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ABSTRACT: Scattering of electromagnetic waves by a dielectric object can be described as an integral equation involving a Green function.
These types of problems can be solved using a spatial spectral formulation, which requires sampling of the spectral Green function. To
avoid sampling around the singularities on or near the real axis, the spectral Green function is represented on three separate complex paths.
Using appropriate selection functions, these paths are recombined such that the original Fourier integrals are retrieved. This composite
path method provides a general way to solve domain integral equations involving Green functions with simple singularities with minimal
computational overhead.

1. INTRODUCTION

The field of computational electromagnetics (EM) is con-
cerned with methods to approximate numerical solutions to

Maxwell’s equations in different settings. A subclass of EM
problems is finding the scattered field given an incident wave
and the description of a scatterer. To this end, a broad class of
methods have been developed, each of which makes different
choices in the formulation of the problem. One such choice is
between a time-domain (for example FDTD [1], FETD [2]) or
a frequency-domain approach. In this work we are interested
in the latter. Another choice to make is between a local and a
global approach. Direct discretization of the differential form
of Maxwell’s equations leads to local methods like the finite el-
ement methods (FEM), see, e.g., [3]. Generally, these methods
work by setting up a system of equations comprising the in-
teractions between neighbouring domains and then solving the
system. In contrast, global methods seek to solve the EM fields
at an arbitrary point in some potentially unbounded domain. In
particular, Green-function-based methods for a homogeneous
background medium allow the EM fields to be calculated at
any point using a convolution integral. Instead of computing
this integral directly, we can perform a multiplication in the
spectral domain between the Green function and a contrast cur-
rent density [4–6]. In [7, 8], a “spatial spectral” method was
proposed to solve scattering problems in layered media. In that
work, Gabor frames were used since they provide simple (in-
verse) Fourier transformations.
In [9], a Hermite interpolation was used to replace the Gabor

frame. The interpolation method defined a set of basis func-
tions as well as the operations concerning addition, multipli-
cation, and Fourier transformation. The Hermite interpolation
was chosen over the Gabor frames owing to their simpler mul-
tiplications at the cost of somewhat more complex and less-
accurate Fourier transforms.
* Corresponding author: Daan van den Hof (d.van.den.hof@tue.nl).

Especially for layered media, representing the Green func-
tion in terms of smooth functions, like a Gabor frame, is chal-
lenging, because in the spectral domain, the Green function
contains poles and branch cuts [10]. A transformation to the
spatial domain is not straightforward, since it requires the com-
putation of time-consuming Sommerfeld-integrals [10–12].
Therefore, in [8] a path-deformation of the spectral domain

into the complex plane was used, which circumvents the poles
and branch cuts in the Green function. However, the down-
side of this method in the spatial spectral solver is that in two
dimensions, four copies of the spectral domain were required,
and to correctly capture the long-distance behavior of the Green
function, these four copies required double the spatial extent of
the original scattering problem in both directions. This leads
to more than a 16-fold increase in memory usage and compu-
tation time as compared to operations on the real-axis spectral
domain. Additionally, the implementation of this complex in-
tegration path requires an intricate and somewhat fragile proce-
dure to piece together different parts of the path, which requires
many simulation parameters to be optimized. In [9], a more ro-
bust path-deformation was implemented for the spectral coor-
dinate. By approximating the resulting extra exponential term
under the Fourier integrals by an order N Taylor expansion,
the Fourier and inverse Fourier transformations corresponding
to this path are approximated by a sum of N regular Fourier
integrals. This method leads to a very simple Green function
representation that does not require sampling around the poles
and branch-cuts, resulting in a clean formulation at the cost of
additional computational costs since in practiceN can be quite
large (e.g., 8 or more).
An earlier approach that utilized a spatial spectral approach is

Ewald summation [13, 14], and in that method the near- and far-
field interactions of the Green functions are separated in rapidly
converging representations in the spatial and spectral domains.
However, this approach is only valid for periodic problems. To
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us, it is interesting that such a separation allows to efficiently
represent long-distance interactions by only considering the be-
havior of the Green function around its poles and branch cuts.
We propose a method for solving a-periodic scattering prob-

lems where only the long-distance behavior of the Green func-
tion is sampled on the spectral-domain path, leading to the
same clean formulation but with computation times and mem-
ory costs closer to those of a non-deformed path. We demon-
strate this principle on a 2D E-polarized setup with simple ho-
mogeneous dielectric cylindrical scatterers. However, the un-
derlying principles are extendable to Green functions with com-
parably simple singularities, similar to the extension from the
case of 2D E-polarization in [8] to the full 3D case in [15]. To
achieve this, we represent the spectral-domain Green function
on three separate complex paths, two of which have an imag-
inary offset. In this way, the singularities on or close to the
real axis can be avoided, and we can represent the full Green
function by combining different sections of the paths. This ap-
proach separates the long- and short-range interactions, since
the spectral singularities are treated separately in the paths with
imaginary offset. This separation allows for optimization, since
we can choose different discretization parameters for different
parts of the paths, and a rather coarse sampling suffices for the
long-range interaction.
In Section 2, we briefly introduce the E-polarized two-

dimensional (scalar) scattering problem statement and the high-
level approach towards solving it. We set up a general dis-
cretization framework in Section 3 that we use as a basis to
formulate this problem in. We go over the details of the imple-
mentation of this framework and the choice of simulation pa-
rameters in Section 4. In Section 5, we demonstrate the spectral
deformation method for several setups. We quantify the accu-
racy of our method using simple dielectric cylinders and show
that themethod generalizes tomore complicated setups by com-
puting the fields scattered by a dielectric lens. Finally, we draw
conclusions in Section 6.

