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ABSTRACT: At present, Feature Selective Validation (FSV) is the most common data verification method of computational electromag-
netics, and its effectiveness has been verified since its release in 2006, but since the main research object of this method is electromagnetic
compatibility data, the 8 sets of data used for algorithm training also come from the field of electromagnetic compatibility, and its data
curve has the characteristics of gentle waveform and small fluctuations. However, Radar Cross Section (RCS) data, especially high-
frequency RCS data, usually have complex waveforms and drastic fluctuations, and the results obtained by the FSV method are often
quite different from those obtained by experts. This paper proposes a new data verification method based on Smoothed Pseudo Wigner-
Ville Distribution (SPWVD) algorithm for RCS data, which integrates the characteristics of RCS data and expert evaluation experience,
and verifies its effectiveness in RCS data verification.

1. INTRODUCTION

Radar cross section (RCS) data of objects is an important re-
search object in the field of electromagnetics, which is the

data basis for radar detection and recognition, object stealth and
anti-stealth research, and plays an extremely important role in
the field of national defense [1]. At present, the acquisition of
RCS data is mainly based on computer simulation and experi-
mental measurement, and on the basis of obtaining RCS data,
it is necessary to use data verification technology to verify the
RCS data to achieve the purpose of effective application. By
comparing the consistency between simulation data and mea-
surement data, the validity of the data, model, or method is ver-
ified, and then the correction of the simulation model or the
optimization of measurement methods can be guided [2]. With
the development of the times, there are higher and higher re-
quirements for the accuracy of RCS data, and RCS data veri-
fication technology has also received extensive attention from
many experts and scholars.
At present, most of the trusted verification of RCS data still

relys on the visual evaluation of experts, but the subjectivity
and instability of expert experience cannot realize the quantifi-
cation of verification results, and this method cannot be widely
applied. With thewide application of VV&A (Verification, Val-
idation and Accreditation) method in electromagnetic credible
verification, many typical statistical methods have been applied
by experts and scholars to RCS data verification, such as mean
square error and correlation coefficient, and are mostly used for
credible verification of target results of various missiles, air-
craft, ships, etc. For example, Ref. [3] uses the mean square er-
ror to verify the credibility of the RCS simulation data obtained
* Corresponding author: Zhiwei Gao (gao_zhiwei@163.com; gaozw@stdu
.edu.cn).

by different electromagnetic calculation methods, and the re-
sults show that the method is simple and easy to implement,
but the results only reflect the overall error level, lack the abil-
ity to accurately locate the data differences, and cannot guide
the correction of the details of the simulation model. Ref. [4]
uses the Feature Selection Verification Method (FSV) to ver-
ify the credibility of the RCS data of the missile. The results
show that compared with methods such as mean square error,
the proposed method has greatly improved the ability of accu-
rate positioning of differences, but there is still a big difference
between the proposed method and the expert visual evaluation,
which cannot meet the practical application. The reason is that
the method uses the Fourier transform, which inevitably pro-
duces the problem of time-frequency resolution difference, that
is, the impact of a sudden change in the data at a certain point in
the time domain will be distributed to the entire frequency do-
main. Therefore, the current research and application of FSV
is still mainly focused on the field of electromagnetic compat-
ibility. For example, the FSV method was used in [5] to eval-
uate the results of the antenna’s far-field pattern to verify the
performance of the FSV. In [6], the FSV method was used to
compare the infrared thermal images of the aircraft obtained by
measurement and modeling, so as to improve the confidence
of the complementarity of the measurement and modeling re-
sults. Comparedwith statisticalmethods and expert experience,
the FSV method has obvious advantages in quickly locating
data differences and quantitatively reflecting data characteris-
tics. Because the main research object at the beginning of the
method is electromagnetic compatibility data [2, 7, 8], the eight
sets of data used for algorithm training also originate from the
field of electromagnetic compatibility, and the data curve has
the characteristics of gentle waveform and small fluctuations.
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TABLE 1. Filter weights in the frequency domain.

