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ABSTRACT: Radon-Fourier transform (RFT) is able to effectively overcome the coupling between the range cell migration (RCM) effect
and Doppler modulation by searching along range and velocity dimensions jointly for the moving target, which depends on envelope
alignment and Doppler phase compensation. However, without effective clutter suppression, clutter would also be intergraded via RFT.
Thus, adaptive RFT (ARFT) has been proposed to clutter suppression by introducing an optimal filter weight, which is determined
from the clutter’s covariance matrix as well as the steering vector. Nevertheless, the ARFT needs to address the difficulty for real
implementation, i.e., computational complexity is too high to a large number of pulse samples. It is known that to obtain the inversion
the sample covariance matrix (R̂

−1

cn ) is orderM3, i.e., O(M3), which is the most complexity consumed step in ARFT. In this paper, we
propose a modified adaptive RFT (MARFT) method to obtain R̂

−1

cn with recursive calculation, which takes the complexity orderM2, i.e.,
O(M2). Simulations show that the proposed method has the same clutter suppression ability as the conventional ARFT method, while
the computational complexity is much lower.

NOMENCLATURE
c Speed of light
fc Center frequency of radar
fd Doppler frequency
λ Wavelength
B Signal bandwidth
m Slow time index,m = 0, 1, . . . ,M − 1
M Pulse number for integration
Tr Pulse repetition interval
fPRF Pulse repletion frequency, where fPRF = 1/Tr

tm Slow time of radar, where tm = mTr

τ Fast time of radar
n Range cell index

Sm(τ) Point target echo signal
Zm(τ) Received signal in radar system

Z Received data matrix (digitally sampled Zm(τ))
PSF(τ) Point target spread function
AT Target echoes amplitude after pulse compression
⊗ Convolution operator
δ(·) The delta function
(·)H The conjugate transpose
Rcn M ×M -dimensional covariance

matrix of clutter plus noise
R̂cn M ×M -dimensional sample covariance

matrix of clutter plus noise
∆t Digital sample interval
∆r Length of range cell
∆v Length of velocity cell

round(·) Rounding to integer operator
GRFT(·, ·) Radon-Fourier transform
GARFT(·, ·) Adaptive Radon-Fourier transform

Nv Number of cells in velocity searching list
Nr Number of cells in range searching list

* Corresponding author: Haibo Wang (xmuwhb@163.com).

Z Received data matrix
ZP Received data matrix int the primary dataset
ZR Received data matrix int the reference dataset
CP The range cell set of Primary data
CR The range cell set of reference data
CR1 The range cell set of the first part CR
CR2 The range cell set of the second part CR
CA The range cell set of that may be affected

npARFT Pointer to the range cell under ARFT
nps0 Pointer to the start of CP
npe0 Pointer to the end of CP
nps1 Pointer to the start of CR1
npe1 Pointer to the end of CR1
nps2 Pointer to the start of CR2
npe2 Pointer to the end of CR2
nps3 Pointer to the start of CA
npe3 Pointer to the end of CA
NCR Number of range cell in CR

1. INTRODUCTION

Pulse integration for moving targets can improve target de-
tection performance under the condition of noise and clut-

ter. Moving target detection (MTD) method has been widely
utilized in the coherent radar system. Both pulse integration
and MTD can be efficiently implemented by fast Fourier trans-
form (FFT) in the slow time domain [1]. However, the motion
of the target may involve range cell migration (RCM) effect,
which results in performance loss for the coherent integration.
Traditional coherent radar signal processing generally adopts

the cascaded processing method of pulse compression and
Radon-Fourier transform (RFT) [2–5], which can effectively
overcome the coupling between the RCM and Doppler modu-
lation by jointly searching along range and velocity dimension
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for moving target. Doppler filter banks are also used for the
successive integration. Also, generalized RFT is proposed to
resolve the higher order polynomial motion in the range dimen-
sion [6–10]. Furthermore, wideband scaled RFT is introduced
by Qian et al. [11] to resolve echo signal integration for fast
moving targets in wideband radar, with noticeable scale effect.
In [12], adaptive Radon-Fourier transform (ARFT) has been

proposed to clutter suppression by introducing an optimal filter
weight, which is determined from covariance matrix of clutter
and noise Rcn as well as steering vector. For the moving tar-
get, it takes the RCM effect in consideration. As to real imple-
mentation, ARFT should overcome two difficulties [12]. One
is the lack of independently and identically distributed (i.i.d.)
training samples in a heterogeneous clutter background. The
other is that the computational complexity is too high due to
the large number of pulse samples. In conventional ARFT, the
sample covariance matrix R̂cn is built by reference data set for
each range cell, then R̂

