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ABSTRACT: This paper focuses on optimizing the radiation pattern of sparse array antennas using reinforcement learning, with many
algorithms. The paper aims to leverage Proximal Policy Optimization’s (PPO’s) advantages in optimization and its effectiveness in
handling stochastic transitions and rewards to achieve a reduced number of elements while maintaining desired signal performance and
minimizing unnecessary side lobe signals. By removing a few of the antennas using reinforcement learning and PPO optimization,
the same results as a complete array have been obtained. The anticipated outcomes of this research hold the promise of significantly
enhancing the effectiveness and utility of sparse array antennas in communication systems.

1. INTRODUCTION

Antenna array design serves the crucial purpose of achiev-
ing the desired radiation pattern with the minimum num-

ber of antenna components, a vital consideration in applications
where weight and size limitations are critical, such as in phased
array radar and satellite communications [1, 2]. Array antennas
play a crucial role in processing signals arriving from differ-
ent paths, and one of the primary objectives in their design is
to create a suitable geometric structure to achieve the desired
radiation pattern with high gain and compact dimension [3].
Consequently, the design and optimization of array antennas
have garnered considerable attention due to their wide-ranging
applications and the need to achieve optimal designs.
The aim of optimization in array antenna design is to find

the best acceptable solution according to the constraints and
needs of the problem. With the introduction of optimization
algorithms, the foundation for improving the optimal design of
array antennas has been established [4, 5]. Achieving the op-
timal design of array antennas is a significant challenge due to
their wide applications and the need to meet specific design cri-
teria.
Various methods have been proposed to optimize antenna ar-

rays, each with specific goals. For instance, [1, 6, 7] introduce a
non-iterative method for linear array synthesis based on the ma-
trix pencil method (MPM), enabling the synthesis of a nonuni-
form linear array with a reduced number of elements. Simi-
larly, [7] investigates a method to create thinned aperiodic lin-
ear phased arrays through the application of genetic algorithms
to suppress grating lobes and achieve increased steering angles.
In all these years, the aim has been to improve the perfor-

mance of the array antenna in different ways. One of the im-
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portant issues in array antennas is to achieve the desired results
despite the reduction of array elements, which is called sparse
array antenna. In this method, the number of active elements
is reduced, but the same results are obtained when all the ele-
ments are active. This method makes the antenna lighter and
reduces its costs [8–10].
In recent decades, various approaches have been presented

in the literature for sparse array synthesis, initially using basic
optimization techniques, then continuing with advanced tech-
niques. Taylor spatial narrowing [11], optimization algorithms
such as genetic algorithm [12, 13] are among these methods.
Basic optimization techniques may suffer from local minima,
and in the presence of multiple minima, finding the optimal so-
lution faces limitations. For this reason, the use of optimization
methods such as genetic algorithm is suggested. Ref. [14] used
the combination of GA and minimum redundancy method to
optimize the random sparse array.
In this paper, a novel reinforcement learning method, specifi-

cally Deep QLearning with PPO algorithm, is introduced to op-
timize the array factor equation for sparse array antenna. This
method is compared with Genetic and PSO and many other al-
gorithms to demonstrate its effectiveness in achieving antenna
designs with fewer elements and desired efficiency. By com-
paring these optimization methods, the goal is to contribute to
the existing body of knowledge and provide insight into the po-
tential of reinforcement learning in array antenna design

2. METHODOLOGY
In this section, different optimization methods will be imple-
mented in a practical way by different algorithms in order to
clarify the difference between the method used in this article
and the other methods. The efficiency of reinforcement learn-
ing optimization compared to other methods will be clearly
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seen. The problem to be solved is the design of a dispersive
antenna array starting from a uniform linear array antenna. The
aim is to remove as many elements as possible from an initial
uniform linear array, while keeping the radiation pattern close
to the desired pattern, and also optimizing the side lobe level
(SLL) of the antennas in addition to achieving the desired radi-
ation pattern. Optimizing the side lobe level is crucial in min-
imizing unwanted radiation in directions other than the main
lobe direction, thereby enhancing the overall performance of
the antenna system, using different algorithms optimization. In
this problem, the symmetry of the space of antennas has been
exploited, and for example, the array of 32 antennas has been
optimized by searching in the space of 16.
The array factor for sparse array antennas is obtained from

the uniform linear array AF of the antenna by introducing the
weighting coefficients [15], Xn with binary values

