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ABSTRACT: High altitude electromagnetic pulse (HEMP) couples to cables and introduces interference into the connected electronic
equipment. Responses arising from the transient electromagnetic field typically follow an exponentially damped sinusoid behavior. Thus,
damped sinusoids with different parameters are recommended in the International Electrotechnical Commission (IEC) standards as typical
injected waveforms for HEMP conducted immunity test. To guarantee the compliance of the injected pulse, accurate measurement of the
injected pulse is needed. Wideband proportional current sensors are often applied to measure the injected damped sinusoid. However,
bandwidth requirements of wideband proportional current sensor for damped sinusoid measurement are not specified. In this paper, two
formulae are deduced to establish the relationships between the bandwidth requirements and the fundamental resonance frequency of the
damped sinusoid to be measured. It is convenient and simple for the on-site engineers to check whether the bandwidth of the proportional
current sensor is suitable by the formulae. Monte-Carlo simulation is conducted in support of the recommended formulae.

1. INTRODUCTION

High-altitude electromagnetic pulse (HEMP) [1] introduces
interference current into the electronic equipment. An-

tennas and the interconnected cables are the main coupling
paths. Most coupling currents at the port of entry of the equip-
ment follow an exponentially damped sinusoidal behavior. In-
ternational Electrotechnical Commission (IEC) standard, IEC
61000-2-10, describes the response of a dipole antenna excited
by the early-time HEMP as damped sinusoidal pulse [2]. Thus,
exponentially damped sinusoids are recommended as the wave-
forms for HEMP conducted immunity tests by IEC 61000-4-
25 [3] and MIL-STD 461F [4] (CS116). It is important to mea-
sure the injected damped sinusoidal pulse accurately to guar-
antee the compliance of the HEMP conducted immunity test to
the standards.
Wideband current sensors are often applied to measure the

damped sinusoidal pulse. Based on the response mechanism,
the wideband sensors can be divided into proportional ones and
derivation ones. Proportional ones are commonly used for tran-
sient pulse measurement. Because for proportional sensors, the
signal to be measured can be rebuilt simply by multiplying the
output by a constant. The constant is the reciprocal of sensi-
tivity of the sensor. The sensitivity can be obtained either by
referring to the specification of the proportional current sen-
sor (e.g., the sensitivity of a commercial proportional current
sensor PEARSON CURRENT MONITOR MODEL 8585C is
1V/A [8]) or by laboratory calibration.

* Corresponding author: Jing Yang (18392961969@163.com).

The bandwidth of a sensor has critical impact on the accu-
racy of the measured result rebuilt by its sensitivity. Thus, it
is an important parameter for the selection of a proper pro-
portional current sensor. The bandwidth is defined as a fre-
quency range over fmin to fmax, where fmin and fmax are the low
and high −3 dB cutoff frequencies of the sensor, respectively,
and the frequency response of the proportional current sensor
should be flat. fmin and fmax are also provided in the specifica-
tions of the proportional current sensors (e.g., the fmin to fmax
of a commercial proportional current sensor PEARSON CUR-
RENT MONITOR MODEL 8585C are 1500Hz to 200MHz
respectively [8]). fmin and fmax can also be estimated by the
impulse response of the sensors [7]. It needs to mention that
only the bandwidth requirement is discussed in this paper. In
fact, dynamic range, physical dimensions of the current sensor,
and other parameters should be taken into consideration for the
selection of a proper current sensor.
Empirical formula or estimation method of bandwidth re-

quirements for another two kinds of typical injected pulse (i.e.,
the rectangular/trapezoidal pulse and double exponential pulse)
measurement already exists. However, currently there are no
related reports about the bandwidth requirements for damped
sinusoid measurement. Concretely, empirical formula fmax =
0.35/(pulse rise time) is often applied as the bandwidth require-
ment of proportional sensors for rectangular pulse measure-
ment. For some commercial current sensors, ‘Usable rise time’
and ‘droop’ are parameters provided in the specifications for
rectangular pulse measurement [8]. As for double exponen-
tial pulse measurement, bandwidth requirements are discussed
in [5]. IEC 61000-4-25 [3] also provides the required frequency
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FIGURE 1. Overview of the simulation. Symbols A, B, C,D indicates the relevant sub-sections.

