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ABSTRACT: Surrogate models have been gradually promoted in electromagnetic compatibility (EMC) simulation in recent years, and
two typical application scenarios are uncertainty analysis and electromagnetic optimization design. The surrogate model can simulate
the forward EMC simulation process as accurately as possible with relatively few sampling points. The choice and number of sampling
points will directly determine the accuracy of the surrogate model. The purpose investigated by uncertainty analysis and electromagnetic
optimization design is different. How to choose appropriate sampling strategies is worth discussing, but there are very few studies in the
field at this stage. This paper applies a cascaded cable crosstalk example to explore the accuracy of the surrogate model under different
sampling strategies, which provides a theoretical level of suggestion for the application of the surrogate model in EMC simulation. The
study enables the surrogate model to be better suited for two application scenarios: uncertainty analysis and electromagnetic optimization
design.

1. INTRODUCTION

Surrogate models are black box-like models constructed by
a small number of sampling points. Typical surrogate mod-

els include Least Squares Support Vector Regression (LSSVR)
[1], Kriging [2], and Radial Basis Function (RBF) [3]. Cur-
rently, the surrogate model has been successfully applied in
EMC simulation. Its application in two scenarios, i.e., un-
certainty analysis and electromagnetic optimization design, is
among the current research trends. In uncertainty analysis, the
common methods include Stochastic Galerkin Method [4] and
Stochastic CollocationMethod [5] based on chaos polynomials.
In electromagnetic optimization design, common methods are
particle swarm optimization algorithms and genetic algorithms
among other methods. The surrogate models have been used in
both fields due to their efficiency and accuracy. Li et al. apply
the Kriging model to optimize the design of photonic bandgap
structures [6]. An approximate functional relationship between
the photonic crystal bandgap and the design parameters is es-
tablished using the Kriging surrogate model, which replaces the
expensive reanalysis method in the electromagnetic field sim-
ulation of three-dimensional periodic structures. In [7], an im-
proved Kriging model is proposed which performs EMC uncer-
tainty simulation efficiently and accurately.
These surrogate models are constructed in essentially the

same way. That is, sampling points are obtained by certain
sampling methods, and deterministic EMC simulation is per-
formed on the sampling points. The {sampling point, EMC
simulation result} pairs are used as the training set to train the
surrogate model. During the selection of sampling points, dif-
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ferent sampling strategies can result in varying sampling points
even when using the same sampling method, thereby affecting
the accuracy of the constructed surrogate model.
Surrogate models employ numerous sampling strategies in

the field of mathematical theory, but relatively few have been
examined in existing EMC simulation studies. Most of the
EMC simulations based on surrogate models applied are based
on the Latin hypercube sampling method with the static sam-
pling strategy. In the field of EMC simulation, uncertainty anal-
ysis and electromagnetic optimization design are two current
research trends, and their goals are different. Both uncertainty
analysis and electromagnetic optimization design need the sur-
rogate model to be able to predict the forward electromagnetic
simulation process. While electromagnetic optimization de-
sign is more concerned with whether the optimal point can be
searched and the accuracy of the optimal point neighborhood,
uncertainty analysis is more concerned with the overall accu-
racy. Therefore, it is obviously unreasonable to use the same
sampling strategy in these two application scenarios. The focus
of this research is to explore how to select suitable sampling
strategies based on different needs when applying the EMC
simulation surrogate model to uncertainty analysis and electro-
magnetic optimization design. This ensures the accuracy of the
surrogate model, enabling efficient and accurate solutions to
these problems in EMC simulation.
The structure of this paper is as follows. Section 2 describes

the application of the surrogate model to uncertainty analysis
and electromagnetic optimization design. Section 3 describes
the sequential addition strategy and static sampling strategy. A
cascaded cable crosstalk example is presented in Section 4 to
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FIGURE 1. The relationship between random variables and exhaustive sampling points.

better enable the comparison of the performance of different
sampling strategies in uncertainty analysis and electromagnetic
optimization design. In Section 5, two sampling strategies are
applied to uncertainty analysis and electromagnetic optimiza-
tion design based on the Kriging model in order to investigate
the applicability of different sampling strategies in uncertainty
analysis and electromagnetic optimization design. Section 6
provides prospects for future research work. Section 7 summa-
rizes this paper.

