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ABSTRACT: The Method of Moments (MoM) is a non-embedded uncertainty analysis method that has been widely used in Electromag-
netic Compatibility (EMC) simulations in recent years due to its two major advantages of high computational efficiency and immunity
from dimensional disaster. A random variable sensitivity calculation method based on the Complex Number Method of Moments (CN-
MoM) is proposed in this paper to improve the accuracy of the MoM in standard deviation prediction and thereby enhance the credibility
of EMC simulation uncertainty analysis results. In the parallel cable crosstalk prediction example in the literature, the result of the Monte
Carlo Method (MCM) is used as the standard, and the accuracy of the new method proposed in this paper is quantitatively verified using
the Feature Selective Validation (FSV) method. Compared with the MoM, the proposed method can significantly improve the calculation
accuracy of the standard deviation results without sacrificing simulation efficiency.

1. INTRODUCTION

In order to effectively deal with random factors in the actual
electromagnetic environment, such as manufacturing toler-

ances and lack of knowledge about physical properties and ma-
terials, uncertainty analysis methods are gradually introduced
into EMC field, aiming to improve the credibility and practi-
cality of simulation results [1–3].
In practical engineering applications, in order to achieve high

reliability EMC simulation, the geometric and material param-
eters in three-dimensional space need to be finely modeled. At
this time, the finite element analysis technology in commer-
cial electromagnetic simulation software usually needs to be
utilized, such as COMSOL and CST. At this point, due to the
lack of open-source deterministic simulation methods in com-
mercial electromagnetic simulation software, embedded uncer-
tainty analysis methods lose competitiveness, such as Pertur-
bation Method [4] and Stochastic Galerkin Method [5, 6]. At
the same time, finite element analysis techniques often cause
uncertainty analysis methods with longer single deterministic
EMC simulation time, poor convergence, and low computa-
tional efficiency to lose competitiveness in practical applica-
tions due to time cost issues, such as Monte Carlo Method
(MCM) [7–9]. It is worth noting that MCM has almost the best
accuracy, so in theoretical research, the uncertainty analysis re-
sults of MCM are usually used as standard data to verify the
accuracy of other uncertainty analysis methods, which is a rec-
ognized standard within the industry.
Dimensional disaster is another common issue encountered

in implementing uncertainty analysis in EMC simulations.
When the random events used to describe EMC problems
are more complex, more random variables need to be used
for description, and some uncertainty analysis methods may
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lose competitiveness due to a significant decrease in compu-
tational efficiency, such as Stochastic Collocation Method
(SCM) [10, 11]. For SCM, as the number of random variables
increases, the number of required collocation points will
increase exponentially, and the number of deterministic EMC
simulations will also increase, leading to the problem of high
time costs that cannot be achieved.
At this stage, there are three types of uncertainty analysis

methods that not only meet the requirements of non-embedded
computing, but also meet the requirements of high comput-
ing efficiency and are not affected by dimensional disasters.
They are the Method of Moments (MoM) [12, 13], Stochastic
Reduced Order Models (SROM) [14], and Kriging surrogate
model method [15]. The main problem with SROM is the in-
ability to accurately determine convergence, which will cause
errors and waste of computational resources in the actual simu-
lation process [16]. The Kriging surrogate model method is an
uncertainty analysis method based on the continuity assump-
tion. When the EMC simulation uncertainty analysis model is
more complex, there will be a problem of low computing effi-
ciency [15].
The first-order Taylor expansion formula is used by theMoM

to calculate expected values and variances, which has the ad-
vantages of high computational efficiency and easy implemen-
tation, and its number of calculations is linearly proportional to
the dimensionality of random variables. It has great advantages
in dealing with large-scale electromagnetic calculation prob-
lems and is currently widely used in the field of EMC uncer-
tainty analysis. The main drawback of the MoM is its poor ac-
curacy in implementing nonlinear EMC simulations. Ref. [17]
has solved the accuracy problem of the MoM in predicting
mean results through clustering algorithms. Therefore, if the
accuracy of MoM in calculating standard deviations can be fur-
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ther improved, the application of the MoM in EMC simulation
uncertainty analysis will be highly competitive. In the process
of standard deviation calculation, the estimation accuracy of the
sensitivity of random variables is crucial. This paper proposes
a sensitivity calculation method based on the CN-MoM to im-
prove the standard deviation prediction accuracy of the MoM.
The structure of this paper is arranged as follows. Section 2

provides a brief overview of the application of the MoM in
EMC simulation uncertainty analysis. Section 3 provides a de-
tailed introduction to the process of calculating the sensitivity of
random variables using the CN-MoM. Section 4 quantitatively
verifies the effectiveness of the proposed newmethod using the
parallel cable crosstalk prediction example. Section 5 provides
the conclusion of this paper.