Frequency sequence number Low-frequency weighted value High-frequency weighted value
≤ ibp − 3 1 0
ibp − 2 0.834 0.167
ibp − 1 0.667 0.334
ibp 0.5 0.5

ibp + 1 0.334 0.667
ibp + 2 0.167 0.834

≥ ibp + 3 0 1

However, RCS data, especially high-frequency RCS data, usu-
ally have complex waveforms and drastic fluctuations, and the
results obtained by using the FSVmethod are often quite differ-
ent from those evaluated by experts. In this paper, a data ver-
ification method based on the smoothing pseudo-Wigner-Ville
distribution algorithm [9] is proposed for RCS data, which in-
tegrates the characteristics of RCS data and expert evaluation
experience to improve the validity of the method for RCS data.
The structure of this paper is as follows. Firstly, the basic

principles and processing flow of the FSV method are intro-
duced in Section 2, and the limitations of the method on RCS
data are analyzed through an expert investigation of 8 sets of
typical RCS data. Based on the above questions, Section 3
proposes a trusted verification method for RCS data. Subse-
quently, Section 4 provides an example of the above method.
Finally, Section 5 summarizes the full text.

2. INTRODUCTION TO THE FSV METHOD
This method was first proposed by Martin in 1999 [10], and af-
ter 10 years of continuous revision and improvement, it finally
became the core content of the IEEE1597.1 computational elec-
tromagnetics modeling and simulation verification standard in
2008 [2]. The evaluation results of the FSV method not only
reflect the numerical differences, but also contain the under-
standing of the differences by experts in the field, which can
be used as a point-by-point analysis and overall measurement
tool for data validation, and provide qualitative and quantitative
evaluation indicators.

2.1. Flow of the FSV Method
FSV is a method of assessing the credibility of data based on
its characteristics. The calculation of the difference between
the two sets of data is carried out point-to-point, and the am-
plitude and trend are verified from many aspects. Combined
with the FSV evaluation scale, the validation results were qual-
itatively and quantitatively evaluated. The basic principle of
the FSV method is to ensure that the two sets of data have
the same number of sampling points, and the data are trans-
formed by Fourier transform to obtain the frequency domain
form. The first four points in the spectrum are inversely trans-
formed by Fourier transform, and the data obtained is the DC
component. From the fifth point, the remaining data are fil-
tered according to the unique low-pass and high-pass filters in
the FSV method, and then the inverse Fourier transform is car-

ried out to obtain the low-frequency and high-frequency com-
ponents respectively. The combination of DC, low-frequency,
and high-frequency components forms the data difference, and
then combined with the FSV evaluation grade table to obtain
the evaluation grade.

2.1.1. Extraction of DC, Low-Frequency, and High-Frequency Compo-
nents

1. Extract the DC Component
First, there are two sets of data with N points, and n is the

number of data points. The frequency domain data are obtained
by Fourier transform on the two sets of comparison data, and the
four points with the lowest frequency in the frequency domain
data are inversely transformed by Fourier transform to obtain
the DC component DC1 (n) and DC2 (n).
2. Extract Low-frequency and High-frequency Components
The frequency domain data are summed from the fifth term:

S =

N∑
i=5

TDWS(i) (1)

where TDWS(i) is the i spectral value, S the sum of spectral
values starting from the fifth frequency point, and N the total
number of points. The demarcation point between high and low
frequencies is determined by the following formula:

i40%∑
i=5

TDWS(i) ≥ 0.4× S (2)

ibp = i40% + 5 (3)

where i40% is the frequency point corresponding to 40% of the
sum of the spectral values starting from the fifth frequency, and
ibp is the dividing point between high and low frequencies.
Then, the data are filtered according to the frequency domain

filter defined by the FSV method to obtain the low-frequency
and high-frequency components in the frequency domain, re-
spectively, and then the inverse Fourier transform is performed
to obtain the low-frequency components L1(n), L2(n) and
high-frequency components H1(n), H2(n), respectively. The
specific low-pass and high-pass filters are shown in Table 1.

2.1.2. Obtain Difference Measure

1. Amplitude Difference Measure (ADM)
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The amplitude difference of the ADM measurement data is
mainly obtained by the combination of DC and low-frequency
components, so it reflects the DC difference of the data and
reflects the overall consistency. ODM is the difference of DC
offset, and the formula is as follows:

ADM(n) =

∣∣∣∣α(n)β

∣∣∣∣+ODM (4)

α(n) = (|L1(n)| − |L2(n)|) (5)

β =
1

N

N∑
n=1

(|L1(n)|+ |L2(n)|) (6)

ODM (n) =

∣∣∣∣χ (n)

δ

∣∣∣∣ exp{∣∣∣∣χ (n)

δ

∣∣∣∣} (7)

χ = (|DC1(n)| − |DC2(n)|) (8)

δ =
1

N

N∑
n=1

(|DC1(n) + L1(n)|+ |DC2(n) + L2(n)|) (9)