range of the overall measurement system for double exponen-
tial pulse measurement. However, as a commonly used in-
jected pulse, bandwidth requirements of the current sensors for
damped sinusoid have not been specified yet. In general, when
damped sinusoid is measured, the bandwidth of the pulse cur-
rent sensor should cover the resonance frequency first and as
wide as possible. Quantitative analysis is needed.
In this paper, the bandwidth requirements of the proportional

current sensor for damped sinusoid measurement are analyzed
theoretically. The measurement procedure is modeled as an
ideal damped oscillation pulse passing through a wideband cur-
rent sensor. The frequency response of the wideband current
sensor is modeled as the cascade of an ideal low-pass filter and
an ideal high-pass filter [5, 6] based on its frequency response
characteristic. The output of the model is then deduced theo-
retically. The peak value relative error of the rebuilt pulse and
the original input is calculated as a parameter to evaluate the
influence of the bandwidth. Without loss of generality, the in-
put is normalized, and the sensitivity of the proportional current
sensor is set as 1V/A. Relationships between the relative error
of the peak value and the bandwidth of the proportional current
sensor are analyzed. Two simple formulae are summarized for
the bandwidth requirements estimation. Then, the bandwidth
requirements can be calculated directly according to the fun-
damental resonance frequency of the signal to be measured.
Monte-Carlo simulation is done in support of the conclusion.
This paper is organized as follows. Section 2 introduces the

models of input, pulse current sensor, and output. Section 3
provides the theoretical analysis results. Section 4 provides
the Monte-Carlo simulation results in support of the theoreti-
cal analysis result and shows how to use the deduced formulae.
The last section summarizes the whole paper.

2. MODEL OF MEASUREMENT
Themeasurement procedure is modelled as an ideal damped os-
cillation pulse passing through a band-pass filter theoretically.
The block diagram of the procedure is shown in Fig. 1. The
simulation is designed to obtain the relative error of the peak
value based on the mathematical description of damped sinu-
soid and the transfer function model of the wideband current
sensor. Subsections 2.1 and 2.2 introduce the mathematical de-
scription of damped sinusoid and the general transfer function
model of wideband current sensor. Subsection 2.3 derives the
output in frequency domain and then transforms it to time do-
main by inverse Fourier transformation to obtain the peak value
of the output pulse. Post data processing procedure is intro-
duced in Subsection 2.4. Relative error of the peak value is
calculated to assess the effect of the limited bandwidth.

2.1. Mathematical Description of Damped Sinusoid
The damped sinusoids can be described by three scalar param-
eters including peak value, damping parameter Q, and funda-
mental resonance frequency f0.
The exponentially damped sinusoid is expressed as (1) [2],

I (t) = kIpe
−ω0t
2Q sin (ω0t)u (t) (1)

where ω0 = 2πf0, k is a normalizing factor, Ip the peak value
of the damped sinusoid, and u(t) the Heaviside unit step func-
tion. The waveform of a typical damped sinusoid withQ = 10
and f0 = 50MHz is illustrated in Fig. 2 as an example. The
damped sinusoid is the product of three terms, i.e., exponential
decay term, sine term, and unit step function. The larger the Q
is, the closer the first few cycles of the waveform are to the cor-
responding sine wave. Resonance quality factor Q represents
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FIGURE 2. Waveform of a typical damped sinusoid. Q = 10 and f0 =
50MHz as an example. The amplitude is normalized.