2. UNCERTAINTY ANALYSIS AND ELECTROMAG-
NETIC OPTIMIZATION DESIGN BASED ON SURRO-
GATE MODEL
Uncertainty analysis and electromagnetic optimization design
are both current research trends in the field of EMC simulation.
Uncertainty analysis and electromagnetic optimization design
based on surrogate models have attracted much attention due to
their efficiency and accuracy. Regardless of the field to which
it is being applied, the surrogate model needs to be trained
with a set of training sets (SEMC, YEMC). The sample space
SEMC = [x1, x2, . . . , xn1] in the training set (SEMC, YEMC) is
n1 sampling points obtained based on a certain sampling strat-
egy. Each sampling point xi is M -dimensional vector data as
follows.

xi = {xi(1), xi(2), . . . , xi(M)} (1)
where xi(j) are all deterministic constant values. The deter-
ministic EMC simulation is performed on each sample point
xi, and the simulation results obtained are as follows.

yi = EMC[xi] (2)

where EMC[ ] represents the deterministic EMC simula-
tion process. yi is the result of a single EMC simulation,
which usually has a dimension other than M and needs
to be specified according to the EMC simulation solver.
YEMC = [y1, y2, · · · , yn1] is the set of deterministic EMC
simulation results.
In this paper, the Kriging model, which is currently popular

in the field of EMC simulation, is selected for uncertainty anal-
ysis and electromagnetic optimization design based on differ-
ent sampling strategies. The Kriging model is a classical surro-
gatemodel, which is representative, and its details are described
in [6]. The Kriging model constructed by applying the training
set (SEMC, YEMC) is denoted by MKriging[ ].

2.1. Uncertainty Analysis

In practical engineering, the sources of uncertainty can be cat-
egorized into stochastic uncertainty factors and cognitive un-
certainty factors. Stochastic uncertainty factors mainly refer
to cognitively clear but unavoidable randomness, such as ran-
dom displacement caused by motion or vibration, randomness
of the geometric structure of cable bundles caused by bundling,
and manufacturing workmanship of parts. Cognitive uncer-
tainty factors mainly refer to interval estimates due to lack of
knowledge, e.g., cognitive uncertainty in physical parameters
and uncertainty due to simplified simulation models. Uncer-
tainty analysis refers to the quantitative prediction of the effect
of input randomness on output results. This usually includes
expectation values, standard deviation values, worst-case esti-
mates, and probability density curves. The application of un-
certainty analysis methods can enhance the credibility of elec-
tromagnetic prediction results, thereby significantly improving
the reliability and practicality of electromagnetic protection de-
sign.
The uncertainty factor is described using a random variable

model in vector form as follows.

ξ = {ξ1, ξ2, . . . , ξj , . . . , ξM} (3)

where ξj is the random variable, ξ the vector of random vari-
ables, andM the number of random variables.
Based on the weak large number law, the random variable

vector ξ can be described using exhaustive sampling points
S1 = [ψ1, ψ2, . . . , ψn2], that is, considering all possible cases,
where the number of sampling points isn2, andn2 ≫ n1. Each
sampling point ψi isM -dimensional vector data as follows.

ψi = {ψi(1), ψi(2), . . . , ψi(j), . . . , ψi(M)} (4)

where ψi(j) is a definite constant value. It is worth noting
that ξj in Equation (3) corresponds to ψi(j) in Equation (4) as
shown in Figure 1.
Each random variable ξj in the uncertainty analysis is sam-

pled according to its probability density function (PDF), and
their PDF can be different as shown in Equation (5). For exam-
ple, in the vector ξ of random variables, it may be the case that
ξ1 follows a uniform distribution; ξ2 follows a normal distribu-
tion; and ξ3 follows a Gaussian distribution.