−1

cn to obtain the optimal filter coefficient
by matrix inversion. It takes the computational complexity or-
der M3, i.e., O(M3), in which M is the order of the matrix.
What make things worse is that the sample covariance matrix
should be updated according to the range cell. In this paper, we
propose a novel method to calculate R̂

−1

cn with recursive com-
putation, which takes the complexity orderM2, i.e., O(M2).
The rest of this paper is organized as follows. In Section 2,

the signal model is presented. In Section 3, the modified ARFT
method is proposed. The simulation result validates the pro-
posed method in Section 4. Finally, we give some conclusion
in Section 6.

2. SIGNAL MODEL OF ARFT
Suppose that there is a target at range r0, with velocity of v0,
thus

r(t) = r(tm + τ) ≈ r(tm) = r0 − v0tm (1)
τ is the fast time for radar. And, it starts at tm, thus τ = t− tm,
which is the slow time for radar. The approximate processing
in (1) means that for radar, only the Doppler effect generated
by the target’s motion needs to be considered in a slow time.
The positive direction of velocity is defined as moving toward
to the radar. And, m is the slow time index of radar. Taking
fixed pulse repetition frequency (PRF) radar for example, tm
can be defined as tm = mTr (m = 0, 1, . . . ,M − 1), where Tr

denotes the pulse repletion interval. After pulse compression
(PC), the echo signal can be expressed as

Sm(τ) = PSF
(
τ − 2r(tm)

c

)
exp

(
−j4πfcr(tm)

c

)
(2)

where fc is the center frequency of radar signal. c is the light
speed. PSF(τ) denotes the point target spreading function,
whose duration is the range resolution, namely c

2Bs
whereBs is

the bandwidth of transmitting signal. Taking linear frequency
modulated (LFM) signal for example, PSF(τ) is

PSF(τ) = sinc
(
πBs

(
τ − 2 ∗ r(tm)

c

))
(3)

Considering the thermal noise of the receiver, the target echo
signal can be expressed as

Zm(τ) = ATSm(τ) + nm(τ) (4)

where AT means the target echo amplitude after pulse com-
pression. Sm(τ) denotes the point target echo signal, while
Zm(τ) denotes the received data in radar. nm(τ) is the ther-
mal noise. Depending on envelope alignment and additional
Doppler phase compensation, RFT method is able to match
with the moving target, which can be denoted as follows:

GRFT(r, v)=GRFT(τ, v)

=

M−1∑
m=0

(
Zm(τ)⊗δ

(
τ+

2vtm
c

))
exp

(
j
2vtm
λ

)
(5)

λ is the wavelength. τ maintains linear relationship with the
target range, that is r = cτ

2 . GRFT(r, v) represents the RFT
integration in range and velocity dimension. δ(·) represents the
delta function. ‘⊗’ is the convolution operator. The function
of this operator in (5) is to compensate the envelope alignment.
exp(j 2vtmλ ) denotes the additional doppler phase compensation.
As for digitally sampled echo signal, the envelope alignment

operation is realised by data shifting, accordingly:

Zm(τ)⊗ δ

(
τ +

2vtm
c

)
= Z(m,n+ nshift(m)) (6)

where

nshift(m) = round
(
2vtm
∆r

)
(7)

Z means the received data matrix, which is digitally sampled
Zm(τ). The row index of Z represents the slow time index,
m = 0, 1, 2, . . . ,M−1. The column index of Z is the fast time
sample number. ∆r is the length of range cell, and we have
∆r = c∆t