2. Feature Difference Measure (FDM)
FDM reflects the trend difference of the data, which is

mainly obtained by the combination of derivatives of the low-
frequency and high-frequency components, so it reflects the
trend difference of the data. FDM1 is composed of the first
derivative of the low-frequency components of the two sets of
data, which reflects the difference in the slow change of the
trend of the two sets of data. FDM2 is composed of the first
derivative of the high-frequency components of the two sets of
data, which reflects the difference in the instantaneous trend of
the two sets of data. FDM3 is composed of the second deriva-
tive of the high-frequency components of the two sets of data,
reflecting the more detailed trend difference between the two
sets of data. Due to the existence of a second-order “deriva-
tive”, the number of data points for FDM is 4 points less than
that for the original data.

FDM1 (n) =
|L′

1 (n)| − |L′
2 (n)|

2
N

N∑
n=1

(|L′
1 (n)|+ |L′

2 (n)|)
(10)

FDM2(n) =
|H ′

1(n)| − |H ′
2(n)|

6
N

N∑
n=1

(|H ′
1(n)|+ |H ′

2(n)|)
(11)

FDM3(n) =
|H ′′

1(n)| − |H ′′
2(n)|

7.2
N

N∑
n=1

(|H ′′
1(n)|+ |H ′′

2(n)|)
(12)

FDM(n)= 2 (|FDM1(n)+FDM2(n)+FDM3(n)|) (13)
whereL′

1,2 (n) is the first derivative ofL1,2(n);H ′
1,2(n) is the

first derivative of H1,2(n); H ′′
1,2(n) is the second derivative

of H1,2(n).
3. Global Difference Measure (GDM)

GDM is the global difference obtained by considering ADM
and FDM comprehensively, reflecting the comprehensive dif-
ference of amplitude and change trend, and the formula is as
follows:

GDM(n) =

√(
ADM(n)

2
+ FDM(n)2

)
(14)

The GDM assessment is obtained by calculating the average of
the GDM,which is denoted as the confidence assessment value.

GDMc =

N∑
n=1

GDM(n)

N
(15)

As can be seen from the above, ADM(n), FDM(n), and
GDM(n) are point-to-point calculation of data differences,
and the calculated values are based on the FSV evaluation scale
to obtain qualitative and quantitative evaluation results. Table 2
shows the FSV assessment classification table.

TABLE 2. FSV assessment scale.

FSV value FSV interpretation rank
Less than 0.1 Excellent 1

Between 0.1 and 0.2 Very Good 2
Between 0.2 and 0.4 Good 3
Between 0.4 and 0.8 Fair 4
Between 0.8 and 1.6 Poor 5
Greater than 1.6 Very Poor 6

2.2. Analysis of the Limitations of the FSV Method in the Vali-
dation of Target RCS Data
Due to the good application effect of the FSV method applied
to electromagnetic compatibility data, many scholars have tried
to introduce FSV into RCS data verification. However, the ap-
plicability of the FSV method to the RCS data is limited due
to the significant differences between the RCS data and EMC
data.

2.2.1. Expert Survey for RCS Data

The FSV method is a method designed to simulate the visual
evaluation of experts, so it is necessary to verify the applica-
bility of the FSV method to the data of a particular domain
by comparing it with the visual evaluation results of experts in
the field. Expert results were obtained primarily through ques-
tionnaires of typical RCS data [11]. The questionnaire selected
8 sets of data as shown in Figure 1 and provided them to the
respondents, which basically covered the frequencies and data
characteristics commonly used at present. The survey subjects
are more than 20 experts and researchers in the field of electro-
magnetic simulation algorithms and radar who participated in
the 2024 PIERS International Conference. Respondents were
asked to select six qualitative explanations in Table 1 [12] to
describe the degree of similarity of each set of curves. The se-
lected quantities of the six interpretations were counted, and
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 1. Questionnaire data set RCS-1 to RCS-8. (a) Data sets RCS-1. (b) Data sets RCS-2. (c) Data sets RCS-3. (d) Data sets RCS-4. (e) Data
sets RCS-5. (f) Data sets RCS-6. (g) Data sets RCS-7. (h) Data sets RCS-8.

the outliers were eliminated according to the Layda criterion.
In order to compare the quantitative results with the quantita-
tive results of different methods, it is also necessary to convert
the histogram results obtained by the expert survey into quan-
titative results, which is achieved by Equation (15).