2. PROBLEM STATEMENT AND ANALYSIS

Weconsider a time-harmonic EM scattering problem in a 2DE-
polarized configuration with a compactly supported dielectric
scatterer placed in an isotropic homogeneous background with
permittivity ϵ0 and permeability µ0, Fig. 1. The scatterer is
described by the contrast function

Π(x⃗) = ϵr(x⃗)− 1, (1)

where ϵr(x⃗) is the relative permittivity with respect to the back-
ground medium. The scatterers in this work are homogeneous
cylinders. For this class of problems there are existing meth-
ods that lead to fast and accurate solutions, e.g., the T matrix
[16]. However, our analysis is not limited to such cases. In
principle the scatterer can have any arbitrary shape, can consist
of multiple smaller scatters and can have any ϵr profile. Our
approach will make frequent use of both spatial and spectral
versions of functions, where one is given by the 2D (inverse)
Fourier transformation of the other. For the forward and inverse
transformations, we use the operatorsF andF−1, respectively,

FIGURE 1. Schematic setup of the 2D E-polarized scattering problem.

and we use the following convention:

F
{
f(x⃗)

}
(k⃗) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x⃗)e−jk⃗·x⃗dxdy,

F−1
{
f̂(k⃗)

}
(x⃗) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
f̂(k⃗)ejk⃗·x⃗dkxdky,

(2)

where we have introduced spatial and spectral coordinate vec-
tors:

x⃗ = [x, y]T (spatial),

k⃗ = [kx, ky]
T (spectral).

(3)

Furthermore, we indicate the spectral counterpart to a spatial
function f(x⃗) as f̂(k⃗).
Following [17] and using ejωt for the time convention, the

scattering problem can be described by the integral equation

Ei(x⃗) = E(x⃗)− k20
jωϵ0

∫
D

G(x⃗− x⃗′)J(x⃗′)dx⃗′. (4)

Here, k0 = ω
√
ϵ0µ0 is the wavenumber, and G is the spatial-

domain Green function given by

G(x⃗) = − j

4
H

(2)
0

(
k0
√
x2 + y2

)
. (5)

The contrast current density J(x⃗) is given by

J(x⃗) = jωϵ0Π(x⃗)E(x⃗), (6)

with E(x⃗) the total electric field that can be decomposed into
the incident (Ei(x⃗)) and scattered (Es(x⃗)) electric fields as

E(x⃗) = Ei(x⃗) + Es(x⃗). (7)

By employing a Fourier transformation, the spatial convolution
in Eq. (4) can be performed in the spectral domain via straight-
forward multiplication. Hence, we can restate the scattering
problem as

Ei(x⃗) = E(x⃗)− 2πk20F−1
{
Ĝ(k⃗)F

{
Π(x⃗)E(x⃗)

}}
, (8)
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which is the spatial spectral form that we will be using to solve
the problem. The 2DE-polarized spectral-domain Green func-
tion corresponding to Eq. (5) is given by [17]

Ĝ(k⃗) =
1

2π
(
k2x + k2y − k20

) . (9)

2.1. General Solution Strategy
The formulation in Eq. (8) is used to numerically solve the
scattering problem. First, numerical representations for Ĝ(k⃗),
Ei(x⃗), and Π(x⃗) are constructed. Then, an iterative solver is
employed to solve the pertaining linear system to obtain an ap-
proximation for the total electric field. However, setting up
these numerical representations is not a trivial process, espe-
cially for the spectral Green function, Eq. (9), in view of its
singularity on the circle with radius k0 centered at the origin in
the kx-ky plane.

2.2. A Three-path Representation of the Spectral Green Func-
tion
Previously, in [8, 9], the spectral Green functionwas formulated
in the spectral domain using a deformed integration path that
avoided the singularities. Using such a formulation the Green
function can be directly represented by aHermite-interpolation-
based discretization. These methods had the downside of re-
quiring the discretization range to be twice the largest dimen-
sion of the scatterer. Both methods also required additional
computational overhead, the first needing extra copies of the
spectral domains and the second requiring an order N Taylor
approximation meaning that each overall Fourier transforma-
tion required N total sub-transformations. Here, we introduce
a composite path which allows for the same flexibility in repre-
sentation while also providing the possibility to a separate dis-
cretization for the regions around the singularities from the rest
of the spectral Green function. This is more efficient since it
does not require the same level of redundancy required by ei-
ther previous method. We will go over this formulation here
and discuss the discretization process itself in Section 3.
For the analysis, we will restrict ourselves to the case where

ky = 0. Since the discretization dimensions are independent,
this can be generalized to the full 2D case without changing
much about the analysis, and the extra considerations for the 2D
case are discussed in 4.6. For this case, we have the following
spectral Green function

Ĝ(kx) =
1

2π (k2x − k20)

=
1

4πk0

(
1

kx − k0
− 1

kx + k0

)
. (10)

This function contains simple poles at kx = ±k0. To avoid
sampling this function near these poles, we construct a com-
posite path representation. Supposing that we have an analytic
function f(k), we can rewrite this as

f̂(k) = (ŝm(k) + ŝl(k) + ŝr(k)) f̂(k)

= f̂m(k) + f̂l(k) + f̂r(k) (11)

where the selection functions ŝm(kx), ŝl(kx), and ŝr(kx) con-
stitute a partition of unity. The subscripts are short for “main”,
“left”, and “right”. The selection functions are chosen such that
f̂m(kx) ≈ f̂(kx) for all kx except in a small region around
kx = ±k0. The side functions ŝl(kx) and ŝr(kx) are (close
to) 0 everywhere, except for a small region around the corre-
sponding singularity of the spectral Green function. We choose
these side functions to be symmetric so ŝl(kx) = ŝr(−kx). An
example of one of these functions is shown in Fig. 2.

FIGURE 2. An example of a graph for sr(k). Ideally the function is
zero everywhere except for a finite region around k0.