FIGURE 3. Amplitude spectrum of the damped sinusoid illustrated in
Fig. 2. (Q = 10 and f0 = 50MHz).

the damping rate of the oscillatory wave, and its typical value
is between 10 and 20.
The Q specified in [3] and [4] for HEMP conducted com-

munity test ranges from 6 to 33. The resonance frequencies
of the injected current for HEMP conducted immunity test are
also specified in [3] and [4]. For HEMP coupling current, Q
and f0 are both closely related to the geometry of the wire bun-
dle/antenna, incident field, and environment (parameters of the
ground, air, other conducting bodies, etc.) It is difficult to take
into account all the possibilities. In practice, Q and f are often
estimated by the length of the line [2]. For a dipole antenna, f
and Q can be calculated by (2) and (3)

f0 = c/2l (2)
Q = 2 ln (l/a) /3.6 (3)

where l and a are the length and radius of the wire or antenna
irradiated by HEMP, respectively. c is the speed of light in free
space. Furthermore, without losing generality, Ip is set as 1 for
the simplification of the derivation process in this paper.
The frequency spectrum of the damped sinusoid can be de-

rived by Fourier transformation as (4).

I (ω) =
kIpω0

(ω0/2Q+ jω)
2
+ ω2

0

(4)

The amplitude of I(ω) can be derived as (5),

|I (ω)| = kIpω0√
[ω2 − (ω2

0 − ω2
0/4Q

2)]
2
+ ω4

0/Q
2

(5)

|I(ω)| reaches its maximal value at ω′
0 = ω0

√
1− 1/4Q2.

Correspondingly,

f ′
0 = f0

√
1− 1/4Q2 (6)

If Q changes from 2 to 50, f ′
0 changes from 0.97f0 to f0 ap-

proximately. The results show that the spectrum is wider, and
the peak frequency shifts slightly compared with sine waves.

The amplitude spectrum is illustrated in Fig. 3 (Q = 10 and
f0 = 50MHz is set as an example).
When measuring a damped sinusoidal pulse, the bandwidth

of the pulse current sensor should cover f ′
0 first, and the band-

width should be as wide as possible to recover the exponential
term correctly. Quantitative analysis is provided in the follow-
ing discussion based on the band-pass filter model of the wide-
band current sensor.

2.2. Frequency Response Model of the Current Sensor
−3 dB bandwidth is the main characteristic of the current sen-
sor that influences the output. For a proportional current sen-
sor, the magnitude-frequency response is flat within the −3 dB
bandwidth. The −3 dB bandwidth is typically provided in the
specification or product manual. The bandwidth is defined as
a frequency range over fmin to fmax. Thus, the frequency re-
sponse of the wideband current sensor is modeled as an ideal
low-pass and an ideal high-pass filters. The model is built and
experimentally verified [5]. According to [5], the transfer func-
tions of these two ideal filters can be expressed as (7) and (8)
respectively.

HLP (ω) =
ωhi

jω + ωhi
(7)

HHP (ω) =
jω

jω + ωlo
(8)

where ωhi = 2πfmax and ωlo = 2πfmin.
Thus, the frequency response of the wideband current sensor

can be expressed as (9).

H (ω) = HLP (ω)HHP (ω) (9)

To simplify the analysis, we set

ωhi = p · ω0 (10)

and
ωlo = q · ω0 (11)
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FIGURE 4. Amplitude spectrum and angle spectrum of the band-pass filter model for proportional current sensor. fmax and fmin equal 0.02f0 and 5f0
respectively as an example (q = 0.02, p = 5).

where p > 1 and 0 < q < 1 to keep the fidelity of the output
of the proportional sensor. Parameters p and q can be regarded
as the relative angular frequencies.
The frequency response of the bandpass filter model is shown

in Fig. 4. fmax and fmin equal 0.02f0 and 5f0 respectively as an
example (q = 0.02, p = 5). When ω = ω0, the absolute value
of H(ω) equals 0.98 for the example.

2.3. Output
The output of the frequency response model can be expressed
as (12)[9].

Iout (ω) = I (ω)H (ω) (12)
The output in time domain can be derived by Fourier transfor-
mation (see Appendix A) as (13).