GDMtotExpert=

6∑
i=1

CTypical(i)∗GDMExpert(i) (16)

where GDMtotExpert is the quantitative result of an expert
survey, in the form of a single value; GDMExpert(i) is the re-
sult of the six boxes of histograms surveyed by experts, with
a total of six element values, corresponding to the propor-
tional values of the qualitative evaluation of “excellent”, “very
good”, “good”, “fair”, “poor”, and “very poor”; CTypical(i) is
the grade value corresponding to the qualitative evaluation, as
shown in Table 2, CTypical(i) = [1 2 3 4 5 6].

2.2.2. Analysis of the Limitations of FSV in RCS Data Validation

In order to compare the evaluation performance of different
methods, the evaluation results of each algorithm (including
the results of expert surveys) are standardized. Observing the
graph, it can be seen that data set 1 and data set 6 represent the
two extremes of data differences (“excellent” and “very poor”),
respectively, so the normalization of the values evaluated by
different algorithms can be handled using the min-max algo-
rithm shown in equation (17).

ds(i) =
d(i)− dmin
dmax − dmin

(17)

where d(i) is the result of the evaluation of the differences in the
data of group i; ds(i) is the standardized evaluation result; dmax
is the maximum value among the 8 groups of data evaluation

results; dmin is the minimum value among the 8 groups of data
evaluation results.
After standardization, the evaluation value of the data group

with the largest difference in the evaluation results of each al-
gorithm is 1, and the evaluation value of the data group with
the least difference is 0. After treatment by Eq. (15) and Eq.
(16), the comparison between FSV and the results of the expert
survey is shown in Table 3. From the ranking results, it can be
seen that the applicability of the FSV method to RCS data has
great limitations. The reason is that the characteristics of EMC
data are usually prominent, with obvious peaks and gentle re-
gions, and the high and low frequency boundaries of the data
are obvious.
FSV extracts the DC, low-frequency, and high-frequency

components of the data based on energy to characterize the
magnitude, trend, and characteristic information of the data.
However, the target RCS data usually has a large number of in-
termediate frequency components, and the energy proportions
of low, medium, and high frequencies show different charac-
teristics with the change of radar band, and the higher the radar
band is, the greater the high-frequency energy of the data is.
Therefore, the energy division of FSV usually does not accu-
rately extract the above three types of information.
In addition, the Fourier transform in the FSV algorithm can-

not invert the frequency domain to the time domain position,
so that the sudden change at any point on the time axis will
affect the signal in the full frequency domain [13, 14], which
ultimately leads to the bias between the evaluation results of
the FSV algorithm and the expert evaluation results. Although
many researchers have improved the failure problem by di-
viding the data into different regions and assigning different
weights to each region or data segmentation algorithms, these
methods are evaluated from the perspective of simulated ex-
perts and do not fundamentally solve the problem of bias be-
tween the evaluation results and the expert evaluation results
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TABLE 3. Standardized evaluation results and comparison of different evaluation methods.

Expert survey results Expert survey sorting FSV results FSV sorting
Data 1 0 1 0 1
Data 2 0.4775 3 0.1407 2
Data 3 0.5020 4 0.5885 5
Data 4 0.6148 6 0.8213 7
Data 5 0.5902 5 0.4553 3
Data 6 1.0000 8 1.0000 8
Data 7 0.6373 7 0.7405 6
Data 8 0.4098 2 0.5095 4

caused by the lack of time domain localization function of the
FSV algorithm.
At the same time, unlike the focus in the field of electromag-

netic compatibility, in many radar applications, experts tend to
pay more attention to the overall degree of agreement of the
RCS data in terms of magnitude, trend, characteristics, etc., and
ignore the differences in the data in terms of low RCS values
and background noise and small angle offsets. However, when
the FSV method is applied for data validation, these visually
inattentive data may have a significant impact on the evalua-
tion results, resulting in a large gap between the FSV and expert
evaluation results.

3. TRUSTED VERIFICATION METHOD FOR RCS DATA
In view of the limitations of the FSV method on RCS data,
this paper proposes a data trustworthiness verification method
based on the Smoothed Pseudo Wigner-Ville Distribution (SP-
WVD) algorithm [15]. This method does not need to extract
DC, low-frequency, and high-frequency components, but eval-
uates the data from the perspective of time-frequency energy
distribution, which avoids the adverse impact of the fixed en-
ergy extraction method in FSV on the evaluation results caused
by the inapplicability of RCS data. In addition, the time-
frequency resolution of the Fourier transform in FSV is very
low, and a sudden change at any point in the timeline will af-
fect the signal in the full frequency domain, while SPWVD has
a high time-frequency resolution [16], which can fix the influ-
ence of the difference at one point and only at that point, and
do not affect the evaluation results at other points. At the same
time, according to the questionnaire and experimental results,
the RCS data were divided into high RCS and lowRCS regions,
and different evaluation weights were assigned to make them
more consistent with the visual evaluation results of experts.

