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ABSTRACT: In the landscape of wireless communication, smart antennas, or adaptive array antennas, have emerged as vital components,
offering heightened gains and spectral efficiency in advanced communication systems such as 5G and beyond. However, augmenting
network coverage, capacity, and quality of service remains a pressing concern amid advancing communication technologies and escalating
user demands. Array antennas with reduced sidelobe levels, high directivity, and increased beam steering capabilities are sought after
to address these challenges. This paper explores convex optimization as a potent tool for array synthesis problems, offering robust
performance and solution efficiency. By formulating optimization problems as convex programming, sidelobe reduction challenges can
be efficiently addressed. The paper presents a comprehensive investigation into convex optimization-based approaches for array pattern
nulling, assessing their performance and computational efficiency in various scenarios. Numerical examples demonstrate the efficacy
of the proposed methods in maintaining the main lobe, controlling sidelobe levels, and placing nulls at interfering directions, thereby
advancing the state-of-the-art in smart antenna technology.

1. INTRODUCTION

In the realm of wireless communication, antennas have long
been integral components, finding extensive utility across

various domains including radar systems, signal processing,
and telecommunications. The advent of smart antennas, also
referred to as adaptive array antennas, has garnered signifi-
cant attention in contemporary technological landscapes ow-
ing to their capacity of providing heightened gains and spec-
tral efficiency [1]. Equipped with adaptive beamforming and
beam steering capabilities [2], smart antennas have become in-
dispensable components in advanced communication systems
like the fifth generation (5G), beyond 5G, and satellite commu-
nication systems [3, 4]. However, as wireless communication
technologies continue to advance and user demands escalate, a
pressing need to augment network coverage, capacity, and qual-
ity of service arises. Consequently, considerable efforts are be-
ing directed toward exploring array antennas characterized by
reduced sidelobe level (SLL), high directivity, high gain, and
increased beam steering capabilities [5]. It is imperative for an-
tenna arrays to maintain a narrow first null beamwidth (FNBW)
or narrow half-power beamwidth (HPBW) to achieve high di-
rectivity, ensuring optimal radiation patterns and minimizing
interference with other systems operating in the same frequency
band [6]. However, designing an antenna array with low SLL,
null control, and narrow directivity presents a formidable chal-
lenge, as arrays with low SLL do not inherently exhibit narrow
directivity, and vice versa.
Numerous methodologies for efficient array pattern synthe-

sis have been proposed over the past few decades. For instance,
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the classical Chebyshev method enables the synthesis of lin-
ear arrays with specified sidelobe levels, while iterative Fourier
transform methods, as detailed in [7], facilitate the synthesis of
planar arrays with low sidelobe patterns. However, these meth-
ods are restricted to synthesizing uniform arrays with identical
elements. Other synthesis methods based on adaptive array the-
ory, as described in [8], have greater flexibility in array geome-
try but may lack precise control over array patterns according to
desired specifications. Additionally, global optimization meth-
ods, like grey wolf optimizers [9, 10], bat algorithms [11], and
particle swarm optimization [12], have been employed for ar-
ray synthesis problems. While these methods offer flexibility
and yield satisfactory results for small problem sizes, their com-
putational complexity escalates significantly as problem sizes
increase.
Planar arrays, with their ability to facilitate two-dimensional

direction of arrival (2D-DOA) estimation, offer significant ad-
vantages over linear arrays in advanced communication sys-
tems. The flexibility and enhanced resolution provided by these
arrays make them particularly appealing for a wide range of ap-
plications [13]. For instance, nonuniform linear arrays generate
difference coarrays that enable large degrees of freedom and
reduced mutual coupling, which are beneficial for DOA esti-
mation. Enhanced and generalized coprime arrays have been
shown to provide more uniform degrees of freedom than pre-
vious coprime arrays by coarray extension and hole filling, re-
sulting in superior performance in subspace-based algorithms.
This advanced capability positions planar arrays as a superior
choice in scenarios requiring precise and efficient direction
finding [14].
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Moreover, multiple-input andmultiple-output sparse electro-
magnetic vector sensor arrays have brought new perspectives to
signal processing due to their flexibility and higher resolution.
In a monostatic multiple-input and multiple-output system, an-
gle estimation using arbitrary geometry electromagnetic vector
sensor arrays can be improved with parallel factor-based algo-
rithms, achieving superresolution estimation with low compu-
tational complexity. This method leverages the natural mul-
tidimensional structure of the array output, rearranging it into
a parallel factor model and applying vector cross-product and
phase compensation for refined estimation. Such techniques
further underscore the advantages of using sophisticated array
configurations in modern communication systems [15].
In recent years, convex optimization has emerged as a potent