For the analysis we assume that the selection functions are
also analytic, to allow for contour deformations of the integra-
tion path. For analytic selection functions, we can use the prop-
erty

f̂(kx + jA) = F
{
exp(Ax)f(x)

}
, (12)

to add an offset jA, withA ∈ R, to the path on which f̂l(k) and
f̂r(k) are represented. If this is done for the Green function, the
poles will be avoided when sampling. Most functions we want
to represent are bounded and vanish as k → ∞. For these func-
tions we can obtain the complete composite path representation
in the spatial domain as

f(x) = F−1
{
f̂m(k)

}
+ eAxF−1

{
f̂l(k − jA)

}
+e−AxF−1

{
f̂r(k + jA)

}
. (13)

For an unbounded spectral-domain function, like the Green
function, this property is not guaranteed to hold. In view
of the chosen time-convention, the integration path used in
F−1
ˆ

{
Ĝ(k)

}
needs to evade the poles and pass underneath the

pole at k = −k0 and over the pole at k = k0, for the resulting
Green function to correspond to the outgoing-wave solution and
satisfy the radiation condition [12]. The functions we are deal-
ing with are assumed to be analytic, except for simple poles
at known locations. Therefore, the Fourier integral will yield
the same result regardless of the integration path, as long as the
endpoints remain the same, and the singularities are evaded on
the appropriate side. This principle is shown in Fig. 3. From
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(a)

(b) (c)

FIGURE 3. (a) The integration path for the inverse Fourier transformation corresponding to the outgoing-wave solutions to the wave equation form,
l, and r of the representation in Eq. (11). (b) Since the function is analytic everywhere except at the two poles, the value of the integral does not
change, as long as we evade the poles on the correct sides. We choose different paths for the integrals on the l and r parts. (c) The Green function
can be represented by adding the contributions of the three parts where their respective selection functions are non-negligible.

this we conclude that (13) also holds for Ĝ(k). By choosing
Ĝl(k), Ĝr(k), and Ĝm(k) to be represented each on a differ-
ent path, such that the poles are not contained in the support of
their respective selection functions, we obtain a well behaved
three-path representation for the Green function.

3. DISCRETIZATION
The analysis so far concerned a continuous context. However,
in practice the problem is to be solved numerically. To do this,
we construct discrete analogs to the required functions, e.g.,
Ĝ(k), as well as the operators acting on them. We developed
software, written in C++ and compiled as a Python library, to
implement this discretization process. The goal in developing
this software is to have it be both flexible and efficient. To
do this we set up a strict paradigm to which we adhere in the
implementation.
We define two types of structures, a data object and a dis-

cretization object. A data object is generic: it only contains
data representing a function and a reference to an associated
discretization object. A data object representing a function f ,
using a discretization object d, is denoted as fd for the spatial
domain or f̂d for the spectral domain. A discretization object
contains the actual logic used to create and manipulate data ob-
jects. This hierarchy is depicted in Fig. 4.
By making this conceptual split, we can use the data objects

as a front-end and have them call their discretization objects
when needed. This means adaptations to discretization objects,
for example adding new types, can be performed completely
independently from the data objects, which provides flexibility
in implementation while keeping the front-end intact.

FIGURE 4. The data objects act as a generic front-end interface to the
code. The actual logic to make use of these objects is implemented by
their associated discretization objects.

Every discretization object is specified by a set of parame-
ters, e.g., sample distance, that are given at initialization. In
the software we always require a separate discretization object
for both the spatial and spectral domains since this is required
for the spatial spectral solver. In practice, the spatial domain
parameters are provided by the user while the corresponding
spectral domain parameters are derived from them. We only
discuss the 1D case in detail. Higher dimensional problems
can be solved by “stacking” 1D discretization objects: e.g., a
2D problem would have one discretization object for the x and
one for the y direction.
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TABLE 1. Parameters for the Hermite discretization.

Hermite discretization h Spatial Spectral
Sample distance ∆x ∆k

Sampling range rx rk

Interpolation order d d

3.1. The Hermite Discretization Object
In [9], the spatial spectral method was implemented using Her-
mite interpolation at the core of the discretization object. We
build on this work to construct a composite discretization object
(CDO) that can be used to implement Eq. (13). The behavior of
the Hermite discretization object is determined by the parame-
ters shown in Table 1. The spatial and spectral parameters are
related through

∆k ≈ π

rx
,

rk ≈ π

∆x
.

(14)

The data objects for this discretization method contain values
that represent a function and derivatives up to order d − 1 of
that function, sampled on a symmetric grid at 2N + 1 points:

fd ≡
{
f (m)(n∆x)

∣∣∣∣ n ∈ {−N, . . . , N}
m ∈ {0, . . . , d− 1}

}
,

f̂d ≡
{
f̂ (m)(n∆k)

∣∣∣∣ n ∈ {−N, . . . , N}
m ∈ {0, . . . , d− 1}

}
.

(15)

When referring to a specific entry of the data object, we use
the following notation: fd[n,m], where n is the location index,
and m is the derivative index. If we want to get an approxi-
mate value for the function in between the samples, we use the
Hermite interpolation:

f(x) ≈
N∑

n=−N

d−1∑
m=0

bnm(x)fd[n,m]. (16)

The form of the piecewise polynomial basis functions
bnm(x) can be found in [9]. To actually use the data objects,
a set of operators needs to be implemented. Addition of data
objects is performed by element-wise addition of the individual
objects, i.e., fd = gd + hd:{

fd[n,m] = gd[n,m] + hd[n,m]

}
. (17)

To multiply two data objects, i.e., fd = gd · hd, we use the
general Leibniz rule, i.e.,

{
fd[n,m] =

m∑
l=0

(
m

l

)
gd[n,m]hd[n,m− l]

}
. (18)

This ignores the terms of derivative orders higher than m,
which is necessary to keep the interpolation degree the same.
Another required operation is the inner product, and for the Her-
mite discretization this is obtained by

⟨fd, gd⟩ =
N−1∑

n=−N

d−1∑
i=0

d−1∑
j=0

1∑
k=−1

cijnkfd[n, i]gd[n+ k, j],

(19)

where gd denotes the complex conjugation. The coefficients
cijnk are determined by

cijnk =

∫ ∞

−∞
bni(x)b(n+k)j(x)dx. (20)

See Table 2 for a summary of all the operators for the Hermite
discretization.