3.1. SPWVD Algorithm

The time-frequency analysis method is a signal processing
method that combines time and frequency, which can intu-
itively process and analyze non-stationary signals. Among
them, Wigner-Ville distribution is the most typical nonlin-
ear time-frequency analysis method, which has good time-
frequency aggregation characteristics [17].

The Wigner-Viller distribution of discrete signals z(n) is de-
fined as:

Wz(n, k)=

m=N∑
m=−N

z
(
n+

m

2

)
z∗

(
n−m

2

)
e−j2πkm/N (18)

Since the time-bandwidth product of the Wigner-Ville distri-
bution reaches the lower bound given by the uncertainty prin-
ciple, the time-frequency resolution of no time-frequency joint
distribution can surpass the Wigner-Ville distribution.
However, when the time-frequency analysis of z(n) is per-

formed, there is cross-term interference. Therefore, it is easy
to generate false frequencies in practical application, resulting
in poor final analysis results. In order to obtain good time-
frequency aggregation and avoid cross-term interference, the
smoothed pseudo-Wigner-Ville distribution (SPWVD) further
uses two window functions to smooth the time domain and fre-
quency domain ofWVD respectively, which greatly suppresses
the cross-term and ensures high time-frequency aggregation
characteristics.

WSP
z (nk) =

m=N∑
m=−N

g(n)h(k)z
(
n+

m

2

)

z∗
(
n− m

2

)
e−j2πkm/N (19)

where g(n) is the window function that suppresses the intersec-
tion of the time domain direction; h(k) is the window function
that suppresses the intersection of the direction of the frequency
domain.

3.2. SPWVD-ON-RCS Algorithm
The basic idea of this method is shown in Figure 2. First, the
data are offset level corrected to ensure that the two signals do
not cross between zeros. Then, the minimum threshold of the
RCS core region of interest is calculated, and the difference
between the maximum and minimum of the data is 3

4 . In this
paper, a weight of 0.75 is assigned to the core areas of inter-
est [11]. For the RCS value that is less than the threshold of the
core area of interest, its influence on the overall evaluation re-
sults should be weakened, so a weight of 0.25 is assigned to it.
Next, the SPWVD transformation is performed on the two sets
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FIGURE 2. SPWVD-ON-RCS algorithmic flow.

of data. After the transformation, the time-frequency energy
distribution map of the two sets of data is obtained, and then it
is normalized to prevent the influence of different data magni-
tudes. At the same time, the frequency points without energy
distribution in the frequency dimension of the two arrays were
counted separately to prevent the influence of the non-energy
distribution area on the evaluation results. Then, the difference
between the two time-frequency energy distributionmaps is ob-
tained, and the mean values of the corresponding columns are
obtained according to the time domain and frequency domain,
respectively. Then, the calculation results were classified point
by point according to Table 4, and the influence of non-core
area and non-energy distribution area on the evaluation results
was considered separately. The evaluation results in the time
domain and frequency domain were obtained, respectively. Fi-
nally, the global evaluation results are obtained. The following
is the detailed process of the algorithm and the corresponding
formula.

TABLE 4. Classification evaluation table for six boxes.

SPWVD-ON-RCS
value

SPWVD-ON-RCS
interpretation

rank

Less than 0.0025 Excellent 1
Between 0.0025 and 0.05 Very Good 2
Between 0.05 and 0.1 Good 3
Between 0.1 and 0.15 Fair 4
Between 0.15 and 0.2 Poor 5

Greater than 0.2 Very Poor 6

1. Offset level correction: Prevent the adverse effects of data
crossing [11].

Datai(n) = Datai(n) +DCcor (20)

where Datai(n) is all the points of the two sets of data, i = 1,
2, andDCcor is the maximum absolute value of the two sets of
data.

