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ABSTRACT: To accelerate the solution of electromagnetic scattering problems, compressive sensing (CS) has been introduced into the
method of moments (MoM). Consequently, a computational model based on underdetermined equations has been proposed, which effec-
tively reduces the computational complexity compared with the traditional MoM. However, while solving surface-integral formulations
for three-dimensional targets by MoM, due to the severe oscillation of current signals, commonly used sparse bases become inapplicable,
which renders the application of the underdetermined equation model quite challenging. To address this issue, this paper puts forward a
scheme that employs Krylov subspace, which is constructed with low complexity by meticulously designing a group of non-orthogonal
basis vectors, to replace the sparse transforms in the algorithmic framework. The principle of the method is elaborated in detail, and its
effectiveness is validated through numerical experiments.

1. INTRODUCTION

Method of moments (MoM) [1] is one of the most used
numerical methods for solving electromagnetic scatter-

ing problems due to its high computational accuracy and the
use of Green’s functions that automatically satisfy the radia-
tion boundary conditions. In recent years, compressive sensing
(CS) theory [2] has been successfully introduced into MoM,
and two fast solutions have been proposed.
One is the computational model based on underdetermined

equations [3, 4], which extracts partial rows of the impedance
matrix as the measurement matrix and constructs a suitable
sparse transform to sparsely represent the unknown current co-
efficients, and finally applies recovery algorithms to obtain
an accurate result of unknowns. The other is a rapid multi-
ple right-hand sides (MRHS) solver employing new excitation
sources [5, 6], which takes into account the independence of
the impedance matrix and incident angle, and designs several
new excitations with rich angle information to obtain the mea-
surements of the induced current vectors over multiple incident
angles by solving a few times of the matrix equations, and fi-
nally reconstructs all the current vectors by recovery algorithms
and sparse transforms. Furthermore, a dual CS solution com-
bining the two computational models has also been proposed
recently [7].
Moreover, a lot of improvements on these two fast solutions

are put forward successively, e.g., fixed step-size extraction
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from the original matrix equation of MoM is used to eliminate
the instability of the underdetermined equation model [8]; dis-
crete wavelet transform is performed to save the computational
costs of matrix-vector multiplication [9]; linear basis function
is introduced to further improve the calculation efficiency of
solving the problems of complex linear structures [10]; various
sparse transformation methods are employed to reduce the re-
quired number of measurements for the fast MRHS solver [11–
13]; the principle of on-surface discretized boundary equation
(OS-DBE) is applied as a priori knowledge to predefine the
number of measurements for wide-angle electromagnetic scat-
tering problems [14]; NURBS patches are introduced to re-
duce the number of unknowns [15]; the acceleration algorithms,
such as fast multipole method (FMM), multilevel fast multi-
pole method (MLFMM), adaptive integration method (AIM),
are utilized to reduce the storage and computational require-
ments of matrices during the iterative process [16].
However, there remain some challenging issues, one of

which is to construct suitable sparse bases while using the un-
derdetermined equation model to solve three-dimensional elec-
tromagnetic scattering problems. Since the current coefficient
sequence becomes violently oscillated, the common sparse
bases, e.g., Fourier basis, discrete cosine transform (DCT), ba-
sis, wavelet basis, could be hardly effective. Up to the present,
only a few approaches have been reported to deal with this prob-
lem, most of which center around the strategy of using char-
acteristic basis functions (CBFs) or characteristic mode basis
functions (CMBFs) [17–19]. Besides, we used to put forward
another strategy which employs Krylov subspace bases to re-
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place the sparse transform matrix so as to simplify the recovery
process to one-time least-square calculation [20]. In order to
further reduce the cost of Krylov subspace generation and thus
to improve this strategy, this paper constructs a kind of non-
orthogonal bases we used to design for GMRES solver [21] to
span the Krylov subspace, and uses the improved strategy to
deal with 3-D PEC targets.
The improvement proposed in this paper can effectively re-

duce the computational complexity of the solution based on the
underdetermined equations in conjunction with the Krylov sub-
space while not affecting its accuracy of the computational re-
sults. The principle is discussed in detail, and its effectiveness
is verified through numerical examples.

2. PRINCIPLE
2.1. Underdetermined Equation Model for Solving MoM
It is generally known that the electromagnetic field integral
equations, e.g., electric field integral equation (EFIE), magnetic
field integral equation (MFIE), combined field integral equa-
tion (CFIE), can be transformed into the matrix equation form
by using MoM:

ZI = V (1)
where Z represents an N × N impedance matrix; I is an N
dimensional column vector which represents the unknown cur-
rent coefficients; and V represents the N -dimensional excita-
tion vector.
Based on (1) the underdetermined equation can be expressed

as:
ZudI = Vud (2)

whereZud represents anM×N matrix which is constructed by
randomly selectingM rows from Z, while Vud is composed of
the corresponding M elements selected from V, and typically,
M ≪ N . Viewed from the theory of CS, Zud and Vud can be
regarded as the measurement matrix and measurement result.
Then, we could construct an N × N sparse transform basis

noted by Ψ to sparsely represent the unknown current coeffi-
cients:

I = Ψα (3)
where α is an N -dimensional column vector which represents
the sparse transformation coefficients.
Thus, (2) can be rewritten as:

Aα = Vud (4)

where A = ZudΨ.
The final step involves selecting an appropriate recovery al-

gorithm to solve

α̂ = argmin ∥α∥L s.t. Aα = Vud (5)

and the unknown current coefficients can be obtained from

Î = Ψα̂ (6)