tool for array synthesis problems. By formulating optimiza-
tion problems as convex programming, sidelobe reduction chal-
lenges can be efficiently addressed. Leveraging interior point-
based optimization tools such as the CVX toolbox [16], optimal
solutions can be readily obtained [17]. The key advantages of
convex optimization for array synthesis lie in its ability to han-
dle arbitrary array configurations and adequately account for
element patterns or mutual coupling effects [18, 19]. Further-
more, convex optimization algorithms can effectively address
non-convex array synthesis problems by introducing appropri-
ate approximations, relaxations, or iterative optimization ap-
proaches [20, 21]. This renders convex optimization a highly
promising solution method for array synthesis problems, with
robust performance and excellent solution efficiency [22].
In the synthesis of uniformly spaced arrays, two main

optimization objectives are typically pursued. Firstly, sidelobe
level and/or null depth level (NDL) minimization can be
achieved by adjusting weight coefficients with a fixed number
of antennas, employing nature-inspired computational tech-
niques or convex optimization approaches [12, 23]. Secondly,
the number of antennas required to produce a desired beam
pattern can be minimized by adjusting weight coefficients.
The matrix pencil method, introduced in [24], offers a solution
for synthesizing sparse arrays. Rooted in signal processing
parameter estimation, this method eliminates the need for
iterative procedures, resulting in a significant reduction in the
number of elements within a short time frame. However, it
determines the minimum number of elements required to fit a
given reference pattern in both amplitude and phase accurately.
Consequently, there is no guarantee that the obtained number
of elements is the absolute minimum. Non-evolutionary
algorithms [25], such as linear programming and compressive
sensing algorithms, form the bulk of alternative approaches.
These approaches enable a significant reduction in the number
of elements while ensuring the creation of desired gain patterns
across the aperture.
While many global optimization methods entail high compu-

tational intensity, leading to increased costs with larger problem
sizes, convex optimization presents an efficient compromise
between analytical methods and numerical techniques. This
paper employs the convex optimization approach to optimize
the radiation patterns of linear and planar arrays. Initially, fully
perturbed weight coefficients are optimized using the L2 norm,

ensuring the preservation of themain lobewhile nulls are strate-
gically placed in interfering directions. Moreover, there exists
a pressing need for an optimized method capable of perturb-
ing precisely the required number of elements to efficiently
place the necessary nulls. In addition to weight coefficients,
the optimization of the minimum number of perturbed elements
is carried out using the L1 norm. The solution’s sparsity is
further enhanced through the iterative reweighted L1 norm al-
gorithm. By removing elements with weights approximately
equal to zero, this approach facilitates the efficient placement
of required nulls with the exact number of perturbed elements
necessary.
The paper proceeds as follows. Section 2 formulates the ar-

ray pattern nulling problem, followed by Section 3 which out-
lines pattern nulling approaches based on convex optimization
for synthesizing array patterns amidst interfering signals. The
performances of the two regularization methods, capable of im-
posing nulls towards interfering directions while maintaining
the main lobe, are assessed in Section 4. Finally, concluding
remarks are provided in Section 5.

2. ARRAY PATTERN NULLING FORMULATION
Consider a uniform rectangular array (URA), a type of uniform
planar array, of M × N half-wavelength dipoles as shown in
Figure 1. The array pattern at (θ, ϕ) direction can be expressed
as [26]:

P (θ, ϕ) = EF (θ, ϕ)AF (θ, ϕ)

= EF (θ, ϕ)

M−1∑
m=0

N−1∑
n=0

wm,ne
j(mψz+nψy),

(1)

where:

• EF and AF are the element factor and the array factor of
the dipole (θ, ϕ), respectively.
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FIGURE 1. The uniform rectangular array withM ×N elements.
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• EF (θ, ϕ) =
cos

(π
2
cos (θ)

)
sin (θ)

.