AF dBimp (θ) = 20 log
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A weighting factor Xn with a value of zero means that the feed-
ing of the element at position n is cancelled, while a value of
1 means that the element is fed. The error function (ERR) is
given by the following expression:
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This error function will be optimized by five different
methods: Genetic Algorithm, Particle Swarm Optimization
(PSO), Proximal Policy Optimization (PPO), Actor Critic with
Kronecker-factored Trust Region (ACKTR), Advantage Actor
Critic (A2C) method, in this article to achieve the best results
for desired objectives, which are:
•Achieving a suitable beam with optimum side lobe level.
•Reduce the number of array elements as much as possible

to achieve better results than other methods.
•The comparison of main method results with other methods.

The choice to utilize reinforcement learning for antenna ar-
ray optimization stems from its capacity to handle complex,
dynamic environments and its ability to learn from interaction
with the environment. Reinforcement learning offers the ad-
vantage of adaptability and learning from feedback, making it
well suited for antenna array optimization tasks that involve in-
tricate trade-offs and dynamic constraints. By employing re-
inforcement learning, its potential in achieving efficient and
adaptive solutions for antenna array design is aimed to be ex-
ploited, particularly in scenarios where traditional optimization
methods may face challenges in handling complex and evolv-
ing design requirements [16–18].
In summary, the methodology used in this paper involves im-

plementing various optimization methods with reinforcement
learning, to address the design of a sparse array antenna, with a
focus on optimizing the side lobe level and exploiting the sym-
metry of the antenna space.

3. OPTIMIZATION PROBLEM SOLVING METHOD
WITH REINFORCEMENT LEARNING

3.1. Reinforcement Learning for Hybrid Optimization
Solving a combinatorial problemwith the RL approach requires
an Markov Decision Process (MDP) formulation. The envi-
ronment is defined by a specific instance of the optimization
problem. The states are encoded by a neural network model
(e.g., each node has a vector representation encoded by a graph
neural network) [19]. The agent is guided by an RL algorithm
(e.g., Monte Carlo tree search) and makes decisions that move
the environment to the next state (e.g., remove a vertex from a
solution set).

3.2. Introducing the Synthesis of Phased Array Antenna as a
Combinational Optimization
In Figure 1, the arrangement of antenna array elements for syn-
thesis is shown which must have one of two states on or off. As
it is clear in the figure, in the optimization of the array antenna,
some elements are turned off, and in other words, they try to
get the desired answer with the maximum number of turned off
elements.

3.3. Introducing the Reinforcement Learning Optimization
In [20, 21], optimization is introduced, and it includes vari-
ous optimization problems from hybrid, continuous, mixed dis-
crete/continuous to high dimensional problems, heavy compu-
tations, and constrained engineering optimizations. This gives
a hint to solve the antenna optimization problems using such
methods in this paper, because due to the possibility of using
the feature of antennas being parallel in the first to fourth lines
of the Python code, first the input vector x is parallelized, and
then by adding the parallel vector to x, a new vector with twice
the length is created. Therefore, the search space for the op-
timization algorithm has dimensions (2 : 1) equal to the di-
mensions of the array end space. For example, by searching
in 32-dimensional space, it is possible to synthesize the vector
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FIGURE 1. Arrangement of antenna array elements, (a) turning on entire antenna elements, (b) turning off some concentrated array elements.

of 64-dimensional antennas and give distinctive and successful
results for problems similar to the one that this article discusses.
This paper uses reinforcement learning methods because

they have been shown to provide distinctive and successful re-
sults for similar problems.

4. RESULTS AND DISCUSSIONS
Different methods were used for the proper design of a sparse
array antenna, and some of the results are considered in the fol-
lowing sections. The results of all the used methods will also
be presented so that the results can be compared.