ξj ∼ PDFj(ξj) (5)
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When the surrogate model is applied to uncertainty analy-
sis, firstly representative sampling points in the exhaustive sam-
pling space S1 are selected by a certain samplingmethod. Here,
the representative sampling points are the sample space SEMC
of the training set (SEMC, YEMC). Then, the surrogate model
MKriging[ ] is trained based on the training set (SEMC, YEMC).
The sampling points ψi in the exhaustive sampling space S1

are brought into the surrogate model one by one, as shown in
Equation (6). The EMC simulation results YKriging based on the
Kriging model are obtained and then statistically analyzed to
obtain the uncertainty analysis results such as expectation, stan-
dard deviation, worst-case estimates, and probability density
curves.

YKriging = MKriging[ψi] (6)

2.2. Electromagnetic Optimization Design

In electromagnetic optimization design, the parameters to be
optimized are also varied in a certain range. It is assumed that
there are n3 (n3 ≫ n1) parameters ωi to be optimized, which
are varied in the range of [ai, bi]. In EMC simulation, each
parameter ωi will have an impact on the simulation results, so
the raster point space S2 shown in Equation (7) is obtained.

S2 = ω1 ⊗ ω2 ⊗ . . .⊗ ωi ⊗ . . .⊗ ωn3 (7)

When surrogate models are applied to electromagnetic opti-
mization design, SEMC is first selected in the raster point space
S2 by a certain sampling method. Then, the surrogate model
MKriging[ ] is trained based on the training set (SEMC, YEMC).
The raster points in the raster point space S2 are brought into
the surrogate model MKriging[ ]. The obtained simulation results
are optimized to find the optimal solution for EMC simulation.
In this paper, the maximum crosstalk voltage of the cascaded
cable model is taken as the optimal solution.

3. STATIC SAMPLING STRATEGY AND SEQUENTIAL
ADDITION STRATEGY
When the surrogate model is applied to uncertainty analysis
and electromagnetic optimization design in EMC simulation,
the sampling strategy used to obtain the sample space SEMC is
the key to determining the accuracy of the surrogate model.
In this paper, two sampling strategies are applied to ob-

tain the sampling space SEMC. The first sampling strategy is
the static sampling strategy, that is, obtaining all the sampling
points in SEMC at once. This sampling strategy has a high de-
gree of coverage. The sampling points are all distributed as
uniformly as possible to cover all parts of the parameter space.
The static sampling strategy is most commonly used in EMC
simulations based on surrogate models.
The second sampling strategy is the sequential addition strat-

egy, as shown in Figure 2. Its initial sampling space S0 has
only a rather small number of sampling points x0(k), and de-
terministic EMC simulations are performed on x0(k) to obtain
the simulation result y0(k). The surrogate model is constructed
based on the obtained data pairs {x0(k), y0(k)}. The optimal
result and its corresponding sampling point xi are found by the
Genetic Algorithm (GA). If the number of sampling points does

FIGURE 2. Flowchart of the sequential addition strategy.

not reach the required value, the new sampling point is added to
the existing sampling space S0 to build a new surrogate model.
If the number of sampling points reaches the required value,
all the sampling points in SEMC obtained by the sequential ad-
dition strategy are output. It is noted that the sampling space
SEMC obtained by the two sampling strategies is different.
To clearly discuss the two sampling strategies, this section

develops mathematical models for uncertainty analysis and op-
timization design. These models will be applied in the EMC
simulation examples presented in the next section. The uncer-
tainty analysis model is a mathematical model containing two
random variables {ξ1, ξ2} with independent variables X1 and
X2 (The x-axis coordinates of the two red transmission lines in
Figure 6). The results of applying random variable modeling
are shown below.{

X1(ξ1) = 1.5 + 0.5× ξ1

X2(ξ2) = 1.5 + 0.5× ξ2
(8)

where X1 and X2 are uniformly distributed random variables
in the interval [−1, 1].
The optimization design model is also a mathematical model

with independent variables X1 and X2. The range of values is
shown in equation (9).

1 ≤ X1 ≤ 2

1 ≤ X2 ≤ 2
(9)
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FIGURE 3. The schematic diagram of sampling points for LHS and Halton selection based on the static sampling strategy.

FIGURE 4. The schematic diagram of sampling points for LHS and Halton selection based on the sequential addition strategy.