• ψz = κdz cos (θ); ψy = κdy sin (θ) sin (ϕ); κ = 2π/λ.

• wm,n = am,ne
jδm,n is the complexweight of the (m,n)th

element, where am,n and δm,n are the amplitude and the
phase, respectively.

The main lobe can be steered towards the direction (θ0, ϕ0)

by setting the phase shift of the (m,n)th antenna element as:

δm,n = −κ (mdz cos (θ0) + ndy sin (θ0) sin (ϕ0)) . (2)

The array pattern for URAs can be expressed in the matrix form
as follows:

P (θ, ϕ) = EF (θ, ϕ) s (θ, ϕ)w, (3)

where:
w = [w0,0, . . . , wM−1,N−1]

T
, (4)

s (θ, ϕ) =
[
ej(m0ψz+n0ψy), . . . , ej(mM−1ψz+nN−1ψy)

]
. (5)

In the same manner, the array pattern for the uniform linear
array (ULA) in Figure 2 can be expressed as [26]:

P (θ, ϕ) = EF (θ, ϕ) s (θ, ϕ)w, (6)

where: s (θ, ϕ) is the steering vector for ULAs, and w is the
weight vector for ULAs.

w = [w0, . . . , wN−1]
T
, (7)

s (θ, ϕ) =
[
ej(n0ψy), . . . , ej(nN−1ψy)

]
. (8)
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FIGURE 2. The uniform linear array with N elements.

To achieve the desired array pattern with K nulls in the di-
rections (θk, ϕk), the pattern nulling problem with respect to w
can be formulated as:

max
w

P (θ0, ϕ0)

s.t. P (θk, ϕk) ≤ Pthr ∀k = 1, . . . ,K,
(9)

where: Pthr is the threshold for the desired null-depth level.

3. CONVEX OPTIMIZATION-BASED PATTERN
NULLING

3.1. Pattern Nulling with L2 Norm
Achieving an optimal antenna pattern, which maintains the
main beam integrity while effectively controlling sidelobes and
positioning nulls at interference points, poses a significant chal-
lenge. In light of this complexity, a strategy built upon refer-
ence patterns that uphold the main lobe and sidelobe character-
istics may offer a less formidable approach. Essentially, this
entails forming optimal weights based on reference weights to
ensure the preservation of desired pattern attributes. Hence,
the optimal weight vector for addressing problem (9) through a
convex optimization-based approach is represented as follows:

wo = wref −∆, (10)

where:

• wo: the optimal weight vector.

• wref: the reference weight vector, such as weights based
on the Chebyshev method.

• ∆: the perturbation of the weight vector.

The optimized pattern with imposed nulls, maintained main
lobe, and suppressed sidelobes is then presented as:

Po (θ, ϕ) = EF (θ, ϕ) s (θ, ϕ)wo

= EF (θ, ϕ) s (θ, ϕ) (wref −∆) ,
(11)

⇔Po (θ, ϕ)

= EF (θ, ϕ) s (θ, ϕ)wref − EF (θ, ϕ) s (θ, ϕ)∆,
(12)

⇔Po (θ, ϕ)

= EF (θ, ϕ)AFref (θ, ϕ)− EF (θ, ϕ) s (θ, ϕ)∆.
(13)

Specify the number of antennas as Na, where Na = N for
ULAs, and Na = M × N for URAs. To impose K nulls to-
wards interference directions, denoted by k = 1, . . . ,K , with
NDLs equal to or less than SdB from the main lobe’s peak, the
resulting equations are formulated as follows:

∥vref − S∆∥2 ≤ Thr, (14)

where:

S =

 s(θ1, ϕ1)1 · · · s(θ1, ϕ1)Na

...
. . .