TABLE 2. The operators implemented by the Hermite discretization
objects.

Operator
name Notation Description

Sampling Sd(f(x)) = fd,
Sd̂(f(k)) = f̂d

Sample a function and its first
d− 1 derivatives and store
the values in a
data object (Eq. (15)).

Addition ad = bd + cd Add two data objects together
into a third one (Eq. (17)).

Multiplication
ad = bd · cd

Multiply two data objects
together into a
third one (Eq. (18)).

Scalar
multiplication

ad = bcd Multiply a data object by
a scalar.

Fourier
transformation

Fd

{
fd
}
= f̂d̂,

F−1
ˆ̂
d

{
f̂d̂

}
= fd

Perform an (inverse) Fourier
transformation ([9], Eq. (12)].

Interpolation Ed(fd, x)
Use the Hermite interpolation
Eq. (16) to get the approximate
value of f by using
the Hermite basis expansion.

Re-sampling Rd2(fd, a) =

Sd2 (Ed(fd, x+ a))

Interpolate a data
object and use the
values to create a data object
with a different discretization
object. The parameter a refers
to an optional shift
in the representation.

Inner product ⟨fcgd⟩ Take the inner product of two
data objects Eq. (19).

3.2. The Composite Discretization Object
In Section 2.2, we constructed a representation for the Green
function that does not require direct sampling around the sin-
gularities. To implement this representation into our solver, we
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introduce a new type of composite discretization object (CDO)
that consists of three separate Hermite discretization objects:
main (m), left (l), and right (r). When the latter two are talked
about together, we refer to both of them as “side” (s) discretiza-
tion objects. We indicate the discretization associated with an
operator or data object using subscripts. For example, sampling
into a CDO d̂ is written as

f̂d̂ = Sd̂(f̂) (21)

whereas for the individual (Hermite) component objects we
write

f̂d̂l = Sd̂l(f̂),

f̂d̂r = Sd̂r(f̂),

f̂ ˆdm = S ˆdm(f̂).

(22)

The left and right discretization objects are used to represent
data around the singularities in the spectral domain, whereas the
main discretization object is used for all other data. This means
that all three discretization objects are needed in the spectral
domain, while in the spatial domain only fdm is required, with
the exception of the Fourier transformations.
To implement the composite path representation within a dis-

cretization object we, require a method to meaningfully com-
bine the component discretization objects without redundant in-
formation. To this end we use sampled versions of Eq. (11):

ŝ ˆdm = S ˆdm(s ˆdm(k)),

ŝd̂l = Fdl

{
e(1)dl · F−1

d̂l

{
Sd̂l(sd̂l(k − z))

}}
,

ŝd̂r = Fdr

{
e(2)dr · F−1

d̂r

{
Sd̂r(sd̂r(k + z))

}}
,

(23)

where we introduced a shift z ∈ R+, in the side discretization
objects. This shift is added to improve computational efficiency
by reducing the Nyquist sample rate and is discussed in more
detail in Section 4.5. The exponential function data objects are
given by:

e(1)dl = Sd̂l(exp(−Ax)), (24)
and

e(2)dr = Sd̂r(exp(Ax)). (25)
These functions implement the complex shift corresponding to
Eq. (12).

3.3. CDO Operators
We decided that the data objects should be generic and should
be usable in the same manner, regardless of the underlying dis-
cretization objects. For this reason the operators for the CDO
should have the same structure and syntax as the Hermite dis-
cretization object.
Of these operators, addition, multiplication, and scalar multi-

plication are trivially extended, and they can be executed com-
ponent wise. For example, for addition we have

fd + gd →
{
(fdl + gdl), (fdr + gdr), (fdm + gdm)

}
. (26)

In the spatial domain, sampling, interpolation, re-sampling, and
taking the inner product are also trivial since they involve the
main part of the discretization only and are thus inherited from
the underlying Hermite discretization object. In the spectral
domain, sampling only requires shifting the argument of the
function in question:

Sd̂

(
f(k)

)
→

{
Sd̂l

(
f(k − jA+ z)

)
,

Sd̂r

(
f(k + jA− z)

)
,S ˆdm

(
f(k)

)}
.

(27)

This leaves us with the Fourier and inverse Fourier transfor-
mations. The forward transformation is implemented by the
following steps.

1. The spatial data is transformedwith the transformation im-
plemented for the Hermite discretization. The result is
stored in the main data object.

2. The main data object is re-sampled on the left and right
discretization with the real shift ±z applied.

3. The side data objects are transformed back to the spatial
domain.

4. The side data functions aremultiplied by exponential func-
tions to apply the (spectral) imaginary shift A.

5. The side data functions are transformed to the spectral do-
main for a final time.

In formulas, this algorithm is given by:

f̂ ˆdm = Fdm

{
fdm

}
f̂d̂l = Fdl

{
F−1

d̂l

{
Rdl(f̂ ˆdm,−z)

}
· e(1)dl

}
f̂d̂r = Fdr

{
F−1

d̂r

{
Rdr(f̂ ˆdm, z)

}
· e(2)dr

}
.

(28)

The inverse Fourier transformation recombines these three
spectral data objects into a single spatial data object. This pro-
cedure is described by the following steps.

1. The data objects are multiplied by their corresponding se-
lection functions.

2. The inverse Fourier transformation is performed on the in-
dividual data objects after multiplication. This results in
three spatial data objects.