4.1. Implementation of Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) is one of the bio-inspired
algorithms and is a simple algorithm for finding an optimal so-
lution in the solution space. It is particularly useful for antenna
array optimization [17, 18]. It differs from other optimization
algorithms in that it only needs the objective function and does
not depend on the gradient or any differential form of the ob-
jective. It also has very few hyperparameters. In [22], Particle
Swarm Optimization demonstrates its effectiveness in address-
ing the challenges of antenna synthesis, showcasing advance-
ments in optimizing antenna performance.
In this section, the givens used for this algorithm are: Time

Step = 16000 and Episode = 1000. The results of running the
PSO algorithm in the search space of dimension 32, 64, and 96
elements are shown in Table 1.
Table 1 shows that PSO performed best with 64 antennas, 20

of which were turned off (31.25% of the total). As the number
of antennas increased to 96, the percentage decreased to 16.7%.
This contradicts the previous method’s result.
Figure 2 shows that the first three side lobes increased

slightly (first SLL show increase to −14 dB), which is consid-
ered a undesirable result in this paper.

4.2. Implementation of Reinforcement Learning Method
To solve discrete optimization problems, the Q reinforcement
algorithm method can be used instead of the random search

FIGURE 2. AF optimized antenna by PSO (red) non-optimized antenna
(blue).

algorithm. To solve the optimization problem, as mentioned
in [21, 23], first the environment, agent, actions, and rewards
are defined, and then the Q-table and optimal policy should be
obtained using the toolbox, then in the order of these implemen-
tation steps should be made.

1- To solve the discrete optimization problem after training
and obtaining the optimal policy, the learned model is fed
in the first step of the current or initial state.

2- From the beginning of the policy, obtain the largest action
to carry out the action.

3- Apply the chosen action to the environment.

Repeat this process until reaching the solved or desired state.
This article implements several reinforcement learning meth-
ods to optimize array antennas and compares their results, as
mentioned below.
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TABLE 1. The results of running the PSO algorithm.

Number of
antennas

Best individual (x) and (y) found
antennas
turned off

32
Y = 131728.12005149468

X = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0]
2

64
Y = 22819.18791633075

X = [1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0]
20

96
Y = 280881.98186617147

X = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1]
16

4.2.1. Implementation of Proximal Policy Optimization (PPO) Method

The employment of the PPO algorithm in the optimization of
array antennas has yielded remarkable results, particularly in
the search space of dimension 32, 64, and 96 antennas with
added correlation. Notably, the PPO algorithm has exhibited
its superiority over all other methods, especially in antennas
of larger dimensions. The forthcoming presentation of graphs
and results serves to underscore the unparalleled performance
of the PPO algorithm in enhancing array antenna functionality,
signifying its potential as a leading approach in this domain.
Table 2 shows that PPO performed very good in two cases

with 64 and 96 antennas, with 24 and 40 turned off antennas
respectively (37,5% and 41.7% of the total).

FIGURE 3. Antenna AF optimized by PPO (red) non-optimized and
conventional graph (blue).

Figure 3 illustrates that with a slight increase in all side
lobe levels, a small increase occurs in the first side lobe level
(−15 dB) while the third side lobe level is reduced to −35 dB.

4.2.2. Implementation of Advantage Actor Critic (A2C) Method

Also the results obtained from employing the A2C method in
this context are significant, particularly in the search space of
dimensions 32, 64, and 96, with the subsequent doubling of
correlation. The forthcoming presentation of graphs and results
serves to underscore the favorable outcomes attained in both

targeted objectives, underscoring the effectiveness of the A2C
method in advancing array antenna functionality, but the SLL
has become a little less than the usual state.
Table 3 indicates that the A2C algorithm successfully

switches off unnecessary antennas when being applied to 96
antennas, achieving a success rate of 41.7%.
Figure 4 shows that all side lobes show an unwanted increase,

with the first side lobe show increasing to −11 dB.

FIGURE 4. Antenna AF optimized by A2C (red), non-optimized graph
(blue).