2. BRIEF OVERVIEW OF THE MOM
For the random factors in the actual electromagnetic environ-
ment, random variable vectors ξ are usually used to model
them, as shown below.

ξ = {ξ1, ξ2, ..., ξn} (1)

Among them, each ξi is a random variable and has mutual in-
dependence. If the random variables in formula (1) are not mu-
tually independent, the KarhunenLoeve decomposition tech-
nique [18, 19] can be used to decouple the vector space of ran-
dom variables.
The results of uncertainty analysis are mean and variance.

For the traditional MoM, the calculation of mean results is rel-
atively straightforward, that is, a single deterministic EMC sim-
ulation can be performed at the mean of each random variable,
as shown in the following formula.

E(y) ≈ yEM

(
ξ1, · · · , ξi, · · · , ξn

)
(2)

Among them, ξi is the mean of the random variable ξi, and
yEM ( ) represents the result of EMC simulation at a certain
point. In 2022, the Clustering Method of Moments is proposed
to improve the accuracy of the MoMmean prediction, and spe-
cific details can be found in [17].
The formula for calculating the standard deviation of the

MoM is as follows.

σ(y) =

√(
dy

dξ1

)2

σ2
ξ1
+· · ·+

(
dy

dξi

)2

σ2
ξi
+· · ·+

(
dy

dξn

)2

σ2
ξn

(3)

dy

dξi
=

yEM

(
ξ1,· · ·, ξi + h, · · ·, ξn

)
−yEM

(
ξ1,· · ·, ξi, · · ·, ξn

)
h

(4)

Among them, σ2
ξi
represents the variance of each random vari-

able ξi, and σ(y) is the standard deviation result of the over-
all uncertainty analysis. dy

dξi
refers to the sensitivity of random

variable ξi, which is given by formula (4). h refers to the small
perturbation. The formula uses the principle of difference form
approximation instead of differential form. It can be seen that
the accuracy of sensitivity results will directly affect the accu-
racy of standard deviation prediction results, which is deter-
mined by the accuracy of the approximate difference form in
formula (4).

Next, based on the Taylor formula expansion of one-
dimensional random variables, the accuracy of formula (4) is
analyzed in this section. The Taylor expansion formula is as
follows.

y(ξ1) = y(ξ1) +
dy

dξ1

∣∣∣∣
ξ1=ξ1

×
(
ξ1 − ξ1

)
+

d2y

dξ21

∣∣∣∣
ξ1=ξ1

×
(
ξ1 − ξ1

)2
2

+ o
[(
ξ1 − ξ1

)2] (5)

Among them, the random variable ξ1 is considered as the in-
dependent variable, and y is the dependent variable. If ξ1 =
ξ1+h, formula (5) can be transformed into the following form.

y
(
ξ1 + h

)
= y(ξ1) +

dy

dξ1
× h+

d2y

dξ21
× h2

2
+ o

(
h2

)
(6)

Among them, o( ) represents high-order infinitesimal, which
can be organized as follows

y
(
ξ1 + h

)
− y

(
ξ1
)

h
=

dy

dξ1
+

1

2

d2y

dξ21
h+ o(h) (7)

By organizing again, it can be concluded that

dy

dξ1
=

y
(
ξ1 + h

)
− y(ξ1)

h
+ o(1) (8)

Therefore, the sensitivity calculation accuracy based on for-
mula (4) is o(1), which can also characterize the calculation ac-
curacy of MoM standard deviation prediction. Due to 1 EMC
simulation conducted in formula (2) and n EMC simulations
conducted in formula (4), a total of n+1 EMC simulations are
required.