2 where ∆t is the digital sample interval in radar.
round(·) is the function to find the nearest integer. Thus, as
to algorithm actually implemented, (6) can be realized by data
shifting or pointer offset.
Apart from noise, there may be clutter in radar echoes, which

may seriously affect target detection ability without clutter sup-
pression method. In RFT, in order to get long time coherent in-
tegration, both the ‘main lobe’ and ‘side lobe’ of strong clutter
would affect target detection [12]. Radar ground clutter is as-
sumed to be concentrated at low Doppler frequency normally,
as the echoes of those ‘targets’ are motionless.
In conventional ARFT, the received data are divided into two

sets, i.e., the primary dataset and the secondary dataset (ref-
erence dataset). The first dataset is assumed to contain tar-
get echoes, while the latter dataset is supposed to contain clut-
ter and noise only. Fig. 1 illustrates the datasets in AFT. The
optimal filter weight is derived form the clutter’s covariance
matrix, which is substituted by its maximum-likelihood esti-
mate (MLE), i.e., the sample covariancematrix (SCM) [13, 14],
which is calculated echo in reference dataset.

GARFT(r, v) =

M−1∑
m=0

(
R̂

−1

cn (m, :) · ZP
(
:, npARFT + nshift(m)

))
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FIGURE 1. Illustration for ARFT.

exp
(
j
2vtm
λ

)
(8)

where npARFT denotes the pointer (index) to the range cell that
is under ARFT integration. ZP is the received data matrix in
the primary dataset,

ZP = Z(0 : M − 1, CP) (9)

CP denotes the primary range cell set.

CP = {n|nps0 ≤ n ≤ npe0} (10)

nps0 and npe0 denote the pointers to the start of CP and the end
of CP, respectively. R̂

−1

cn is the inverse of SCM which can be
obtained as follows

R̂cn =
1

NCR

ZRZH
R (11)

where ZR is the received data matrix in the reference dataset.

ZR = Z(0 : M − 1, CR) (12)

CR is the reference range cell set, which contains two parts,
before CP and after CP, respectively, and it is clearly illustrated
by Fig. 1.

CR = CR1
⋃

CR2 (13)

CR1 =
{
n|nps1 ≤ n ≤ npe1

}
,

CR2 =
{
n|nps2 ≤ n ≤ npe2

}
(14)

nps1 , npe1 , nps2 and npe2 denote the pointers to the start of CR1,
the end ofCR1, the start ofCR2, and the end ofCR2, respectively.
NCR is the number of range cells in CR,

NCR = |CR| =
(
|nps1 − npe1 |+ 1

)
+

(
|nps2 − npe2 |+ 1

)
(15)

From Fig. 1, we have

nps0 = npe2 + 1, nps1 = npe0 + 1 (16)

Conventionally, the degree of freedom (DOF) of clutter is
lower than the dimension of matrix R̂cn, thus R̂cn would be

ill-conditioned. Consequently, diagonal loading technic [15]
is usually utilized to avoid numerical errors.

R̂cn =
1

NCR

ZRZH
R + γσ2I (17)

where σ2 is the background noise level. As for a radar receiver
which has been carefully calibrated, σ2 is known. γ is the load-
ing level.
According to the well-known Reed-Malleett-Brennman

(RMB) rule proposed in [16], in order to ensure that the
signal-to-clutter-pulse-noise ratio (SCNR) improvement factor
(IF) loss is less than 3 dB, the number of samples in reference
dataset should be at least twice larger than the number of
integrated pulses, i.e.,

NCR ≥ 2M (18)

For conventional ARFT, range cell sets CP and CR are de-
termined by the point of (r, v) in (8). Also, SCM should be
recalculated. What makes things worse is that matrix inverse
operation should be recalculated repeatedly.

3. SAMPLE COVARIANCE MATRIX INVERSION RE-
CURSIVE ESTIMATION METHOD
SCM should be recalculated as to new point of (r, v) in (8);
however, as to the points near each other, the major part of el-
ement in dataset CR keeps the same as its former one. Thus, as
to the conventional ARFT, much computational complexity in
(11) and matrix inversion seems to be wasteful.
In this paper, we propose modified adaptive RFT (MARFT),

in which, the dataset configuration is little different from the
conventional ARFT. First of all, velocity searching range is pre-
requisite of the algorithm, i.e., vmin and vmax. Thus, as to certain
range cell (npARFT pointing at) under ARFT, the range cell set
CA that will be affected by the target is determined, which is
illustrated by Fig. 2.