3. The side data objects are re-sampled on the main dis-
cretization object, so they can be combined.

4. The complex spectral shifts are reversed bymultiplying by
their complementary exponential functions (Eq. (30)).

5. The resulting data objects are added.

This algorithm implements Eq. (13) for the CDO. In formula
form it is described by

fdm = F−1
ˆdm

{
ŝm̂ · f̂m̂

}
+ e(3)dm · Rdm

(
F−1

d̂l

{
ŝd̂l · f̂d̂l

})
+e(4)dm · Rdm

(
F−1

d̂r

{
ŝd̂r · f̂d̂r

})
, (29)
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with

e(3)dm = Sdm

(
exp((A+ jz)x)

)
,

e(4)dm = Sdm

(
exp(−(A+ jz)x)

)
.

(30)

4. CHOICE OF PARAMETERS

4.1. Implementation
The discretizationmethod discussed in the previous section was
implemented in C++. It was compiled with gcc as a module
to be used by a Python (version 3.7) frontend. All results in
this work were obtained on a computational server containing
an AMD EPYC 7573X as its processor. All the calculations
were done on a single thread without any parallelization. The
operating system is Ubuntu 22. Finally, the plots made for this
work have been generated using the Matplotlib library [18].

4.2. The Spatial Spectral Solver Parameters
The solver requires a set of discretization parameters, see Ta-
ble 3, to be specified. The aim in choosing these parameters is
to achieve an acceptable compromise between computational
efficiency and accuracy. In analysing the considerations to be
made for these choices, we will assume the same parameter val-
ues for both discretization dimensions. We will also use the
same parameters for both left and right discretization objects
and will refer to them collectively as the “side” discretization
objects.

TABLE 3. Parameters for the CDO.

Hermite-based composite discretization Spatial Spectral
Sample distance main ∆m

x ∆m
k

Sampling range main rmx rmk

Sample distance side ∆s
x ∆s

k

Sampling range side rsx rsk

Interpolation order d d
Imaginary shift - A
Selection function start - S0

Selection function width - Sw

Selection function transition width - St

Selection function transition steepness - α

4.3. Domain Sizes
When using the solver we specify the spatial parameters and
let the dual spectral discretization objects be automatically de-
rived from them. However for the purposes of analysis, it is
generally more insightful to consider both spatial and spectral
domain sizes, instead of spatial domain sizes and sampling dis-
tances. We will therefore primarily use this framing and use
Eq. (14) when conversion is necessary.
The core of the solver is built around the use of convolu-

tion with a Green function to determine the scattered field. Al-
though this convolution is performed, in practice, as a multipli-
cation in the spectral domain, the information content still has

to be identical to that of the spatial domain. In other words,
we cannot have a spectral representation that contains less in-
formation than its spatial counterpart and still expect accurate
results.
The 2D TE Green function, given by (5), has an infinite sup-

port, meaning that the convolution integral also has an infinite
support. However, in practice we only require the contrast cur-
rent on the (compactly supported) dielectric scatterer. For a
scatterer supported on x = −D to x = D, it is readily verified
that the resulting field on the scatterer only requires the Green
function values from −2D to 2D.

4.4. Selection functions
The selection functions are what enables the combinations of
the different paths and should therefore be considered in more
detail. The functions ŝl, ŝr, and ŝm can be expressed in terms
of each other, so for this section we will only consider ŝr. This
function takes on a value of ∼ 1 around the singularity at k0,
while it vanishes outside this region with a smooth transition
between these extremes. We use a symmetric function that is
fully determined by four parameters:

1. S0, the start of the transition from 0 to 1.
2. Sw, the total width of the selection function.
3. St, the width of the transition region.
4. α, a factor determining the steepness of the transition.

The selection function we use can be described by

sr = fs(k, S0, S0 + St, α)fs(k, S0 + St, S0 + Sw − St, α),
(31)

where

fs(k, a, b, α) =


0 if k ≤ a,
1 if k ≥ b,

1
2 (1−

erf(α( k−b
a−b−

1
2 ))

erf( 1
2α)

), else.
(32)

For the analysis, we assumed that the selection functions are an-
alytic. However, there are no (non-constant) analytic functions
that are strictly 0 on an open interval. Instead, this function is
a good approximation for the product of two error functions,
which is analytic. We employ this function under the assump-
tion that it is numerically close enough to the analytic function,
such that the approximations involved in the integration paths
of the Fourier transform are controllably small. This assump-
tion is shown to hold in Section 5.

4.5. Shifting the Side Discretization Objects
The selection functions allow us to only consider a small part
of the spectral domain for the side discretization objects. How-
ever, in our implementation a function is sampled symmetri-
cally around the origin. This is done so all the data objects
share the same underlying grid. Since the side discretization
objects are only non-zero around ±k0, this is wasteful be-
cause functions would need to be sampled for at least k ∈
[−k0 − St, k0 + St], see Fig. 5.
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(a) (b)

FIGURE 5. (a) Most of the side discretization objects’ space is wasted since any data is suppressed by the selection function outside a small bounded
region. (b) By adding the real shift z, we only require a fraction of the original discretization range. For a proper discretization we should have
k0 − z inside [−rsk, r

s
k].

(a) (b)

FIGURE 6. (a) When the selection functions are not broad enough, they may not be able to contain the entire circle of the singular behavior in the 2D
Green function. (b) The Green function in two dimensions has its singularity on a circle in the complex plane. For the selection functions to contain
all these locations puts a restriction on the effective width of the selection functions.

To reduce the amount of redundant sample points, we add
a real shift z = −S0 + 1

2Sw to the functions on the side rep-
resentations, such that they become centered around the origin.
This leads to a reduction in the minimum spectral discretization
range from rsk ≥ k0 + St to rsk ≥ 1

2Sw.

4.6. The Width of the Selection Functions in the 2D Problem
The selection functions restrict the spectral discretization range
rsk of the side objects. A narrow selection function results in a
small value for rsk. However, the functions still need to be wide
enough to always contain the singularities at k = ±k0. Since
the scattering problem is two-dimensional, the singularities in
the spectral domain do not just lie on discrete points, but instead
lie on a circle with radius k0, as indicated in Fig. 6. This leads
to a minimum width of the selection functions:

Sw ≥
√
2− 1√
2

k0 + 2St, (33)

which only leaves us with a choice for the transition region
width St and transition steepness parameter α.