3. RANDOM VARIABLE SENSITIVITY CALCULATION
BASED ON THE CN-MOM
The CN-MoM is used in this section to improve formula (4),
which can enhance the accuracy of sensitivity calculation re-
sults. The input random variable ξi is declared in complex form
by the CN-MoM, and complex perturbation is applied to sen-
sitivity calculation. For more details on the CN-MoM, please
refer to [20].
According to formula (6), if the perturbation h is converted

into the complex form hi, the Taylor expansion formula in the
following form can be obtained, where i is the imaginary unit.

y
(
ξ1 + ih

)
= y(ξ1) +

dy

dξ1
× ih− d2y

dξ21
× h2

2

−d3y

dξ31
× ih3

6
+ o(h3) (9)

If the imaginary parts are taken on both sides of Equation (9),
the following formula can be obtained.

Im
[
y
(
ξ1 + ih

)]
=

dy

dξ1
× h− d3y

dξ31
× h3

6
+ o

(
h4

)
(10)
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FIGURE 1. Example of parallel cable crosstalk prediction in References [21] and [22].

Divide the two sides of the equation by h and organize

Im
[
y
(
ξ1 + ih

)]
h

=
dy

dξ1
− 1

6

d3y

dξ31
× h2 + o

(
h3

)
(11)

After reorganization, it can be concluded that

dy

dξ1
=

Im
[
y
(
ξ1 + ih

)]
h

+ o(h) (12)

Therefore, if formula (12) is used for sensitivity estimation, the
accuracy can be improved from o(1) to o(h). The sensitivity
calculation formula in the form of formula (4) is as follows.

dy

dξi
=

Im
[
yEM

(
ξ1, · · · , ξi + hi, · · · , ξn

)]
h

(13)

The standard deviation calculation formula remains unchanged,
and formula (3) can still be used.
In summary, by comparing formula (8) with formula (12), it

can be strictly proven in mathematical mechanics that deriving
the CN-MoM can improve the sensitivity calculation accuracy
from o(1) to o(h), and the accuracy of sensitivity results di-
rectly affects the accuracy of standard deviation prediction, so
the CN-MoM can improve the accuracy of MoM standard devi-
ation prediction results. Like MoM, the CNMoM also requires
n+ 1 EMC simulations.

4. CALCULATION EXAMPLE
The parallel cable crosstalk prediction example considering ge-
ometric randomness shown in Figure 1 is adopted in this section
to verify the effectiveness of the CN-MoM. The source voltage
in this example is a sinusoidal alternating current with an ampli-
tude of 1V. This example is a standard example from [21, 22],
assuming that the height of parallel cables is an uncertain input
parameter, described by the following random variable model:{

H1(ξ1) = 0.1 + 0.01× ξ1 [m]
H2(ξ2) = 0.1 + 0.01× ξ2 [m]

(14)

Among them, ξ1 and ξ2 are uniformly distributed random vari-
ables within the interval [−1, 1]. The horizontal distance be-
tween the two cables is 0.05m. The frequency range calculated

in this example is 1MHz to 100MHz, and the output result is
the far end crosstalk voltage VL.

H is the geometric position of the cable, and changes in geo-
metric parameters ofH will be converted into changes in elec-
trical parameters such as capacitance and inductance, which in
turn affect the results of crosstalk. Taking inductance as an ex-
ample, the parasitic inductance matrix L per unit length of a
cable is:

L =

[
L11 L12

L21 L22

]

=

 µ0

2π In
(

2H1

rA

)
µ0

4π In
(
1 + 4H1H2

S2

)
µ0

4π In
(
1 + 4H1H2

S2

)
µ0

2π In
(

2H2

rA

)
 (15)

H1 andH2 represent the heights of conductor 1 and conductor
2 relative to the grounding plane, respectively. rA and rB rep-
resent the radius of conductor 1 and conductor 2, respectively.
S represents the distance between conductor 1 and conductor
2. µ0 represents the vacuum magnetic permeability. L11 and
L22 represent the unit length selfinductance of conductor 1 and
conductor 2, respectively. L12 andL21 represent the unit length
mutual inductance between conductor 1 and conductor 2, re-
spectively. From the above equation, it can be concluded that
the parasitic inductance matrix L per unit length of the cable
will change withH . Similarly, the parasitic capacitance matrix
C per unit length will also change withH .
This example uses the Finite Difference Time Domain

(FDTD) method to solve the ideal multi conductor transmis-
sion line equation, which is shown in Equation (16):{