CA =
{
n|nps3 ≤ n ≤ npe3

}
(19)

where nps3 and npe3 are the pointers to the start and end of CA,
respectively. Thus, as to new velocity for AFT searching, CA

FIGURE 2. Configuration of MARFT.
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keeps the same. However, when npARFT is moving to the next
range cell,

nnewpARFT = npARFT + 1; (20)

CA should be updated accordingly.

nnewps3 = nps3 + 1, nnewpe3 = npe3 + 1 (21)

Being different from the conventional ARFT, we set up pro-
tected range cell to avoid SCM estimation error, which is a
general request in radar target detection, and it can be found
in Fig. 2. nps1 , npe1 , nps2 , and npe2 are also unitized to denote
the pointers to the start of CR1, the end of CR1, the start of CR2,
and the end of CR2, and they should be updated accordingly.

nnewps0 = nps0 + 1, nnewpe0 = npe0 + 1,

nnewps1 = nps1 + 1, and nnewpe1 = npe1 + 1 (22)

It is illustrated by Fig. 3.

Cnew
R1 =

(
CR1 −

{
nps1

})⋃{
nnewpe1

}
,

Cnew
R2 =

(
CR2 −

{
nps2

})⋃{
nnewpe2

}
(23)

And,

Cnew
R = Cnew

R1

⋃
Cnew
R2 (24)

Based on (24), it is obvious that NCR in (15) keeps the same.
We use u1, u2, v1, and v2 to denote the data vector that needs to
be removed from CR1, the data vector that needs to be removed
from CR2, the data vector that needs to be added into CR1, and
the data vector that needs to be added into CR2, respectively. It
is illustrated clearly by Fig. 3.

u1 = Z(:, nps1), u2 = Z(:, nps2),
v1 = Z(:, nnewpe1 ), and v2 = Z(:, nnewpe2 ) (25)

Consequently, SCM in both (11) and (17) can be updated by

R̂
new
cn = R̂cn −

u1uH1 + u2uH2
NCR

+
v1vH1 + v2vH2

NCR

(26)

FIGURE 3. Update of reference range cell set.

In (26), some part of new datasets are added into SCM; however
some datasets are removed from it. In other words, the major
part of SCM keeps the same. Thus, the latest inverse of SCM
may be useful.
It is well known of the matrix inverse formula

(
A+ ssH

)−1
= A−1 − A−1ssHA−1

1 + sHA−1s
,

(
A− ssH

)−1
= A−1 +

A−1ssHA−1

1− sHA−1s
(27)

The details of (27) can be found in Appendix A. Thus, the re-
cursive operator is defined as

F(A, z, α) =


A−1 − A−1zzHA−1

1+zHA−1z α = 1

A−1 + A−1zzHA−1

1−zHA−1z α = −1

(28)

in which, A is the major matrix, and z is the vector that will be
added into or remove from A−1.
Based on the CR updating Eq. (24), the inverse of SCM

should be updated by 4 steps, which is illustrated by Fig. 4.
Fig. 5 shows the detailed process of the entire algorithm.

FIGURE 4. Illustration of updating method of the inverse of SCM.

FIGURE 5. ARFT integration with recursive SCM.
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FIGURE 6. Echo data after pulse compression.
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4. ANALYSIS OF COMPUTATIONAL COMPLEXITY
In this section, we give the comparison of the computational
complexity between the convectional ARFT and MARFT. For
the sake of simplicity, we use Iac and Imc to represent the com-
plex addition and complex multiplication, respectively. The
computational complexity of RFT is

IRFT = NrNv(MImc + (M − 1)Iac) (29)

The computational complexity of SCM estimation is

ISCME = NCR
M2Imc +NCR

(M − 1)Iac (30)

The computational complexity of SCM inversion is approxi-
mated by

ISCMI = M3Imc/3 (31)