4.7. Main Discretization Spatial Range

The composite path representation of the Green function con-
fines the contributions of the spectral singularities to the side
discretization objects. This means that we can expect the long-
range behavior of the Green function to be relegated to the side
discretizations as well. This, in turn, implies the spatial content
of the Green function represented on the main discretization
object has a limited effective support.
In Fig. 7, we see the spectral Green function in the same

plot as the same function suppressed by the selection function
ŝm. We see that the multiplication removes the steep sections
around the singularities. The transition regions of ŝm now have
the sharpest behavior of the function and therefore dictate the
decay of the function in the spatial domain. We see this in effect
in Fig. 8 for an example set of discretization parameters.
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FIGURE 7. An example of the effect of applying the main selection func-
tion to the spectral Green function. The steepest part that are present
in the remaining function are in the transition regions. Used parameter
values: S0 = 0.35, St = 0.35, Sw = 1.055 and α = 3.5.

FIGURE 8. The absolute value ofG([x, 0]T ) andF−1
ˆ

{
ŝmĜ

}
([x, 0]T ),

for the same discretization parameters used for Fig. 7. We see the latter
decay significantly faster, which allows for truncation of the discretiza-
tion domain. We also see that the Green function decay follows the
predicted behavior.

The transition regions of the selection functions are described
by scaled error functions with analytic inverse Fourier transfor-
mation [19, Eq. 29.3.113]:

F−1
{erf( α

St
k)

erf( 12α)

}
= −j

√
2

π

exp(−( St

2αx)
2)

x erf( 12α)
. (34)

So the Green function on the main discretization object decays
super-exponentially, meaning that we can truncate it to some
effective widthRG. This leaves the required spatial range to be
rmx = RG +D which for large scatterers (D > RG) improves
the rmx = 2D bound established for a general convolution.

4.8. Main Discretization Spectral Range
The only hard requirement for the spectral range of the main
discretization, and therefore indirectly the spatial sampling dis-
tance, is that the selection function ŝm is contained within its
support. This imposes the bound that rmk > S0 + Sw. This
bound requires sampling just slightly finer than the Nyquist
limit, which is already a requirement for simulations of this na-
ture. Within this bound∆m

x can be treated as a free variable.

4.9. Side Discretization Spatial Range
We want to solve Eq. (8) using the composite path represen-
tation. This means that on the side discretization the Green
function is multiplied with the contrast current and the relevant
selection function in the spectral domain Eq. (11). This corre-
sponds to a double convolution in the spatial domain:

F−1
ˆ

{
Ĝ(k − jA)ŝl(k − jA)Ĵ(k − jA)

}
= 2πk20e

−AxG(x) ∗ (sl(x) ∗ J(x))). (35)

The support of the inner convolution is equal to the sum of the
support of its components RG + D. Since we only need the
resulting fields on the scatterer, the second convolution implies
that we need rsx = RG + 2D.

4.10. Complex Shift
The imaginary shift A is relevant both for data on the side dis-
cretization objects and for the selection functions. As shown in
Fig. 9, increasing A causes the selection functions to increase
rapidly, which makes them harder to represent by means of the
Hermite interpolation and can therefore lead to numerical er-
rors. In contrast, the Green function is actually better behaved
for large values of A, see Fig. 10. Since the product of both
functions is needed, a trade-off for A is required.
The accuracy of the representation for the Green function and

the selection functions is limited by how fine we sample in the
spectral domain, since steeper functions require either a denser
sampling rate or a higher polynomial degree for the interpola-
tion. From these considerations, we make the practical choice
A = ∆s

k, which seems to perform well over a wide range of
simulations and agrees with the work reported in [9].

5. RESULTS FOR A 2D SCATTERER
The units in the simulations are based on a normalized
wavenumber of k0 = 1.
To test the composite discretization objects (CDOs), we use

them to solve 3 types of problems:

1. A plane wave incident on a small dielectric cylinder.
2. A plane wave incident on a large dielectric cylinder.
3. A plane wave incident on a lens with a high dielectric con-

trast.

The first two cases have an analytical reference which is used
to quantify the errors. For all three cases, we use a spectral-
deformation-based discretization to compare speed and accu-
racy. These scatterers are used both because of the available
analytical reference and because they have simple spectral de-
scriptions. In principle, any dielectric scatterer, including non-
homogeneous ones, could be used in exactly the same manner
assuming that a spectral representation can be constructed [20].
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(a) (b)

FIGURE 9. An example of a selection function with a complex shift evaluated over the real k axis. We plot the (a) real and (b) imaginary parts of the
functions for 3 for different values of A. The selection functions start showing oscillatory behavior at the edges as A increases, which makes the
representation by the polynomial Hermite interpolation more challenging and leads to an increase in numerical errors.

FIGURE 10. Unlike the selection functions, the Green reduces in steep-
ness for larger A.

5.1. Comparison with Spectral Deformation Discretization
We implemented the deformed spectral path method from [9]
as a discretization object, with Hermite discretization as the un-
derlying method. We use results obtained from this method as a
comparison for the CDO based approach. This provides a good
benchmark for the error and performance since it uses the same
underlying Hermite discretization and offers the same flexibil-
ity in discretization since both methods avoid direct discretiza-
tion of the spectral Green function singularities. The spectral
deformation discretization does this using a Taylor expansion,
in this case of order 8. This means that 8 Fourier transforma-
tions are required in the underlying discretization for a single
path-deformed Fourier discretization, which is computationally
heavy. Additionally, the CDO method requires a smaller spa-
tial discretization domain since it only needs to contain the scat-
terer plus some constant offset for the Green function, instead
of twice the scatterer size.
The Hermite parameters we use for the reference discretiza-

tion will be identical to those of the main discretization object
of the CDO. The imaginary shift A will also be the same for
both discretizations.