∂
∂z V (z, t) = −L ∂

∂t I(z, t)
∂
∂z I(z, t) = −C ∂

∂t V (z, t)
(16)

where L and C are the inductance and capacitance per unit
length, and I(z, t) and V (z, t) are the current and voltage at
time t and at position z, respectively. From formula (16), it can
be seen that whenL andC changewith the geometric parameter
H of the cable, the results of formula (16) also change, indicat-
ing that the change inH can affect the results of crosstalk.
This example implements a deterministic simulation solver

for the FDTD method in MATLAB environment and replicates
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FIGURE 2. Prediction results of VL mean value from 1MHz to 100MHz.

FIGURE 3. Prediction results of VL standard deviation from 1MHz to 100MHz.

the parallel cable crosstalk calculation in mature literature to
simulate the capacitance coupling effect and inductance cou-
pling effect between cables, accurately calculating the remote
crosstalk voltage. After comparison, the deterministic simula-
tion results are consistent with the results in [21, 22], ensuring
the reliability and representativeness of the results.
Figure 2 and Figure 3 show the results obtained by using the

MCM, CN-MoM, and MoM to calculate the mean and stan-
dard deviation of VL from 1MHz to 100MHz, respectively.
The MCM calculation result is used as the standard to evalu-
ate the effectiveness of the mean and standard deviation cal-
culation curves using the Feature Selection Verification (FSV)

TABLE 1. Relationship between total-GDM and quantitative descrip-
tion.

Total-GDM (quantitative) FSV interpretation (qualitative)
Less than 0.1 Excellent

Between 0.1 and 0.2 Very Good
Between 0.2 and 0.4 Good
Between 0.4 and 0.8 Fair
Between 0.8 and 1.6 Poor
Greater than 1.6 Very Poor

method. The FSV method is a kind of numerical calculation of
the validation rating recommended in IEEE Standard 1597.1,
which can give qualitative and quantitative results with regard
to the agreement between data sets. It can avoid the subjec-
tivity and non-communicability of human judgment. By us-
ing FSV, the total global difference measure (GDM) values be-
tween MCM and other methods are calculated. Total-GDM,
a value which provides a quantitative description in FSV, in-
dicates the validity of simulation results [23, 24]. There ex-
ists a one-to-one correspondence between total-GDM and the
qualitative description, as shown in Table 1. The mean and
standard deviation FSV results of different methods, as well
as the required deterministic EMC simulations, are shown in
Table 2. The MCM conducts 1000 deterministic EMC simula-
tions, while the MoM and CN-MoM only require 3 determin-
istic EMC simulations because the input dimension n of this
example is 2, indicating that the MoM and CN-MoM have ex-
tremely high computational efficiency compared to the MCM.
When calculating the mean, the mean prediction results of the
3 methods almost overlap. When calculating the standard de-
viation, the FSV value of the CN-MoM is 0.1572, and the FSV
value of the MoM is 0.1807, indicating that the calculation ac-
curacy of the CN-MoM is higher than that of the MoM when
predicting the standard deviation, achieving a significant im-
provement on the MoM.
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TABLE 2. The mean and standard deviation FSV results of different methods and their required deterministic EMC simulation times.

Uncertainty
analysis method

FSV results of
standard deviation

FSV results
of mean

Deterministic
simulation times

MCM - - 1000
CN-MoM 0.1572 0.0115 3
MoM 0.1807 0.0143 3

5. CONCLUSION
Based on the CN-MoM, a novel random variable sensitivity cal-
culation method for traditional nonembedded uncertainty anal-
ysis method named MoM is proposed in this paper, which im-
proves the reliability of uncertainty analysis results by improv-
ing the accuracy of MoM’s standard deviation prediction re-
sults. Through the theoretical derivation of Taylor’s formula
expansion, it is verified that the CN-MoM can improve the sen-
sitivity calculation accuracy from o(1) to o(h). In the parallel
cable crosstalk prediction example, the FSV method is used to
quantitatively verify the effectiveness of the CN-MoM in im-
proving the accuracy of standard deviation prediction results,
proving that the EMC simulation uncertainty analysis method
proposed in this paper can significantly improve the accuracy of
the MoM in calculating standard deviation results while main-
taining simulation efficiency.
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