The computational complexity of ARFT integration in (8) for
one range cell is

Icell = 2MImc + (M − 1)Iac (32)

Thus, the total computational complexity of the conventional
ARFT

IARFTC = NrNv(ISCME + ISCMI + Icell)

= NrNv

(
(NCR

M2 +M3/3 + 2M)Imc

+(NCR
+ 1)(M − 1)Iac

)
(33)

The computational complexity of the SCM recursive operator
(28) is

ISCMR = (2M2 + 2M)Imc + (M2 + 2M − 1)Iac (34)

Thus, the total computational complexity of the MARFT

IARFTR = ISCME + ISCMI +NvIcell

+(Nr − 1)Nv(4ISCMR + Icell) (35)

Thus,

IARFTR = (NCR
M2 +M3/3)Imc +NCR

(M − 1)Iac

+Nv

(
2MImc + (M − 1)Iac

)

+(Nr − 1)Nv

(
(8M2 + 10M)Imc

+(4M2 + 9M − 2)Iac
)

(36)

The comparison between (33) and (35) shows that SCM recur-
sive method can reduce the computational complexity signifi-
cantly.

5. NUMERICAL EXPERIMENTS
This section is devoted to evaluating the performance of the
proposed method via computer simulations, where the param-
eters of radar are shown in Table 1, in which SNR and SCR are
measured by the echo signal after pulse compression. The code
development environment is Octave on a 64 bit Windows 7 op-
erating system, and the computer’s CPU is Intel (R) Core (TM)
i7-7700@3.6GHz, installed with 32GB of system memory.
Figure 6 illustrates the echo data after pulse compression, and

Fig. 7 is the range slice of Fig. 6 with 70 km. The echo of target

TABLE 1. Parameters setup in simulation.

Parameter Value
Carrier frequency (fc) 5GHz

Pulse repetition frequency (PRF) 500Hz
Velocity ambiguity 15m/s
Range resolution 15m

Pulse number for integration (M ) 128
Target number 2

Target A initial range 70 km
Target A velocity 80m/s

Target B initial range 69.5 km
Target B velocity 78m/s

Signal to noise ratio (SNR) 20 dB
Signal to clutter ratio (SCR) −15 dB and −30 dB
loading level in Eq. (17) 0.01
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FIGURE 12. Time consumed to obtain the inversion of SCM.

cannot be distinguished in original data, which is obscured in
clutter.
ARFT has been applied to suppress clutter, in which SCM

is calculated by MLE. Also, MARFT takes effect, in which in-
verse of SCM is calculated recursively. Fig. 8 and Fig. 9 il-
lustrate the ARFT results at range slice of 69.5 km and 70 km,
respectively, as SCR = −15 dB. Also, Fig. 10 and Fig. 11 il-
lustrate the ARFT results at range slice of 69.5 km and 70 km,
respectively, as SCR = −30 dB. Both conventional ARFT and
MARFT are displayed, as well as the difference of the two
methods. According to the simulation results, the difference of
numerical results between ARFT and MARFT can be ignored.
Figure 12 shows the time consumed to obtain inversion of

SCM, both recursive calculation and directly inversion. It is
obvious that recursive calculation takes much less time than di-
rectly inversion.
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6. CONCLUSION
In this paper, a recursive method to calculate the inversion of a
sample covariance matrix R̂cn has been proposed. Theoretical
analysis shows that MAFT can reduce the computational com-
plexity significantly. According to the simulation results, the
difference between ARFT and MARFT can be ignored.

APPENDIX A. PROOF OF THE MATRIX INVERSE FOR-
MULA
Suppose that there are matrices An×m, Bn×m, Cm×m, and
Dm×n, the Sherman-Morrison formula is

(A+BCD)−1 = A−1−A−1B(DA−1B+C−1)−1DA−1 (A1)

Let, B = s , C = 1, D = sH, then we have

(
A+ ssH

)−1
= A−1 − A−1ssHA−1

1 + sHA−1s
(A2)

Let, B = s , C = −1, D = sH, then we have

(
A− ssH

)−1
= A−1 +

A−1ssHA−1

1− sHA−1s
(A3)
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