The independent variables X1 and X2 of both mathematical
models take values in the range [1, 2].
In this paper, two sampling methods, Latin Hypercube Sam-

pling (LHS) [8] and Halton Sampling (Halton) [9], are applied
to two sampling strategies. LHS is a stratified sampling method
that evenly divides the range of each dimension into n intervals
and then randomly selects a point within each interval. Hal-
ton is a low-discrepancy sequence, and these sequences utilize
prime bases to produce a set of sample points with low variabil-
ity. The number of sampling points for a given sampling space
SEMC is 30. The schematic diagram of the sampling points se-
lected by LHS and Halton based on the static sampling strategy
is shown in Figure 3, where 30 sampling points are selected
at one time. The schematic diagram of the sampling points for
LHS andHalton selection based on the sequential addition strat-
egy is shown in Figure 4. Firstly, 9 sampling points of the initial
sampling space S0 are selected by LHS and Halton (blue points
in the figure). Then, the number of sampling points is expanded
to 30, that is, 21 additional sampling points are added through
the sequential addition strategy (red points in the figure). The
sampling points in Figure 3 and Figure 4 are applied in the EMC
example in the next section.
The flowchart of constructing the surrogate model based

on two sampling strategies and applying it to two scenarios

of uncertainty analysis and electromagnetic optimization de-
sign is shown in Figure 5. Firstly, the LHS and Halton based
on the sequential addition strategy and static sampling strat-
egy are applied to the sample to obtain four sampling spaces
of SEMC1, SEMC2, SEMC3, and SEMC4, as shown in the scatter
plots in Figures 3 and 4. Four training sets, {SEMC1, YEMC1},
{SEMC2, YEMC2}, {SEMC3, YEMC3}, and {SEMC4, YEMC4}, are
obtained through deterministic EMC simulation, which in turn
leads to the construction of four Kriging surrogate models,
M1

Kriging[ ], M2
Kriging[ ], M3

Kriging[ ], and M4
Kriging[ ]. Finally, un-

certainty analysis and electromagnetic optimization design are
performed. The results of the uncertainty analysis and electro-
magnetic optimization design are used to determine the appli-
cability of different sampling strategies.

4. CROSSTALK EXAMPLE FOR CASCADING CABLE
MODEL
In this paper, the cascaded cable crosstalk example is applied
to explore the applicability of two sampling strategies in uncer-
tainty analysis and electromagnetic optimization design. In or-
der to describe the geometric randomness induced by bundling
or other factors, cascaded transmission line models are com-
monly used to model cables [10]. Figure 6 shows a schematic
diagram of a cascaded cable model with two cables lying flat
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FIGURE 5. Flowchart of uncertainty analysis and electromagnetic optimization design based on two sampling strategies.

FIGURE 6. Schematic diagram of cascaded cable model.

on a ground aluminum plate, each of which consists of two uni-
form transmission lines cascaded together. The red line is the
interference transmitting line with a diameter of 0.07 meters.
The green line is the interference receiving line with a diameter
of 0.09 meters. In this example, the geometric position of the
cable can be changed only in the x-axis direction.
Figure 7 shows the schematic diagram of the circuit for the

crosstalk problem. The length of both the interference trans-
mitting line and interference receiving line is 1m. Each end
of the interference receiving line is connected to a 50Ω load,
and the interference transmitting line needs to be connected not
only to the 50Ω load but also to the sinusoidal excitation source
Um. The amplitude of Um is 1V. The strength of the crosstalk
between the cables is characterized by the voltage value Vfar
at the far end of the interference receiving line. The heights
between these two cables and the ground are their radii, that is
0.045m and 0.035m. Assuming that the x-axis coordinates of
the two transmission lines of the interference transmitting line
are fixed, they are 1.3m and 1.6m. The x-axis coordinates of

FIGURE 7. Schematic diagram of cascaded cable model crosstalk ex-
ample.

the two transmission lines of the interference receiving line,X1

and X2, are varied within the range of [1m, 2m], which is the
mathematical model established by formula (8) and formula (9)
in the last section. The sampling points for the two sampling
strategies are shown in Figure 3 and Figure 4. More introduc-
tion to cable crosstalk example can be found in [11]. In this
paper, the mirror method and electrical axis method are applied
to give the electrical parameters in the transmission line model.
The Finite Difference Time Domain (FDTD) method is applied
to calculate the crosstalk voltage Vfar at the far end of the in-
terference receiving line. FDTD can be found specifically in
the research of Sun et al. [12].
According to electromagnetic field theory, closer proxim-

ity between cables increases the strength of electromagnetic
coupling and enhances crosstalk between the lines. According
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FIGURE 8. The scatter plots of MCM result for cascaded cable model
crosstalk at 2MHz.