...
s(θK , ϕK)1 · · · s(θK , ϕK)Na

 , (15)

∆ = [∆1, . . . ,∆Na ]
T
, (16)

vref = [AFref (θ1, ϕ1) , . . . , AFref (θK , ϕK)]
T
, (17)

Thr = 10
−SdB+20log10(Pref(θ0,ϕ0))

20 . (18)
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In (14), the L2 norm serves as a regularization term aimed
at penalizing large values exceeding Thr. By incorporating
the square of the L2 norm, optimization algorithms are encour-
aged to generate solutions featuring reduced radiation magni-
tudes, thereby mitigating overfitting and enhancing generaliza-
tion. The null depth levels are constrained by (14); nonetheless,
to minimize the deviation of optimal weights from the refer-
ence weights, it is essential to minimize ∆. Leveraging the
properties of the L2 norm, the pattern nulling problem can be
formulated as follows:

min
∆

∥∆∥2
s.t. ∥vref − S∆∥2 − Thr ≤ 0.

(19)

The objective and constraint functions are both convex, render-
ing the problem amenable to a solution using the CVX toolbox
[16] to derive the optimal weights for the desired pattern.

3.2. Pattern Nulling with L1 Norm
The pattern nulling approach utilizing the L2 norm effectively
preserves the main lobe, sidelobe levels, and null depth levels.
However, it does not guarantee the minimum number of anten-
nas necessary to achieve the desired beam pattern. To adjust
the minimum weight coefficients, it is imperative to determine
the number of nonzero coefficients in∆. This necessitates the
design of a formulation for L1 minimization, which more eq-
uitably penalizes nonzero coefficients. An iterative algorithm
is proposed, where each iteration tackles a convex optimization
problem.
A collection of linear inequalities ∥vref − S∆∥2 ≤ Thr is

deemed feasible. Two heuristic methods are utilized to discover
a sparse point that meets these inequalities. The conventional
L1 norm heuristic, employed for locating a sparse solution ∆,
is denoted as:

min
∆

∥∆∥1
s.t. ∥vref − S∆∥2 − Thr ≤ 0.

(20)

The log-based heuristic is an iterative technique aimed at iden-
tifying a sparse solution by seeking a local optimal point for the
problem.

min
∆

Na∑
i=1

log (ε+∆i)

s.t. ∥vref − S∆∥2 − Thr ≤ 0,
(21)

where ε represents a small threshold value, determining the
proximity to zero. Due to the minimization of a concave func-
tion, this problem remains unsolvable as it does not meet the
criteria for convexity. Nonetheless, a heuristic approach can be
employed wherein the objective is linearized, solved, and iter-
ated upon. Consequently, the pattern nulling problem utilizing
the L1 norm transforms into a weighted L1-norm heuristic:

min
∆

∥∥γℓ∆∥∥
1

s.t. ∥vref − S∆∥2 − Thr ≤ 0.
(22)

The simple iterative algorithm to solve the problem (22)
is as follows:

Result: Optimal weight coefficients: w∗
o = wref −∆∗.

Initialize parameters for antenna arrays;
Set ℓ = 0;∆0 = 1Na×1;maxIter = 10; ε = 1e−7;
while ℓ ≤ maxIter do

Solve the problem (22) by CVX toolbox to obtain
∆ℓ:

∆ℓ = argmin
∥∥γℓ∆∥∥

1

s.t. ∥vref − S∆∥2 − Thr ≤ 0.
(23)

Update the vector γℓ+1 based on the rule:

γℓ+1 =
1

∆ℓ + ε
. (24)

end
Algorithm 1: The algorithm for the pattern nulling problem
with L1 norm.

The parameter ε > 0 is selected to ensure stability and pre-
vent a zero value in∆ℓ from entirely hindering a nonzero esti-
mate in the subsequent step. Employing an iterative algorithm
to form the vector∆ enables a progressively refined estimation
of the locations of nonzero coefficients. While initial iterations
may yield inaccurate signal estimates, the larger signal coeffi-
cients are typically discerned as nonzero. Subsequently, these
identified locations are given less weight to enhance sensitivity
in identifying the remaining small yet nonzero signal coeffi-
cients.

4. NUMERICAL RESULTS
In this section, to evaluate the effectiveness of the proposed ap-
proach, various numerical examples are provided. It is worth
noting that all simulations were conducted usingMATLABOn-
line 2023b on an Intel(R) Xeon(R) Platinum 8375C CPU. For
consistency, default parameters were used for all examples un-
less otherwise stated:

• N = 20 for ULAs andM = N = 20 for URAs; θ = 90◦;
SdB = 60 dB;

• The reference weights, wref, are computed using the
Chebyshev method-based weights with the SLL of
−30 dB.