Iout (t) = kIp

[
A exp (−ωlot) +B exp (−ωhit)+√
C2 +D2 exp

(
−ω0t

2Q

)
sin (ω0t+ φ)

]
u(t)

(13)
where

A = − pq

(1/2Q− q)
2
+ 1

1

p− q

B =
p2

(1/2Q− p)
2
+ 1

1

p− q

C = −
p
(
1/4Q2 + 1− pq

)[
(1/2Q− p)

2
+ 1

] [
(1/2Q− q)

2
+ 1

]
D =

p
(
1/4Q2 + 1

)
(p− 1/2Q+ q)− p2q/2Q[

(1/2Q− p)
2
+ 1

] [
(1/2Q− q)

2
+ 1

]
and φ = arctan(C/D).
The output is shifted by a fixed angle. The degree of devia-

tion depends on φ/ω0t.

2.4. Post Processing
Relative error of the peak value is a critical parameter to eval-
uate the distortion from the input. Percentage relative error of
the peak value ep is defined as (14).

ep =
Iout,p − Ip

Ip
× 100% (14)

where Ip and Iout,p are the peak values of I and Iout, respec-
tively.

3. THEORETICAL ANALYSIS
The expression for the output is complex and difficult to ana-
lyze. However, as ωhi ≫ ωlo for most wideband proportional
current sensors, the influence of fmax and fmin can be analyzed
respectively.

3.1. Relative Error of the Peak Value Versus fmax
Thus, we first set ωlo = 0. Then, the peak value of output is
directly influenced by ωhi. The output of proportional current
sensor can be derived as (15) by a similar method shown in
Appendix A.

Iout (t)|q=0=kIp

[
κ1 exp (−ωhit)
+κ2 exp (−ω0t/2Q) sin (ω0t+ φ)

]
u(t)

(15)
where 

κ1=
p

(p− 1/2Q)
2
+ 1

κ2 =
p√

(p− 1/2Q)
2
+ 1

and

φ|q=0 = − arctan
(

1

p− 1/2Q

)
.
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FIGURE 5. Coefficients of output κ2 versus p (relative fmax of the pro-
portional current sensor) for several typical Q. The curves are plotted
based on the assumption that fmin = 0, i.e., p = 0.
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FIGURE 6. Relative error of the peak value ep versus p for several typical
Q. Two typical points are marked as a reference. The curves are plotted
based on the assumption that fmin = 0, i.e., p = 0.
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FIGURE 7. Output of the model (p = 5, q = 0, Q = 10 as an example). Input (solid line) and the newly-emerged exponential decay term (dotted
line) are also plotted as a reference. Only the first few cycles are shown in the figure. And the time-axis is the product of time and the angular
frequency.

Equation (15) indicates that a new exponential decay term
emerges (the first term of (15)). As κ1 > 0, the first term is
a positive number. When ωhi ≫ ω/2Q, i.e., p ≫ 1/2Q, the
first term of (15) declines much faster than the second term, and
the effect of the first term on the peak value can be ignored. The
coefficient of output κ2 versus p for several typicalQ is shown
in Fig. 5. When p ≫ 1/2Q, we need p2 ≫ 1 to make the
coefficient of the second term of (15) (i.e., κ2) approaches 1.
Relative error of the peak value ep versus p for several typical
Q is shown in Fig. 6. The curves are almost overlapped for
Q > 2. The relative error of the peak value is −2% approx-
imately when q > 5 (and −4% when q > 3.6) for Q > 2
according to the curves shown in Fig. 6.
Output of the model when p = 5, q = 0, Q = 10 as an

example is shown in Fig. 7. Input (solid line) and the newly-
emerged exponential decay term (dotted line) are also plotted
as a reference. As φ < 0, the output lags the input by a fixed
angle. As p = 5 for the given example, the relative error of the

peak value is less than 2%. The results are consistent with the
analysis above.

