKF, which leads to a significant reduction in the amplitude
of the dq-axis currents, indicating that IDEEKF is more robust
in parameters identification.

TABLE 3. The dq axis current amplitude.

The control
of strategy

The amplitude of
the d-axis current

The amplitude of
the q-axis current

EKF-MPTC 0.54A 0.27A
EKF-RMPTC 0.52A 0.23A

IDEEKF-RMPTC 0.26A 0.16A

72 www.jpier.org



Progress In Electromagnetics Research C, Vol. 146, 65-76, 2024

t (100 ms/div)

750r/min

12N·m

2N·m 3N·m 2N·m
① ②

① ②

0.4066 N·m
t (100 ms/div)

750r/min

12N·m

2N·m 3N·m 2N·m
① ②

① ②

0.5195N·m

② ① ②

① ② ① ②

750r/min

12N·m

2N·m 3N·m 2N·m

t (100 ms/div)

① ②

① ②

0.2883N·m

① ②

① ②

ref

eT eT

refn n refn n refn n

ref

eT eT
ref

eT eT
 

①

(a) (b) (c)

FIGURE 7. The waveforms of speed and torque. (a) EKF-MPTC. (b) EKF-RMPTC. (c) IDEEKF-RMPTC.
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FIGURE 8. The waveform of ABC three-phase current. (a) EKF-MPTC. (b) EKF-RMPTC. (c) IDEEKF-RMPTC.

5.2. The Dynamic Working Condition Analysis of Speed and
Torque
The speed and torque waveforms under the three control strate-
gies are shown in Fig. 7. Because of the limited display scale of
the oscilloscope, the overshoot of the rotational speed in Fig. 7
is not obvious, and the overshoot can be observed after several
zooms in the actual operation. It can be observed that the dy-
namic following of the speed and torque waveforms under the
three strategies are basically similar. By observing Figs. 7(a)-
(b) and Table 4, the torque pulsation is reduced in RMPTC com-
pared to MPTC when parameter mismatch occurs, indicating
that IMPTC has better restraining of torque fluctuation.

TABLE 4. The result of speed response time and torque pulsation value.

The control
of strategy

Speed respone
time (ms)

torque pulsation
value (N·m)

EKF-MPTC 66.67 0.5195
EKF-RMPTC 64.2 0.4066

IDEEKF-RMPTC 63.31 0.2883

5.3. The Stator Current and Its Harmonic Analysis
The ABC three-phase current waveform is shown in Fig. 8, and
a-phase stator current waveform with FFT analysis is shown in
Fig. 9. By comparing Fig. 8(b) and Fig. 8(c), the proposed strat-
egy IDEEKF-RMPTC is concluded to have better stator current
waveform. By comparing Fig. 9(b) and Fig. 9(c), the proposed
strategy IDEEKFRMPTC is concluded to have smaller stator

current harmonics. The THD value of EKF-MPTC is 4.06%;
the THD value of EKF-RMPTC is 3.45%; and the THD value
of IDEEKF-RMPTC is 2.49%. Compared to the EKF-RMPTC,
the current harmonics of the IDEEKF-RMPTC are reduced by
27.82%. Compared to the EKF-MPTC, the current harmonics
of the IDEEKF-RMPTC are reduced by 38.76%.

5.4. The Analysis of the Identification Results of the PMSM
Parameters
Figure 10 shows the result of the identification of Rs. By ob-
servation, it can be seen that the resistance changes from Rs to
0.5Rs in 0.8 s. Based on Table 5, it can be seen that the pro-

TABLE 5. The result of parameter identification under two strategies.

Parameter
EKF IDEEKF

Before
mismatch

After
mismatch

Before
mismatch

After
mismatch

Rs/Ω 2.9435 1.5196 2.9161 1.4889
Error/% 2.3826 5.7113 1.4296 3.7496

Recognition
time/s 0.0249 0.0248 0.0068 0.0065

Ls/mH 7.9308 17.3795 8.1205 17.3036
Error/% 6.6961 2.2321 4.4647 1.7859

Recognition
time/s 0.0265 0.0320 0.0053 0.0046

ψf/Wb 0.2894 0.1453 0.3047 0.1461
Error/% 3.5333 2.3133 1.5667 2.6000

Recognition
time/s 0.0652 0.0051 0.0041 0.0035
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FIGURE 9. The diagram of phase current and its FFT analysis. (a) EKF-MPTC. (b) EKF-RMPTC. (c) IDEEKF-RMPTC.