In our approach, we utilized the SDPT3 solver, which is
a primal-dual interior-point algorithm that follows the path-
following paradigm. This solver is integrated into the CVX
toolbox [16], facilitating the resolution of convex optimization
problems. The CVX toolbox abstracts the underlying complex-
ities of the algorithm, providing a high-level interface for defin-
ing and solving convex programs. Consequently, we do not
include a detailed algorithm flowchart, as the focus is on the
application of convex optimization techniques to array pattern
synthesis. The integration with CVX allows for efficient and
robust performance in calculating the amplitude and phase co-
efficients necessary for array pattern nulling.
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FIGURE 3. The normalized powers with three nulls at [20◦, 40◦, 58◦] and withM = N = 20.
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FIGURE 4. The normalized powers applied the amplitude-only technique with three nulls at [20◦, 40◦, 58◦] and withM = N = 20.

4.1. Pattern Nulling Ability

In this evaluation, we aim to verify the anti-interference ca-
pability of the proposed solution for both ULAs and URAs.
Initially, we simulate interference occurring at angles ϕ =
[20◦, 40◦, 58◦] with ϕ0 = 0◦. The optimized radiation pat-
tern achieved by controlling complex weights, as depicted in
Figure 3, demonstrates a remarkable preservation of the main
beam and sidelobe levels, closely resembling the reference radi-
ation pattern while effectively nulling interferences. Notably,
the patterns for ULAs and URAs exhibit similar characteris-
tics in the elevation cut plane at θ = 90◦, with the NDLs
at ϕ = [20◦, 40◦, 58◦] based on both L1 and L2 norms com-
fortably exceeding −60 dB, meeting the predefined threshold.
However, it is worth noting that the two maximum SLLs in
the L1 norm-based pattern are −24.5 dB and −26.8 dB. This
disparity arises because the L1 norm-based approach also min-
imizes the number of antennas required to achieve the desired
pattern, with the number of perturbed coefficients in ∆ set at
2, as summarized in Table 1.
In addition to controlling complex weights for pattern

nulling, we also explore two approaches based solely on L1

TABLE 1. The number of perturbed elements.

Figure L1-ULA L1-URA
3 2 2

4 5 5

7 7 7

and L2 norms to control amplitudes excited at each element.
Using the same interfering directions as in the previous sce-
nario, the results illustrated in Figure 4 reveal optimal patterns
characterized by symmetric features and null points across
the main lobe direction. However, it is noteworthy that the
number of coefficients requiring adjustment is 5, higher than
in the case of controlling complex weights.
Figure 5 presents the amplitude and phase perturbations of

the complex weights for a URAwhen three nulls are imposed at
specific interference angles [20◦, 40◦, 58◦]. The amplitude per-
turbation, shown on the left, demonstrates how the magnitude
of the complex weights is adjusted across the array elements
to achieve the desired nulling effect. The phase perturbation,
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FIGURE 5. The amplitude (left) and phase (right) of the perturbation of the complex weights ∆ with three nulls at [20◦, 40◦, 58◦] and with M =
N = 20.

        

                          

  

  

  

 

 

  
 
  

  
  
  

  
 
 
  
  
  
  
 
  

 

   

 

   

 

   

        

                          

  

  

  

 

 

  
 
  

  
  
  

  
 
 
  
  
  
  
 
  

  

    

 

   

 

FIGURE 6. The amplitude (left) and phase (right) of the perturbation of the complex weights ∆ when applying the amplitude-only technique to
impose three nulls at [20◦, 40◦, 58◦] and withM = N = 20.