3.2. Relative Error of the Peak Value Versus fmin
Second, assuming that ωhi is infinite, i.e., p → +∞, the peak
value and waveform of output are directly influenced by ωlo.
Then, Iout can be deduced as (16)

Iout (t)|p→+∞=kIp

[
χ1 exp (−ωlot)

+χ2 exp
(
−ω0t

2Q

)
sin (ω0t+ φ)

]
u(t)

(16)
where 

χ1=
−q

1 + (1/2Q− q)
2

χ2 =

√
q2 + (1 + 1/4Q2 − q/2Q)

2

1 + (1/2Q− q)
2
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FIGURE 8. Shifting angle φ versus q (relative−3 dB fmin of the propor-
tional current sensor) for six typicalQ. The curves are plotted based on
the assumption that fmax → +∞, i.e., q → +∞.
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FIGURE 10. Coefficients of the output χ2 of versus q for several typical
Q. The curves are plotted based on the assumption that fmax → +∞,
i.e., q → +∞.
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FIGURE 11. Relative error of the peak value ep versus q for several
typicalQ. The initial part of the figure is locally zoomed up. The curves
are plotted based on the assumption that fmax → +∞, i.e., q → +∞.

and

φ|p→+∞ = arctan
(

q

1 + 1/4Q2 − q/2Q

)
When q is small enough, χ1 → 0, χ2 → 1, Iout(t) equals I(t)
approximately. Equation (16) also indicates that a new expo-
nential decay term emerges, and the peak value is χ2 times the
original. Meanwhile, the output is shifted by a fixed angle φ.
Curves of shifting angle φ versus q for six typical Q are

shown in Fig. 8. The curves of φ overlap and are proportional
to q (i.e., φ ≈ q) forQ > 2when q is small. Thus, from the per-
spective of wave shifting, the smaller the q is, the better. The
second term of (16) gets its maximal value whenω0t ≈ π/2−q.
Coefficients of output (χ1 and χ2) versus q for several typi-

calQ are shown in Fig. 9 and Fig. 10, respectively. The curves
of χ1 overlap and are proportional to q (i.e., χ1 ≈ −q) approx-
imately when q<0.2 for Q ≥ 2. When Q equals 1 and 2, the

coefficient of the second term χ2 has opposite sign to χ1 and
will compromise the impact of the first term to some extent on
the initial stage. As ωlo < ωhi, the influence of the first term
last longer than (15). The effect of the first term on the first
few peaks cannot be ignored. Thus, the peak value of the out-
put may be not the first peak but the following one.
Curves of relative error of the peak value ep versus q for sev-

eral typical Q are shown in Fig. 11. As only small ep is of
interest, the initial part of the figure is locally zoomed up at the
bottom left corner of the figure. The curves of ep overlap and
are proportional to q (i.e., ep ≈ −q) roughly when q < 0.1.
The curves of Q = 1 and Q = 2 seem to have better perfor-
mance for small q from the perspective of relative error of peak
value. This is because χ2 > 1 for Q < 5, which partly off-
sets the effect of the first term on the peak value. Fig. 11 also
shows that ep does not decline linearly with the decrease of q
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example). Input (solid line) and the newly-emerged exponential decay
term (dotted line) are also plotted as a reference.

FIGURE 13. Cumulative probability density of the relative error of the
peak value. The parameters of Monte-Carlo simulation are tagged in
the Figure.

all the time. Because for certain combinations of q and Q, the
first peak is smaller than the second peak and is not the peak
of the whole waveform any more. Output of the model when
p → +∞, q = 0.2, Q = 50 as an example is shown in Fig. 12.
Only the first few cycles are shown in the figure. The time-axis
is the product of time and angular frequency. The value of the
second peak is larger than the first one for this special case.

3.3. Summary and Discussion
In summary, when p > 5, the relative error of the peak value
is less than 2% for Q > 2. Meanwhile, relative error of the
peak value is proportional to q (i.e., ep ≈ −q) roughly when
q < 0.1.
When a pulse current sensor is applied to measure a signal

in the form of damped sinusoid, the−3 dB high frequency fmax
of the measurement system should be larger than 5 times of
the fundamental resonance frequency f0, while the −3 dB low
frequency point fmin is recommended to be less than 0.02 of f0,
as shown in (17) and (18).

fmax > 5f0 (17)
fmin < 0.02f0 (18)

Furthermore, as discussed in Subsection 2.3, for q = 0.02,
p = 5, when ω = ω0, the absolute value of H(ω) equals 0.98.
Thus, if the constant used to recover the measured signal is cal-
ibrated by a sine wave with ω = ω0, the relative error of the
peak value could be smaller.