5. COMPARISON AND ANALYSIS OF THE RESULTS
Table 4 shows inclusive results of all methods used in this arti-
cle to help in comparing between them and find which one had
better optimization and achieved this article goals.
In the implementation of the algorithms in case of having

a high number of antennas (96 antenna), it is clear that rein-
forcement learning is superior. especial PPO and A2C which
achieved excellent results by switching off 40 antennas of 96
antennas and this make it 41.7% switching off percentage. In
the case of 64 antennas PPO has absolute superiority by 37.5%
switching off percentage, highlighting the promising potential
of reinforcement learning in antenna design. In the other case
like 32 antennas reinforcement learning also shows superior-
ity over classical methods like genetic and PSO algorithms.
What is remarkable is that ACER and ACKTR make only 25%
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TABLE 2. The results of running the PPO algorithm.

Number of
antennas

Best individual (x) and (y) found
antennas
turned off

32
Y = 167107.47

X = [1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1]
4

64
Y = 122483.82

X = [1 1 1 0 0 1 1 11 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0]
24

96
Y = 364100.12

X = [0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1]
40

TABLE 3. A2C method output for different number of antennas.

Number of
antennas

Best individual (x) and (y) found
antennas
turned off

32
Y = 167107.47

X = [1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1]
4

64
Y = 300846.06

X = [1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1]
12

96
Y = 350162.38

X = [1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0]
40

TABLE 4. Comparison of different methods: Genetic Algorithm, PSO and Reinforcement Learning methods (before adding the term of side lobes in
the cost function).

Method
optimization
Algorithm

Number of
ON antennas
(ones) of 32
antennas

Number of
ON antennas
(ones) of 64
antennas

Number of
ON antennas
(ones) of 96
antennas

The average
ability of
this method
to turn off

antennas (%)

Stability
of the
answer

1 GA 28 48 64 27.08 Medium
2 PSO 30 44 80 19.79 Good
3 PPO 28 40 56 35.42 Excellent
4 A2C 28 52 56 29.17 v.good
5 ACKTR 24 44 68 29.17 v.good

switching off percentage. The overall result of PPO makes
35.24% as the average ability of this method to switch off an-
tennas with more than 5% superiority from the nearest method
which is ACER by (30.20%).
Therefore, the results of the method used in this article, i.e.,

reinforcement learning with the PPO algorithm, are better than
the traditional PSO method (∼ 20% more successful in 64 an-
tennas and 15.63%more successful in overall results) and better
than the genetic algorithm too.

6. RESULTS BYADDINGA SIDE-LOBEOPTIMIZATION
TERM TO THE COST FUNCTION
In this section, by incorporating the size of the side lobes which
represents the value of the side lobe levels (SLLs) — into
the cost function, the problem was transformed into a multi-

objective one and subsequently solved. Furthermore, the dif-
ference between the method employed in this article and other
methods becomes clear: the efficiency of the reinforcement
learning approach in optimization surpasses that of other meth-
ods.
The new cost function = Original AF cost function + SLL

inverse value, which is with the following formula:

Z = ERR+ c ∗
(

1

side lobe level

)
ERR (x2, . . . , xn, . . . xN )

=

π∑
θ=0

(AF dB sp (θ)−AF dB imp (θ))
2
+ c∗

(
1

SLL

) (4)

where: Z = new cost function,
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TABLE 5. The final comparison table of 3 methods after adding the term of side lobes in the cost function.

Method optimization Algorithm
Antennas 16 Antennas 32 Antennas 64 Antennas 12
SLL On SLL On SLL On SLL On