2. Calculate the minimum threshold for the core area of in-
terest of the RCS: In the visual evaluation of experts, experts
tend to pay more attention to the region with high RCS values,
and low RCS values are tolerable to a certain extent, even if
there is an error. In this paper, 3

4 of the difference between the
maximum and minimum values of the data is taken as the min-
imum threshold for the core area of interest. See Eq. (19) and
Figure 3.

ythreshold = ymax −
3

4
(ymax − ymin) (21)

where ythreshold is the lowest threshold of the RCS core re-
gion of interest; ymax is the maximum value betweenData1 and
Data2; ymin is the minimum value betweenData1 andData1.
3. Determine the index of points in the non-core area of in-

terest: Step 3 divides the core area of interest and the non-core
area of interest, in order to simulate the experts’ attention to the
core area of interest, in the final evaluation process, the core
area of concern is given a weight of 0.75, and the non-core area
of concern is given a weight of 0.25. A necessary step in this
process is to identify the index of non-core areas of interest to
ensure the accuracy of the subsequent empowerment process.
The process of determining the index is shown in Eq. (20) and
Figure 6.

xindex = xData1
index |y≤ythreshold

∩ xData2
index |y≤ythreshold

(22)

where xindex is the index of the final non-core region of in-
terest; xData1

index is the index of the non-core area of interest of
Data1; xData2

index is the index of the non-core area of interest of
Data2; x|y≤ythreshold

is the point in the data that is less than
the threshold of ythreshold.
As shown in Figure 4, the reason for the intersection is that in

region 1, bothData1 andData2 are smaller than the threshold,
so the index here can be used as the index for the final non-
region of interest, because the two sets of data exhibit the same
unconcerned characteristics. However, in region 2, Data1 is
less than the threshold, butData2 is greater than the threshold,
and in this case, the index of the region cannot be used as the
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FIGURE 3. An example of the RCS Core Area of Interest minimum
threshold.
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FIGURE 4. Legend of non-core area of interest index determination.

final index of the non-region of interest, because it is impossible
to determine whether the credible result of this part is greater
or less than the threshold, so the evaluation results here cannot
be weakened.
4. The two sets of data are transformed by SPWVD and nor-

malized: taking Data1 as an example, the transformation pro-
cess is shown in Eq. (21).

WSP
Data1

(nk) =

m=N∑
m=−N

g(n)h(k)z
(
n+

m

2

)
∗z∗

(
n− m

2

)
e−j2πkm/N (23)

where WSP
Data1

(nk) is the time-frequency energy distribution
obtained after SPWVD transformation; n is the number of
points on the horizontal axis of the time-frequency energy dis-
tribution map obtained after SPWVD transformation, repre-
senting the time domain points, and n is taken as the length
of the data, that is, length (Data1); k is the number of lon-
gitudinal axis points of the time-frequency energy distribution
map obtained after SPWVD transformation, representing the
frequency domain points, and k is also taken as the data length;
g(n) is a window function that suppresses the intersection of
time domain directions, with a length of 1

5 of the data length
and a Kaiser window with a shape factor of 20 [18]; h(k) is the
window function that suppresses the intersection term in the
frequency domain; the length is 1

4 of the data length, and the
Kaiser window with the shape factor is 20. In the same way,
WSP

Data2
(nk) can be obtained, and after the transformation is

completed, WSP
Data1

(nk) and WSP
Data2

(nk) need to be normal-
ized to prevent the influence of the original data magnitude on
the evaluation results. Taking Data1 as an example, the nor-
malization process is described in Eqs. (22) and (23).

WSP
Data1norm

(nk) =
WSP

Data1
(n, k)

β
(24)

β =
1

n ∗ k

(m=n∑
m=1

p=k∑
p=1

|WSP
Data1

(m, p)|

+

m=n∑
m=1

p=k∑
p=1

|WSP
Data2

(m, p)|
)

(25)

The same goes forWSP
Data2norm

(n, k).
5. Determine the index of frequency points with no energy

distribution in the frequency dimension: In the SPWVD trans-
formation, the number of points in the frequency domain is
specified as the length of the data, but the energy distribution
of the data in the frequency domain may not include all the fre-
quency domain points, so the influence of the frequency domain
points without energy distribution on the frequency domain
evaluation results should be eliminated. Through the obser-
vation of WSP

Data1norm
(nk)WSP

Data2norm
(nk) in the frequency

domain, it can be found that there are some frequency points
where the energy distribution is very little. In fact, these points
have no energy distribution, but the Kaiser window function is
used for the SPWVD transformation, so a weak energy distri-
bution is generated, which we can still treat as no energy distri-
bution. In this case, the index needs to be extracted to prepare
for the subsequent frequency domain evaluation, as shown in
Equations (24), (25).