shown on the right, illustrates the changes in the phase of the
complex weights, which are crucial for precisely directing the
nulls towards the interference angles. The amplitude perturba-
tion plot reveals that the changes are not uniformly distributed,
indicating that different elements in the array require differ-
ent levels of adjustment to effectively impose the nulls. This
non-uniformity is necessary to tailor the array’s radiation pat-
tern precisely. The phase perturbation plot further emphasizes
the complexity of the adjustments needed. The phase shifts are
designed to interfere destructively with the incoming signals
from the interference directions, thereby nulling their effect.
The specific patterns observed in both amplitude and phase per-
turbations highlight the sophisticated nature of the optimiza-
tion process and its ability to fine-tune the array’s response to
achieve the desired performance.
Figure 6 illustrates the amplitude and phase perturbations

of the complex weights for a URA using the amplitude-only

technique to impose three nulls at the interference angles
[20◦, 40◦, 58◦]. Unlike the previous figure, the amplitude-only
technique focuses primarily on adjusting the magnitude of the
complex weights while keeping the phase adjustments mini-
mal. In the amplitude perturbation plot (left), the adjustments
in the magnitude of the complex weights are more pronounced
compared to the phase perturbation plot. This indicates that
the amplitude-only technique relies heavily on altering the
power distribution across the array elements to achieve the
nulling effect. The adjustments are strategically distributed to
maximize the nulling effect without significantly altering the
overall radiation pattern of the array. The phase perturbation
plot (right), although still present, shows less variation com-
pared to Figure 5. This suggests that the phase adjustments are
secondary in this technique and serve to fine-tune the nulling
effect achieved primarily through amplitude adjustments.
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(b) L2-ULA 
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FIGURE 7. The 3D normalized patterns with a broad null from 30◦ to 60◦ and withM = N = 20.

The comparison between Figures 5 and 6 underscores the
effectiveness of different nulling strategies. While the full
complex weight perturbation (amplitude and phase) provides
a more comprehensive adjustment mechanism, the amplitude-
only technique offers a simpler yet effective approach for im-
posing nulls. The choice between thesemethods depends on the
specific requirements of the application and the computational
resources available.
To better visualize sidelobe suppression ability while impos-

ing nulls in 3D space, we examine the scenario with interfer-
ences at ϕ = 30◦ → 60◦ and ϕ0 = 10◦, as depicted in Figure 7.
For ULAs, the L2 norm-based approach demonstrates superior
sidelobe suppression compared to the L1 norm-based approach,
with the latter exhibiting higher sidelobe levels above −30 dB.
Nonetheless, both approaches effectively achieve null depths
exceeding−60 dB. In the case of URAs, significant differences
emerge between the two approaches. While the L1 norm-based
approach generates numerous sidelobes above −30 dB, the L2
norm-based approach retains nearly all characteristics of the
reference pattern, including the main lobe and sidelobes. Both
approaches can achieve NDLs meeting the threshold; however,
the L1 norm-based approach struggles to control SLLs due to its
requirement to minimize the number of perturbed coefficients,
presenting a tradeoff. With 7 nonzeros in∆, the L1 norm-based
approach contrasts with the 400 nonzeros in the L2 norm-based
approach.
Furthermore, the cumulative distribution function (CDF)

versus SLLs for URAs, as depicted in Figure 8, showcases that

approximately 80% of SLLs in the L1 norm-based pattern fall
below −30 dB, compared to 99.8% for the L2 norm-based pat-
tern. Despite this, the L2 norm-based approach effectively con-
trols SLLs below−30 dB while ensuring that nulls are imposed
at the interfering directions.

4.2. Robustness of Pattern Nulling Approaches

The previous section focused on investigating the ability to set
nulls, maintain the main lobe, and control SLLs using both
L1 and L2 norm-based approaches. However, the robustness
of these approaches has not been explored. Therefore, this
subsection delves into various scenarios to assess the perfor-
mance of the L1 and L2 norm-based methods. For consistency,
the default parameters set, unless otherwise specified, include
the main lobe direction at ϕ0 = 10◦, interfering directions at
ϕ = 30◦ → 60◦ and SdB = 60 dB.
Initially, we examine the number of coefficients that need

adjustment when increasing the number of nulls and varying the
NDL threshold SdB for the L1 norm-based approach. Figures
9 and 10 illustrate the change in the number of coefficients in
∆ versus the number of nulls ranging from 1 to 31 across the
ϕ = 30◦ → 90◦ range and versus the threshold ranging from 40
to 100 dB. The number of coefficients increases proportionally
with the number of nulls and the NDL threshold. For instance,
to establish 10 null points within the 30◦ → 90◦ range with
SdB = 60 dB, 6 elements require adjustment to achieve the
desired pattern. Conversely, to impose nulls within the 30◦ →
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FIGURE 8. CDFs versus SLLs of URA pattern for the cases of a broad null with θ = 90◦ and withM = N = 20.
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FIGURE 10. The number of perturbed elements versus the NDL thresh-
old with a broad null from 30◦ to 60◦ and withM = N = 20.