5.2. Setting up the Solver
To obtain the solutions to Eq. (8) we employ an iterative solver,
specifically GMRES [21]. The discretized representation of the
problem is given by

Bxd = xd − 2πF−1

d̂

{
Ĝd̂Fd

{
Πdxd

}}
= Ei

d. (36)

To implement the matrix-vector product regarding the matrix
B, we require the representations of the spectral Green function
Ĝd̂ and the spatial representation of the scatterer Πd. Further-
more, we need a representation of the incident wave for which
we use an incident plane wave of the form

Ei
d = Sd

{
exp(j(cos(θi)x+ sin(θi)y))

}
, (37)

with the angle of incidence θi.
The scatterer has a compact support. If this scatterer were

to be sampled spatially, the boundaries of the resulting object
would be very sensitive to the simulation parameters due to the
sharp nature of the edges. Instead, to ensure a more consis-
tent result, we sample a spectral version and transform it to the
spatial domain. This does add some error due to the Gibbs phe-
nomenon, but it leads to a consistent representation that is less
sensitive to specific discretization parameters [20]. The simu-
lations are performed following these steps:

1. Initialize the CDO.
2. Sample the Green function in the spectral domain.
3. Sample the dielectric scatterer in the spectral domain and

transform it to the spatial domain.
4. Sample the incident plane wave in the spatial domain.
5. Use GMRES to find the solution with a residual error

smaller than 1 × 10−5 and use the incident field as the
starting vector.

5.3. Homogeneous Dielectric Circular Cylinder
To test the CDO based method, we start with a simple case:
a homogeneous dielectric cylinder (Case 1), illuminated by an
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(a) (b) (c)

FIGURE 11. The resulting field for (a) the CDO based method, (b) the analytical reference and (c) the absolute difference between these two computed
fields.

FIGURE 12. By increasing rmx , rsx and by decreasing ∆s
x we obtain

smaller errors at the cost of more computational resources as compared
to Fig. 11.

E-polarized plane wave, for which an analytical reference [22]
is available to quantify the accuracy.
The characteristic function of a circle in the spatial domain,

with radius ρ and center position x⃗c, has the following spectral-
domain counterpart:

ξ̂(x⃗c)
ρ (k⃗) =

{
ρ2

2 if kr = 0,
ρ
kr

exp[j(xckx + ycky)]J1(krρ) else,
(38)

where kr =
(
k2x + k2y

)0.5 and J1 is the Bessel function of the
first kind of order one. For the cylinder test cases we choose
x⃗c = 0⃗. The parameters for the simulation can be found in the
third column in Table 4.
The resulting total fields are shown in Fig. 11 (using a value

of rmx = 15). We see that the calculated fields match the ana-
lytical reference with a relative L2 norm of 7.2 × 10−3 and a
maximum deviation smaller than 2× 10−2.
In Fig. 13, we show the relative error with respect to the ref-

erence for increasing discretization range, rmx and rx, for the
CDO based method and spectral deformation method, respec-
tively. We see similar results in both accuracy and time taken

TABLE 4. Simulation parameters for the different setups. For case 1
and 2 the value varies.

Simulation parameters Case 1 Case 2 Case 3

Angle of incidence θi π
3

π
3

π
2

Radius ρ 5 50 201

Relative permittivity ϵr 2 1.1 10

Wavenumber k0 1 1 1

Hermite parameters

Main discretization range rmx - - 20

Side discretization range rsx 40 130 40

Main discretization step ∆m
x 0.3 0.3 0.5

Side discretization step ∆s
x 3.5 3 3

Interpolation degree d 3 3 3

Selection function parameters

Steepness α 3.5 3.5 3.5

Start S0 0.1 0.1 0.35

Width Sw 1.5 1.5 1.35

Transition width St 0.5 0.5 0.35

Imaginary shift A 0.079 0.024 0.079

due to the small size of the scatterer. This is because for the
CDO basedmethodwe require rmx ≥ ρ+RG and rsx ≥ 2ρ+RG

whereas the deformed path method needs rx ≥ 2ρ. However,
for larger simulation domains the CDO based method performs
better, since RG < ρ, which yields a smaller main discretiza-
tion. The computational effort on the side-discretizations is
much smaller owing to the coarser discretization. We note
here that these errors are not the best the method can do. In
Fig. 12, we show the resulting absolute error for the same scat-
terer and incident field, where we have instead chosen∆s

x = 1,
rmx = 100, and rsx = 110. With these parameters we bring
down the relative L2 norm to 2.5 × 10−4, and the largest re-
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(a) (b)

FIGURE 13. Error, timing, and number of unknowns comparison for a homogeneous dielectric circular-cylindrical scatterer with radius ρ = 5 and
ϵr = 2. (a) The relative errors with respect to the analytical reference. (b) The computation time and the number of unknowns. Both figures involve
the CDO and the spectral path deformation discretization objects.