kindex = k|
WSP

Data1norm
(k)≤0.01∗max

(
WSP

Data1norm
(k)

)
∩ k|

WSP
Data2norm

(k)≤0.01∗max
(
WSP

Data1norm
(k)

) (26)

WSP
Data1,2norm

(k) =

m=n∑
m=1

WSP
Data1,2norm

(n, k) (27)

where kindex is the index of the final frequency domain point
with no energy distribution; k|WSP

Data1norm
(k) is the index of the
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frequency domain point whereData1 transforms the frequency
domain point without energy distribution; and k|WSP

Data2norm
(k)

represents the index of the frequency domain point where
Data1 transforms without energy distribution. The reason for
the intersection is that if Data1 has energy distribution at the
frequency k = p, and Data2 has no energy distribution at the
frequency k = p, it means that there is a difference between the
two sets of data at the frequency point, and the difference needs
to be retained for frequency domain evaluation.
6. Make a difference between WSP

Data1norm
(nk)

and WSP
Data2norm

(nk): normalize the matrix where

WSP
Data1norm

(nk) and WSP
Data2norm

(nk) are both n × k,
and the difference between the two sets of data is obtained by
Equation (26).

WSP
diff (nk) = ||WSP

Data1norm
(nk)| − |WSP

Data2norm
(nk)|| (28)

7. Find the average value of each column in the time domain
and frequency domain dimensions: the matrix with a difference
of WSP

diff (nk) and still n × k. The next step is to average it in
the time domain and frequency domain

WSP
diffTmean(n) =

p=k∑
p=1

WSP
diff (n, k)

k
(29)

WSP
diffFmean(k) =

m=n∑
m=1

WSP
diff (n, k)

n
(30)

whereWSP
diffTmean(n) is the average value in the time domain

direction, and WSP
diffFmean(k) is the average value in the fre-

quency domain direction.
8. Using the xindex of the points of the non-core area

of interest, WSP
diffTmean(n) is divided into two parts,

WSPcore
diffTmean(n)|n ̸=xindex

and WSPNon−core
diffTmean (n)|n=xindex

.

WSPcore
diffTmean(n) represents the time-frequency energy dis-

tribution of the core area of interest, and WSPNon−core
diffTmean (n)

represents the time-frequency energy distribution of the non-
core area of concern. Use the kindex to remove the frequency
point with no energy distribution in WSP

diffFmean(k) to obtain

WSPenergy
diffFmean(k) with energy distribution.
9. Time Difference Measure (TDM) and Frequency Dif-

ference Measure (FDM) were obtained by classification
evaluation of six boxes: WSPcore

diffTmean(n), W
SPNon−core
diffTmean (n),

and WSPenergy
diffFmean(k) were evaluated according to Table 4,

TDM core(n): the time-domain difference of the core area of
interest, TDMNon−core(n): the time-domain difference of
the non-core area of interest, and FDM(k): the frequency-
domain difference of the energy distribution region can be
obtained.

10. Finally, find the value of the global difference.

GDM c=

√√√√√√√
(

0.75 ∗ TDMvalue
core +

0.25 ∗ TDMvalue
Non−core

)2

+(
FDMvalue

energy

)2
(31)

TDMvalue
core =

6∑
i=1

CTypical(i) ∗ TDMcore(n)|n ̸=xindex

ncore
(32)

TDMvalue
Non−core=

6∑
i=1

CTypical(i)∗TDMNon−core(n)|n=xindex

nNon−core
(33)

FDMvalue
energy=

6∑
i=1

CTypical(i)∗FDM(k)|k ̸=kindex

kenergy
(34)

4. INSTANCE VERIFICATION
Take Data (a) as an example.
1. The index for the non-core region of interest is [(−61,

−54), (−23, 1), (164, 173)] from Figure 5.
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FIGURE 5. An example of a time domain index.

2. After SPWVD transformation and normalization process-
ing, the normalized time-frequency distribution of the two sets
of data can be obtained, as shown in Figures 6 and 7.
3. The index for the energy distribution region is [(1–55),

(336–360)] from Figure 8.
4. Making a difference between the two matrices obtained in

step 2 yields Figure 9.
5. The matrices obtained in step 4 are averaged along the

time and frequency domains, respectively, to obtain Figures 10
and 11.
6. Figures 12–14 can be obtained by combining the time-

domain index and frequency-domain index to classify the two
plots in step 5 by performing a six-box evaluation classification.
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FIGURE 6. Data 1 normalized time-frequency distribution. FIGURE 7. Data 2 normalized time-frequency distribution.
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FIGURE 8. An example of a frequency domain index. FIGURE 9. The difference between the two matrices.