FIGURE 9. The scatter plots of MCM result for cascaded cable model
crosstalk at 40MHz.

to this theorem, an electromagnetic optimization design prob-
lem with known optimization results can be constructed by the
cascade model. The crosstalk value is maximized when the
two cables overlap, so the answer for the optimal design is
X1 = 1.3m,X2 = 1.6m. At this point, the crosstalk voltage is
0.0041V for a frequency of 2MHz and 0.0079V for 40MHz.
It is worth noting that since the cables in the example are solid
(have a radius), they cannot overlap exactly. Therefore, the dis-
tance d between the interference transmitting line and interfer-
ence receiving line is directly equal to 0.08mwhen d is less than
the sum of the radii of the two cables 0.045+ 0.035 = 0.08m.

5. APPLICATION OF TWO SAMPLING STRATEGIES
TO UNCERTAINTY ANALYSIS AND ELECTROMAG-
NETIC OPTIMIZATION DESIGN
In this section, the cascade cable example proposed in the last
section is applied to verify the applicability of the sequential ad-
dition strategy and static sampling strategy in uncertainty anal-
ysis and electromagnetic optimization design. The simulation
results at 2MHz and 40MHz are analyzed to determine which
sampling strategy is more accurate for constructing the surro-
gate model in two EMC simulation scenarios, which are uncer-
tainty analysis and electromagnetic optimization design.
The Monte Carlo Method (MCM) can be used in uncertainty

analysis and electromagnetic optimization design [11, 13] and
is generally considered to be one of the most reliable meth-
ods due to its high accuracy. However, the computational ef-
ficiency of MCM is extremely low and cannot be effectively
applied to complex EMC problems. It is often used as a ref-
erence method in uncertainty analysis to validate other uncer-
tainty analysis methods [14]. MCM performs deterministic
EMC simulations on exhaustive sampling points. To ensure
convergence, MCM uses 10000 sampling points. Scatter plots
of cable crosstalk voltages are obtained, Figure 8 for 2MHz
and Figure 9 for 40MHz. The scatter plots show the crosstalk
voltage Vfar of the MCM at 10,000 samples. Since the cable
radius is solid, the distance d between the interference transmit-
ting line and interference receiving line is equal to 0.08m when

1.22m ≤ X1 ≤ 1.38m and 1.52m ≤ X2 ≤ 1.68m. The red
points in the figure are the maximum values of the crosstalk
value Vfar. The maximum crosstalk voltage is 0.0041V at
2MHz and 0.0079V at 40MHz.
The LHS and Halton based on the sequential addition strat-

egy are denoted as SAS-LHS and SAS-Halton, respectively.
The LHS and Halton based on the static sampling strategy are
denoted as SSS-LHS and SSS-Halton, respectively.
When the uncertainty analysis is performed, the simulation

results of Kriging based on four sampling methods are exam-
ined using the MCM simulation results as the standard. In this
paper, the Mean Equivalent Area Method (MEAM) is applied
to quantitatively evaluate the difference between uncertainty
simulation data and standard data [15]. The evaluation result
is a constant between 0 and 1. The closer the value is to 1,
the smaller the difference and the more accurate the uncertainty
analysis method is. Figure 10 shows the results of the uncer-
tainty analysis of the crosstalk voltage values at the far end of
the interference receiving line at 2MHz, expressed in the form
of probability density. Figure 11 shows the probability density
curve at 40MHz. The probability density curves of the two
plots demonstrate the same conclusion that the Kriging model
based on the static sampling strategy is similar to the MCM
results. It can be tentatively concluded that the uncertainty
analysis results of SSS-LHS and SSS-Halton are more accu-
rate. Table 1 shows the evaluation results of MEAM. Based
on the MEAM results at two frequency points (2MHz and
40MHz), it is evident that the Krigingmodel, constructed using
SSS-LHS and SSS-Halton, demonstrates higher accuracy and
closely matches the MCM simulation results in the uncertainty
analysis. So the static sampling strategy is more suitable for un-
certainty analysis, because of its good coverage and uniformity
in the sampling process.
When the electromagnetic optimization design is carried out,