t (100 ms/div)

Reference Value
EKF-RMPTC

Error is 2.3826

Error is 5.7113

t (100 ms/div)

Error is 1.4296

Error is 3.7496

Reference Value
IDEEKF-RMPTC

2.875W

1.4375W

2.875

1.4375W

 

W

(a) (b)

FIGURE 10. The identification result diagram of Rs. (a) EKF-RMPTC. (b) IDEEKF-RMPTC.
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FIGURE 11. The identification result diagram of Ls. (a) EKF-RMPTC. (b) IDEEKF-RMPTC.

posed method IDEEKF-RMPTC has a recognized Rs value of
2.9161Ω in 0 ∼ 0.8 s, with the recognition time 0.0068 s, and
the recognized Rs value in 0.8 s–1 s is 1.4889Ω, with a recog-
nition time 0.0065 s. The comparative method EKF-RMPT has
a recognized Rs value of 2.9435Ω at 0 ∼ 0.8 s with a recog-
nition time 0.0249 s, and 1.5196Ω at 0.8 s ∼ 1 s with a recog-
nition time of 0.8248 s. From the above values, it can be seen
that IDEEKF-RMPTC reduces the discrimination error of Rs

by about 0.4 times and the discrimination time by about 0.73
times compared with EKF-RMPTC.
Figure 11 shows the graph of the result of the identification

of Ls. It can be observed that its value changes from Ls to
2Ls in 0.6 s. From Table 5, it can be seen that the proposed
method IDEEKF-RMPTC at 0 ∼ 0.6 s has an Ls discrimina-
tion value of 8.1205mH with a discrimination time 0.0053 s,
and at 0.6 s ∼ 1 s has a Ls discrimination value of 17.3036mH
with a discrimination time 0.0046 s. The comparative method
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FIGURE 12. The identification result diagram of ψf . (a) EKF-RMPTC. (b) IDEEKF-RMPTC.

EKF-RMPT has an Ls discrimination value of 7.9308mH at
0 ∼ 0.6 s with a discrimination time 0.0265 s, and the Ls dis-
crimination value at 0.6 s ∼ 1 s is 17.3795mH with a discrimi-
nation time 0.0320 s. By comparing the above values, it can be
seen that IDEEKF-RMPTC compared to EKF-RMPTC reduces
the discrimination error of Ls by 0.265 times and the discrimi-
nation time by 0.83 times.
Figure 12 shows the graph of the identification result of the

magnetic flux linkage ψf . It can be observed that its value
changes from ψf to 0.5ψf at 0.9 s. From Table 5, it can be seen
that the proposed method IDEEKF-RMPTC has an ψf discrim-
ination value of 0.3047Wb at 0 ∼ 0.9 s with a discrimination
time 0.0041 s, and the ψf discrimination value at 0.9 s–1 s is
0.1461Wb with a discrimination time 0.0035 s. The compar-
ative method EKF-RMPTC has a ψf discrimination value of
0.2894Wb at 0–0.9 s with the discrimination time 0.0652 s, and
the ψf discrimination value at 0.6 s–1 s is 0.1453Wb with the
discrimination time 0.0051 s. By comparing the above values,
it can be seen that IDEEKF-RMPTC reduces the discrimination
error of ψf by a factor in 0.34 and the discrimination time by a
factor in 0.31 compared to EKF-RMPTC.

6. CONCLUSION
Aiming at the issues of high computational burden and control
performance affected by motor parameters in the conventional
MPTC strategy, a robust model predictive torque control strat-
egy based on improved differential evolution extended Kalman
filter is proposed. According to the analysis of theoretical re-
search and experimental results, the conclusions are as follows:
1) The proposed RMPTC strategy uses steady-state voltage

vectors to select alternative vectors. Compared with the con-
ventional MPTC strategy, it can reduce the torque pulsation by
21.73% and stator current THD by 15.02% at rated motor pa-
rameters. dq-axis currents before and after the parameter mis-
match as well as the speed response time are also slightly re-
duced.
2) The proposed IDEEKF-RMPTC introduces an improved

differential evolutionary algorithm to optimize the noise matri-
ces Q and R of the EKF. Compared with the EKF-RMPTC,
the estimation error and identification time of the resistance are

reduced by 37.18% and 73.24%; the estimation error and iden-
tification time of the inductance are reduced by 26.66% and
82.81%; the estimation error and identification time of the mag-
netic flux linkage are reduced by 34.03% and 69.71%.
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