(a) (b)

FIGURE 14. Comparison of achieved relative error against the time taken to run the solver for a for a homogeneous dielectric circular-cylindrical
scatterer with radius ρ = 50 and ϵr = 1.1 (a) for both the CDO and the spectral path deformation discretization objects. The computation time and
the number of unknowns (b) for both methods.

maining deviations are now smaller than 2.5 × 10−3 and are
concentrated around the edge of the scatterer. It is clear that the
remaining errors are of a different nature than that of Fig. 11 and
are dominated by other parameters. Solving this system now
takes 744 s, roughly a 50 times increase in computation time
compared to the most time-consuming simulation data point in
Fig. 13. Since our primary interest lies in obtaining a balance
among computational efficiency, accuracy, and flexibility, we
will keep using the faster, but less accurate, simulation settings
from here on.
When we consider a larger cylinder (Case 2), we observe the

expected gain in computational efficiency. In Fig. 14, we show
the achieved relative error vs computation time for a homo-
geneous dielectric circular cylinder with radius ρ = 50 and
ϵr = 1.1. From this graph it is clear that the CDO based
method is the more efficient choice for a setup of this size. It
is important to note that the CDO based method does have a
larger number of unknowns for a given rx, but this is nulli-
fied by the gain in accuracy. In the bottom graph, it can be
seen that for a given accuracy the CDO based method requires
less computation time. This improvement in efficiency indi-
cates the successful separation of long-distance behavior of the

Green function in the side-discretizations and the short-distance
behavior of the Green function in the main discretization for
the CDO. Therefore, the main discretization, which carries the
main workload of the method, now has rmx smaller than twice
the radius of the scatter. The full set of simulation parameters
is listed in the fourth column of Table 4.

5.4. Results for a Dielectric Lens
As a final demonstration, we consider a plane wave incident on
a dielectric lens (Case 3). We take an E-polarized plane wave
incident on a homogeneous dielectric lens that focuses the field
into a beam. Again, we compare the results for both methods.
For the lens geometry we use the (spatial) intersection of the in-
terior of two circles with the same radius. As discussed above,
we perform the sampling of the scatterer in the spectral domain.
By multiplying the characteristic functions of two circles with
different center positions, we obtain the characteristic function
of a lens in the spatial domain. This allows us to create an object
that represents the characteristic function of a lens with permit-
tivity ϵr on a discretization object d as:

Πd(x⃗) = (ϵr − 1)F−1

d̂

{
Sc

(
ξ̂x⃗1
ρ1

)}
F−1

d̂

{
Sc

(
ξ̂(x⃗2)
ρ2

)}
. (39)

88 www.jpier.org



Progress In Electromagnetics Research B, Vol. 107, 77-90, 2024

FIGURE 15. A dielectric lens (with ϵr = 10 focuses the incident field,
arriving from the left-hand side, into a beam. The figure depicts the
total electric field. The inset at the top-left depicts the lens without any
fields.

The information pertaining to the long-range spatial interac-
tions is contained in the side discretization objects. This means
that themain discretization object only needs to be large enough
to contain the lens and a distanceRG around it. Once the simu-
lation is run, we can demonstrate the lens focusing the resulting
field by re-sampling the calculated (compact) contrast current
density on a discretization object with a larger extent and by ap-
plying the forward scattering operation. The parameters for this
simulation are found in the fifth column of Table 4. In Fig. 15,
the resulting total field from this setup for the CDO is shown.
In Table 5, we show the relative difference, with respect to

the spectral path deformation method and the corresponding
computation times for a set of lenses, each with a different per-
mittivity and for various levels of coarseness on the side dis-
cretizations. The full simulation was performed for each set-
ting, even though the deformation method does not depend on
∆s

x. The simulations were performed five times, and of these
results the shortest achieved computation time is displayed.
The relative difference between the results of the two methods
is smaller than 5 × 10−2. From these results the improvement
in computation speed of the CDOmethod is demonstrated. The
two methods arrive at similar resulting fields, but the CDO is
between 2 and 3 times faster than the path deformation method
for all the tested cases.

6. CONCLUSION
We introduced a method to represent the frequency-domain 2D
spectral Green function for a homogeneous medium of infinite
extent on three separate complex paths by employing appropri-
ate selection functions. Using this formulation, we developed
a software framework to solve 2D E-polarized dielectric scat-
tering problems.
The resulting framework with a CDOwas used to solve scat-

tering problems for two types of dielectric scatterers, i.e., a ho-
mogeneous dielectric circular cylinder and a homogeneous di-
electric lens. The CDO based method keeps the discretization
of the Green function simple, since we never sample close to
the Green-function singularities. This gives it the same flexi-

TABLE 5. Comparison between the CDObasedmethod and the spectral
deformation method for a dielectric lens with several values for ϵr and
for several sample distances∆s

x.

Time Time Relative error
(CDO) (Deformation) (Deformation )

as reference
ϵr = 2, ∆s

x = 2 7.4 s 15.7 s 3.36× 10−2

ϵr = 2, ∆s
x = 3 6.77 s 15.6 s 3.35× 10−2

ϵr = 2, ∆s
x = 4 5.38 s 15.5 s 3.45× 10−2

ϵr = 2, ∆s
x = 5 5.30 s 15.6 s 3.34× 10−2

ϵr = 5, ∆s
x = 2 23.1 s 48.2 s 4.46× 10−2

ϵr = 5, ∆s
x = 3 24.0 s 48.7 s 4.44× 10−2

ϵr = 5, ∆s
x = 4 17.8 s 47.3 s 4.35× 10−2

ϵr = 5, ∆s
x = 5 16.9 46.0 s 4.40× 10−2

ϵr = 10, ∆s
x = 2 50.4 s 102 s 2.21× 10−2

ϵr = 10, ∆s
x = 3 45.7 s 103 s 2.10× 10−2

ϵr = 10, ∆s
x = 4 38.6 s 104 s 2.07× 10−2

ϵr = 10, ∆s
x = 5 36.6 s 103 s 2.08× 10−2

bility in discretization as a previously used method that utilizes
a single complex-deformed path in the spectral domain.
By using these separate paths, the part of the Green function

that corresponds to long-range interactions is treated separately
from the parts with short-range interactions. We showed that
the split in representation allows for a reduction in the spatial
discretization range for the largest part of the spectral domain
on which only the short-range interaction works. On the other
hand, the side-discretizations that contain the spectral-domain
singularities require a larger spatial-domain path, since they
represent the long-range interaction. Since the side discretiza-
tions only require a very coarse spatial sampling, these side-
discretizations are still rather efficient. Together, this leads to
an overall reduction in the number of unknowns and in compu-
tation time as compared to previous work.
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