TABLE 2. The computational time for two pattern nulling approaches.

Figure L1-ULA-Time (s) L1-URA-Time (s) L2-ULA-Time (s) L2-URA-Time (s)
3 2.9778 3.7275 0.2522 0.2579

4 2.6557 2.7518 0.2471 0.2496

7 3.4358 5.7309 0.3157 0.3536

60◦ range with SdB = 90 dB, 10 elements must be adjusted
relative to the reference weight vector.
Next, we examine computational time across different sce-

narios. Table 2 presents the time consumed by the L1 and
L2 norm-based approaches for ULAs and URAs to optimize
weights for patterns in Figures 3, 4, and 7. The L2 norm-based
approach takes approximately 0.25 seconds to impose three
nulls and below 0.36 seconds to impose a range of nulls from
30 to 60. Conversely, the L1 norm-based approach consumes

roughly about 10 to 16 times more time than the L2 norm-based
approach for the scenarios in Figures 3, 4, and 7. This disparity
arises because the L1 norm-based approach requires iterations
to minimize the number of nonzero coefficients.
Additionally, we investigate computational time in scenar-

ios involving changes in the threshold across the 40 → 100
range with ϕ0 = 10◦ in Figure 11 and interfering directions
at ϕ = 30◦ → 60◦ in Figure 12. Utilizing URAs requires
more time than using ULAs due to the greater number of coeffi-
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FIGURE 11. The computational time versus SdB for ULAs with a broad
null from 30◦ to 60◦ and with N = 20.
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FIGURE 12. The computational time versus SdB for URAs with a broad
null from 30◦ to 60◦ and withM = N = 20.
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FIGURE 13. The computational time versus the number of antennas for
ULAs with a broad null from 30◦ to 60◦.
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FIGURE 14. The computational time versus the number of antennas for
URAs with a broad null from 30◦ to 60◦.

cients requiring optimization, with deeper nulls also necessitat-
ing longer computational times. The L2 norm-based approach
outperforms the L1 norm-based approach in terms of compu-
tational efficiency because it does not iterate to minimize the
number of nonzero coefficients. For example, while the L2
norm-based approach for ULAs requires only about 0.3 sec-
onds, the L1 norm-based approach requires approximately 3.5
seconds to find the optimized solutions.
Moreover, computational time is considered in scenarios in-

volving an increase in the number of antennas, as depicted in
Figures 13 and 14. As the number of antennas increases, the
time consumed also increases. For ULAs, the L2 norm-based

approach requires nomore than 0.5 seconds to obtain optimized
solutions within the 20 → 100 antenna range, while the L1
norm-based approach necessitates 3 to 5 seconds. For URAs,
although the array comprises up to 1000 elements, the L2 norm-
based approach requires no more than 2 seconds, whereas the
L1 norm-based approach demands significantly more time to
acquire solutions.

5. CONCLUSION
In this study, we have explored convex optimization-based ap-
proaches for array pattern nulling, addressing the critical need
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for enhancing network coverage, capacity, and quality of ser-
vice in wireless communication systems. Leveraging convex
optimization, we have demonstrated the ability to efficiently
address sidelobe reduction challenges and optimize array ra-
diation patterns, even in the presence of interfering signals.
Numerical examples have showcased the efficacy of the pro-
posed methods in maintaining the main lobe, controlling side-
lobe levels, and strategically placing nulls at interfering direc-
tions. Through comprehensive performance assessments and
computational analyses, we have established the robustness and
efficiency of convex optimization in array synthesis problems.
These findings underscore the potential of convex optimiza-
tion as a powerful solution method for advancing smart antenna
technology andmeeting the evolving demands of wireless com-
munication networks.
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