1 PSO 24 12 24 24 23.7 42 33.3 88
2 ACKTR 36 10 29 14 40 32 32 76
3 PPO 32 10 31 18 42 36 39 67

ERR = original AF cost function (3),
c = importance coefficient of SLL.
It is clear that the first main criterion is the number of anten-

nas off, and then the amount of the AF error function, the lower
the better, which is now the best results for reinforcement learn-
ing and specifically PPO method, and this can be clearly seen
in Table 4.
The analysis of the graph considers side lobes as the primary

criterion. To reduce side lobes, theymust be included in the cost
function. However, reinforcement learning was able to achieve
better side lobe levels thanGenetics and PSO and othermethods
in the first side lobe and by turning off the antenna.
In Table 5, it can be observed that the addition of a term to

the cost function has led to the generation of new results for
each employed method. It is evident that the PPO method out-
performs other approaches, particularly in scenarios involving
many antennas (such as high-dimensional designs). It should be
emphasized that the focus in this article is on radars equipped
with a substantial number of antennas, aiming to achieve goals
like price reduction and size optimization. Consequently, if the
chosen method yields optimal outcomes even in the presence
of a significant number of variables, the desired result will be
attained. Additionally, alternative methods can be combined
when working with a specific quantity of antennas.

7. CONCLUSION

Finally, it can be concluded that in the problem of optimizing
the number of ON antennas and the side lobe level (SLL) for
the design of the phased array antenna, the reinforcement learn-
ing method (PPO algorithm) gives the best results in all kinds
of genetic, PSO, and other reinforcement algorithm implemen-
tations, and also in many problems with high dimensions, the
reinforcement learning method has achieved much better re-
sults than the genetic algorithm, and the PSO method. Rein-
forcement learning method in problems where there is no ac-
curate model of the system and environment and uncertainties
in the model or due to the structure and dynamics with many
random parameters, the use of complex stochastic processes
to simulate the environment is needed. It can solve discrete
optimization problems and can give better results than genetic
algorithm and other evolutionary algorithms in problems with
high dimensions. In this paper, different methods such as Ge-
netic Algorithm, PSO Algorithm, and Reinforcement Learning
of Q-Learning type have been investigated, and finally the Q-
Learning algorithm gives better results.

REFERENCES
[1] Liu, Y., Z. Nie, and Q. H. Liu, “Reducing the number of ele-

ments in a linear antenna array by the matrix pencil method,”
IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9,
2955–2962, 2008.

[2] Merino-Fernandez, I., S. L. Khemchandani, J. D. Pino, and
J. Saiz-Perez, “Phased array antenna analysis workflow ap-
plied to gateways for LEO satellite communications,” Sensors,
Vol. 22, No. 23, 9406, 2022.

[3] Luo, Q., S. S. Gao, W. Liu, and C. Gu, Low-cost Smart Antennas,
John Wiley & Sons, 2019.

[4] Rahmat-Samii, Y., J. M. Kovitz, and H. Rajagopalan, “Nature-
inspired optimization techniques in communication antenna de-
signs,” Proceedings of the IEEE, Vol. 100, No. 7, 2132–2144,
Jul. 2012.

[5] Koziel, S. and A. Pietrenko-Dabrowska, “Accelerated gradient-
based optimization of antenna structures using multifidelity sim-
ulations and convergence-based model management scheme,”
IEEE Transactions on Antennas and Propagation, Vol. 69,
No. 12, 8778–8789, Dec. 2021.

[6] Casula, G. A., G. Mazzarella, and N. Sirena, “Evolutionary de-
sign of wide-band parasitic dipole arrays,” IEEE Transactions on
Antennas and Propagation, Vol. 59, No. 11, 4094–4102, Nov.
2011.

[7] Bray, M. G., D. H. Werner, D. W. Boeringer, and D. W.
Machuga, “Optimization of thinned aperiodic linear phased ar-
rays using genetic algorithms to reduce grating lobes during
scanning,” IEEE Transactions on Antennas and Propagation,
Vol. 50, No. 12, 1732–1742, 2002.

[8] Larmour, C., N. Buchanan, V. Fusco, and M. A. B. Abbasi,
“Sparse array mutual coupling reduction,” IEEE Open Journal
of Antennas and Propagation, Vol. 5, No. 1, 201–216, Feb. 2024.

[9] Wang, S., S. Li, B. Ren, K. Miao, G. Zhao, and H. Sun, “Con-
vex optimization-based design of sparse arrays for 3-D near-field
imaging,” IEEE Sensors Journal, Vol. 23, No. 9, 9640–9648,
May 2023.