4. MONTE-CARLO SIMULATION
Monte-Carlo method is applied to verify the inherent relation-
ship between ep and the bandwidth of the wideband propor-
tional current sensor.
Parameters of p, q, and Q are uniformly distributed. The

value ranges of p and q are from 5 to 25 and 0 to 0.02, respec-
tively. With some margin, factor Q is set as uniformly dis-

tributed from 2 to 50. The number of repetitions is 106. The
proportional wideband sensor is modeled as the cascade of a
low-pass filter and a high-pass filter as shown in Fig. 4. The
statistical result is shown in Fig. 13.
The result shows that when p > 5 and q < 0.02 simulta-

neously, the probability of ep < 2% is 92%, and the probabil-
ity of ep < 3% is 95%. The error is negligible for engineer-
ing practice. Thus, the recommended bandwidth requirements
((17) and (18)) are reasonable for damped sinusoid pulse mea-
surement.
Two examples are provided to illustrate how the formulae

applied to measure the injected and coupling damped sinu-
soid current. For example, according to MIL STD-461F [4],
CS116 immunity test should be conducted at six frequencies,
i.e., 10 kHz, 100 kHz, 1MHz, 10MHz, 30MHz, and 100MHz.
To measure these injected damped sinusoids by a proportional
current senor, the−3 dB bandwidth of the sensors should cover
200Hz ∼ 50 kHz, 2 kHz ∼ 500 kHz, 20 kHz ∼ 5MHz,
200 kHz ∼ 50MHz, and 2MHz ∼ 500MHz, respectively. As
another example, assuming that there is a monopole antenna
above infinite metal plate, the length of the monopole antenna
is 5m (f0 is 15MHz approximately), then the−3 dB bandwidth
needed to measure the coupling current of the antenna should
cover 300 kHz ∼ 75MHz.
Furthermore, the parameters of the exponentially damped si-

nusoids can be estimated by the methods proposed in [10, 11]
once the signal is measured. The formulae proposed in this pa-
per are useful for the testers on site to double check the mea-
surement results during HEMP immunity test.

5. CONCLUSION
Proportional current sensors are commonly-used in HEMP con-
ducted immunity test for their simplicity and convenience.
Based on HEMP practical application, two simple formulae
((17) and (18)) are provided to estimate the bandwidth require-
ments of the measurement system for damped sinusoid mea-
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surement. When a pulse current sensor is applied to measure
a signal in the form of damped sinusoid, the −3 dB high fre-
quency fmax of the measurement system should be larger than
5 times of the fundamental resonance frequency f0, while the
−3 dB low frequency point fmin is recommended to be less than
0.02 of f0.
The conclusion can be applied as the guideline of pulse cur-

rent sensor selection for damped sinusoid measurement. The
conclusion is useful for the testers on site to double check the
measurement system during HEMP immunity test.

APPENDIX A.
The output of the current sensor in frequency domain can be
expressed as (A1).

Iout (ω) = kIp
jω

jω+ωlo

ωhi

jω+ωhi

ω0

(ω0/2Q+jω)
2
+ω2

0

(A1)

(A1) can also be written as (A2).

Iout (ω) = kIp



A

jω + ωlo
+

B

jω + ωhi

+
C (jω + ω0/2Q)

(ω0/2Q+ jω)
2
+ ω2

0

+
Dω0

(ω0/2Q+ jω)
2
+ ω2

0


(A2)

Then, the method of undetermined coefficients (MUC) is ap-
plied to obtain the coefficients. Inverse Fourier transformation
is applied to obtain the output of the current sensor in time do-
main.

Iout (t) = kIp


A exp (−ωlot)u(t)
+B exp (−ωhit)u(t)
+C exp (−ω0t/2Q) cos (ω0t)u(t)
+D exp (−ω0t/2Q) sin (ω0t)u(t)

 (A3)

Furthermore, through trigonometric function operation, (A3)
can be expressed as (13).
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