the Kriging model is constructed based on four sampling meth-
ods, namely, SSS-Halton, SAS-Halton, SSS-LHS, and SAS-
LHS, and the optimal solution is obtained through optimiza-
tion search to obtain the maximum value of crosstalk voltage.
Table 2 shows the optimization results at 2MHz, and Table 3
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FIGURE 10. The probability density of crosstalk voltage values at
2MHz.

FIGURE 11. The probability density of crosstalk voltage values at
40MHz.

TABLE 1. The results of the MEAM evaluation.

The MEAM value of 2MHz The MEAM value of 40MHz

SSS-Halton 0.9479 0.9506

SAS-Halton 0.6557 0.6539

SSS-LHS 0.9306 0.9327

SAS-LHS 0.6079 0.6075

TABLE 2. The optimization results of 2MHz.

The optimization result The crosstalk voltage value

SSS-Halton {X1 = 1.2323m, X2 = 1.7013m} 0.0037V

SAS-Halton {X1 = 1.2903m, X2 = 1.5528m} 0.0041V

SSS-LHS {X1 = 1.3821m, X2 = 1.6410m} 0.0040V

SAS-LHS {X1 = 1.2582m, X2 = 1.6187m} 0.0041V

TABLE 3. The optimization results of 40MHz.

The optimization result The crosstalk voltage value

SSS-Halton {X1 = 1.2008m, X2 = 1.6154m} 0.0070V

SAS-Halton {X1 = 1.3749m, X2 = 1.6443m} 0.0079V

SSS-LHS {X1 = 1.3846m, X2 = 1.5093m} 0.0068V

SAS-LHS {X1 = 1.3683m, X2 = 1.6294m} 0.0079V

shows the optimal solution at 40MHz. When the frequency
is 2MHz, the crosstalk voltage obtained by the optimization
based on SAS-Halton and SAS-LHS is 0.0041V, while the
crosstalk voltage obtained by the optimization based on SSS-
Halton and SSS-LHS is 0.0037V and 0.0040V, respectively.
When the frequency is 40MHz, the optimization results based
on SAS-Halton and SAS-LHS are 0.0079V,while the optimiza-
tion results based on SSS-Halton and SSS-LHS are 0.0070V
and 0.0068V, respectively. It can be seen that although the op-

timization results based on the Kriging model constructed by
the four sampling methods are all relatively good, obviously,
the sequential addition strategy is more suitable for electromag-
netic optimization design.

6. DISCUSSION ON FUTURE RESEARCH WORK
In two EMC simulation scenarios, uncertainty analysis and
electromagnetic optimization design, the surrogate model sam-

89 www.jpier.org



Huo et al.

ple points convergence determination is the next step of the re-
search conducted. If the convergence of the surrogate model in
different application scenarios can be predicted, it will help to
improve the computational efficiency and the credibility of the
simulation results.

7. CONCLUSION
In this paper, two sampling strategies, the sequential addition
strategy and the static sampling strategy, are applied to the con-
struction of the EMC surrogatemodel to investigate which sam-
pling strategy is applied to construct the surrogate model with
higher accuracy in two EMC simulation scenarios, which are
uncertainty analysis and electromagnetic optimization design.
The surrogate models constructed based on the two sampling
strategies are applied to the cascade cable crosstalk example for
uncertainty analysis and electromagnetic optimization design,
respectively. Based on the simulation results, it is concluded
that the surrogate model constructed using the sequential addi-
tion strategy is more suitable for electromagnetic optimization
design, whereas the model constructed with the static sampling
strategy is more appropriate for uncertainty analysis. This re-
search provides theoretical-level suggestions for applying sur-
rogate models in EMC simulations, enhancing their effective-
ness in uncertainty analysis and electromagnetic optimization
design.
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