7. Using the classification results in step 6, combined with
the weight assignment and Equations (29)–(32), the value of
the global difference is calculated. Take data A) as an example,
the calculation process is as follows:

TDMvalue
core =

[1, 2, 3, 4, 5, 6] ∗ [103, 196, 9, 6, 2, 1]
317

=1.7728 (35)

TDMvalue
Non−core =

[1, 2, 3, 4, 5, 6] ∗ [8, 29, 6, 0, 0, 0]
43

=1.9534 (36)

FDMvalue
energy =

[1, 2, 3, 4, 5, 6] ∗ [0, 44, 17, 19, 0, 0]
80

=2.6875 (37)

GDM c =

√
(0.75 ∗ 1.7728 + 0.25 ∗ 1.9534)2 + (2.687)

2

= 3.2447 (38)

The above processing is carried out on all 8 sets of data in
Figure 1, and a set of data [3.24, 4.82, 4.98, 6.23, 5.16, 6.64,
5.56, 4.59] can be obtained.
In the SPWVD algorithm, ythreshold is used to divide the

core area of interest, so the results obtained by directly using
the FSV algorithm on the data cannot be compared with the
results obtained using the SPWVD algorithm, because the data
sets used are essentially different, so we need to perform the
operations described in steps 1–3 of Subsection 3.2 on the initial
data before using the FSV algorithm.
The results shown in Table 5 and Table 6 can be obtained

by using the above algorithm and then using Eqs. (15), (16) to
standardize the evaluation values of the algorithm.
According to the above table, compared with using FSV di-

rectly on the data, FSV on the preprocessed data is more consis-
tent with the expert evaluation only at the data d), which may be
related to the selection of thresholds. The effect may be better
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FIGURE 10. The matrices obtained in step 4 is averaged along the time
domain.
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FIGURE 11. The matrices obtained in step 4 is averaged along the fre-
quency domain.
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FIGURE 12. The time-domain core area of interest is classified into 6
boxes.
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FIGURE 13. The time-domain Non-core area of interest is classified into
6 boxes.

TABLE 5. Standardized evaluation results and comparison of different evaluation methods.

Expert survey results FSV results FSV on Weighted data results SPWVD-ON-RCS results
Data1 0 0 0 0
Data 2 0.4775 0.1407 0.2810 0.4647
Data 3 0.5020 0.5885 0.6409 0.5118
Data 4 0.6148 0.8213 0.6222 0.8794
Data 5 0.5902 0.4553 0.5098 0.5647
Data 6 1.0000 1.0000 1.0000 1.0000
Data 7 0.6373 0.7405 0.6000 0.6824
Data 8 0.4098 0.5095 0.6052 0.3971
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FIGURE 14. The frequency-domain energy area is classified into 6 boxes.

TABLE 6. Standardized evaluation results sorting and comparison of different evaluation methods.

Expert survey sorting FSV sorting FSV on Weighted data sorting SPWVD-ON-RCS sorting
Data 1 1 1 1 1
Data 2 3 2 2 3
Data 3 4 5 7 4
Data 4 6 7 6 7
Data 5 5 3 3 5
Data 6 8 8 8 8
Data 7 7 6 4 6
Data 8 2 4 5 2

if a threshold that is more suitable for the FSV algorithm can
be chosen. The algorithm proposed in this paper is basically
consistent with the expert evaluation in the RCS data, but there
are also some errors. For example, in Data d), the error of the
two results reaches 0.2646, while the error of the other 7 sets
of data is less than 0.05. The reason is that when evaluating
Data d), experts agree that the overall consistency of the data
in terms of trend and characteristics has a certain tolerance for
the magnitude of the data, but the algorithm equally evaluates
the magnitude, trend, characteristics, and other indicators of the
data, so the evaluation error is generated.

5. CONCLUSION
Data verification technology is an effective method to improve
the reliability and practicability of RCS data, which is of great
significance for measurement and simulation optimization in
radar-related fields. In this paper, the limitations of the FSV
method applied to RCS data are analyzed through the investi-
gation of experts in the field of radar, and a new method is pro-
posed. The validation results of 8 sets of typical RCS data show
that the evaluation results of RCS data proposed in this paper
are obviously close to the results of expert evaluation and have
strong applicability.
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