[10] Huan, M., J. Liang, Y. Wu, Y. Li, and W. Liu, “SASA: Super-
resolution and ambiguity-free sparse array geometry optimiza-
tion with aperture size constraints forMIMO radar,” IEEE Trans-
actions on Antennas and Propagation, Vol. 71, No. 6, 4941–
4954, Jun. 2023.

[11] Willey, R., “Space tapaering of linear and planar arrays,” IRE
Transactions on Antennas and Propagation, Vol. 10, No. 4, 369–
377, Jul. 1962.

[12] Haupt, R. L., “Thinned arrays using genetic algorithms,” IEEE
Transactions on Antennas and Propagation, Vol. 42, No. 7, 993–
999, Jul. 1994.

[13] Deparateanu, D., F. Enache, A. Enache, F. Popescu, and I. Nico-
laescu, “Sparse array antenna optimization using genetic al-
ghoritms,” in 2016 8th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), 1–4, Ploiesti, Ro-

90 www.jpier.org



Progress In Electromagnetics Research C, Vol. 146, 85-91, 2024

mania, 2016.
[14] Yang, P., B. Chen, and K.-R. Shi, “A novel method to design

sparse linear arrays for ultrasonic phased array,” Ultrasonics,
Vol. 44, e717–e721, Dec. 2006.

[15] Balanis, C. A., Antenna Theory: Analysis and Design, John Wi-
ley & Sons, 2016.

[16] Yang, X., D. Yang, Y. Zhao, J. Pan, and Y. Chen, “Synthesis of
linear sparse array using DNN-basedmachine-learning method,”
IEEE Transactions on Antennas and Propagation, Vol. 71, No. 8,
6513–6522, Aug. 2023.

[17] Li, H., Y. Jiang, Y. Ding, J. Tan, and J. Zhou, “Low-sidelobe pat-
tern synthesis for sparse conformal arrays based on PSO-SOCP
optimization,” IEEE Access, Vol. 6, 77 429–77 439, 2018.

[18] Liang, Z., J. Ouyang, and F. Yang, “A hybrid GA-PSO optimiza-
tion algorithm for conformal antenna array pattern synthesis,”
Journal of Electromagnetic Waves and Applications, Vol. 32,
No. 13, 1601–1615, 2018.

[19] Cui, L., Y. Zhang, R. Zhang, and Q. H. Liu, “Amodified efficient
KNNmethod for antenna optimization and design,” IEEE Trans-

actions on Antennas and Propagation, Vol. 68, No. 10, 6858–
6866, Oct. 2020.

[20] Willey, R., “Space tapaering of linear and planar arrays,” IRE
Transactions on Antennas and Propagation, Vol. 10, No. 4, 369–
377, 1962.

[21] Lapan, M., Deep Reinforcement Learning Hands-on: Ap-
ply Modern RL Methods to Practical Problems of Chatbots,
Robotics, Discrete Optimization, Web Automation, and More,
Packt Publishing Ltd, 2020.

[22] Fu, K., X. Cai, B. Yuan, Y. Yang, and X. Yao, “An efficient sur-
rogate assisted particle swarm optimization for antenna synthe-
sis,” IEEE Transactions on Antennas and Propagation, Vol. 70,
No. 7, 4977–4984, Jul. 2022.

[23] He, Y. and C.Wang, “Optimization design for sparse planar array
in satellite communications,” Electronics, Vol. 12, No. 8, 1763,
2023.

91 www.jpier.org


	Introduction
	Methodology
	Optimization Problem Solving Method with Reinforcement Learning
	Reinforcement Learning for Hybrid Optimization
	Introducing the Synthesis of Phased Array Antenna as a Combinational Optimization
	Introducing the Reinforcement Learning Optimization

	Results and Discussions
	Implementation of Particle Swarm Optimization (PSO)
	Implementation of Reinforcement Learning Method
	Implementation of Proximal Policy Optimization (PPO) Method
	Implementation of Advantage Actor Critic (A2C) Method


	Comparison and Analysis of the Results
	Results by Adding a Side-lobe Optimization Term to the Cost Function
	Conclusion