Obviously, with the introduction of CS, the computational
resources required to solve the matrix equation originated from
MoM have been significantly reduced. If the number of ba-
sis functions in the calculation domain isN , the computational
complexity of filling the impedance matrix isO(N2). By using

iterative methods to solve the matrix equation, the calculation
complexity isO(pN2), where p is the number of iteration steps.
While employing the acceleration algorithms, e.g., FMM, adap-
tive cross approximation (ACA), this complexity can be re-
duced to O(pN logN). If M rows are extracted from Z and
V to establish an underdetermined equation, the complexity of
filling the new impedance matrix, i.e., Zud (as shown in (2)),
is O(MN). If the sparse representation coefficients of the cur-
rent signal areK-sparse, the computational complexity of solv-
ing the underdetermined equations using orthogonal matching
pursuit (OMP) [22] algorithm is O(KMN). By exploiting the
low-rank characteristic of the far-field terms in the impedance
matrix, this complexity can be reduced toO(KM logN) using
ACA. Therefore, the underdetermined equation model can re-
duce the computational complexity toKM/pN compared with
the classical iterative method.
However, while three-dimensional problems are addressed,

the current coefficients become violently oscillated, and the
conventional sparse bases such as discrete Fourier transform
(DFT), DCT, and discrete wavelet transformation (DWT), have
become ineffective in sparsely representing the unknowns
which makes the algorithm difficult to be applied to the
resolution of 3-D objectives.

2.2. Proposed Method
As discussed above, although the computational model based
on undetermined equations can greatly reduce the complexity
for solving (1) with the help of CS technology, constructing
efficient sparse transformation matrices for three-dimensional
objects remains a challenge. One of the effective approaches is
to replace the sparse transformation basis constituting a com-
plete space with a set of basis vectors that form a Krylov sub-
space, thus the CS reconstruction process using recovery al-
gorithms could be simplified to a one-time least squares com-
putation. The Krylov subspace generated by Z and V can be
obtained by

Kn(Z,V) = span
{
V,ZV,Z2V, · · · ,Zn−1V

}
(7)

with an Arnoldi orthogonalization process, by which a set of
orthogonal basis vectors

Qn =
[
q1 q2 · · · qn

]
(8)

is constructed.
Substituting (8) into (2), we can obtain

ZudQnyn = Vud (9)

As the least squares solution for yn (denoted by ŷn) is de-
rived, the solution of (1) can be determined by

Î = Qnŷn (10)

As analyzed above, with the integration of Krylov subspace,
the undetermined equations (shown as (2)) can be solved as a
standard least squares problem, rather than a sparse reconstruc-
tion problem. However, the construction process of Krylov
subspace often needs long recursive relationships which mainly
involves two parts: matrix-vector multiplication operations and
vector orthogonalization. In order to decrease the computa-
tional cost of generating the Krylov basis vectors, the accel-
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erate algorithms, e.g., FMM, multi-level fast multipole method
(MLFMA), ACA [23], could be introduced to significantly ac-
celerate the computation of matrix-vector multiplication. At
this juncture, the process of vector orthogonalization dominates
the computational effort. To further reduce the computational
complexity of this part, one solution is to use some fixed short-
term recurrence [24, 25] to replace the long recursive process,
and another approach is to adopt some strategies to decrease the
computational cost in each iterative step. In previous work, we
have drawn upon the idea of incomplete orthogonalization from
quasi generalized minimum residual (QGMRES) and based on
it, proposed a strategy of random extraction for the orthogo-
nalization process [20]. In this paper, another much more effi-
cient strategy is put forward, whereby the Krylov basis vectors
constructed will no longer be orthogonal, but they will remain
linearly independent. The specific steps are as follows:
First, based on (1) and (2), the 1st basis vector of the non-

orthogonal Krylov bases is determined by

q′1 = V/ ∥Vud∥2 (11)

Then, like the conventional Arnoldi algorithm, in order to
generate the subsequent basis vectors, matrix-vector multipli-
cations also need to be executed. Specifically, to generate the
(j + 1)th basis vector (denoted by q′j+1), Zq′j needs to be cal-
culated at first. Fortunately, by using the accelerate algorithms
for MoM (such as FMM and ACA), the amount of computation
can be reduced greatly. Subsequently, unlike the traditional
Arnoldi process, we do not seek to obtain the orthogonal projec-
tion of Zq′j on the group of the basis vectors that have already
been generated (i.e., q′1, q′2, ..., q′j). Instead, the vector com-
posed of the projection coefficients of Zq′j onto q′1, q′2, ..., q′j
is determined by

Hj =
[
q′1ud ... q′jud

]T ·
(
Zudq′j

)
(12)

where q′iud (i = 1, 2, ..., j) is generated by extracting the cor-
responding rows from q′i. Just like Zud and Vud (as shown
in (2)) do. It is easy to see that, compared with calculat-
ing the orthogonal projection, which could be represented as
[q1, ..., qj ]T · (Zqj), the computation amount of (12) signifi-
cantly decreases, especially in the situation when j continues
to increase.
Based on (12), the residual vector between Zq′j and its cor-

responding oblique projection on span
{
q′1, q′2, ..., q′j

}
can be

obtained by

w′
j+1 = Zq′j −

[
q′1, ..., q′j

]
·Hj (13)

Thus, the (j + 1)th basis vector is acquired by

q′j+1 = w′
j+1/

∥∥∥w′
(j+1)ud

∥∥∥
2

(14)

where w′
(j+1)ud indicates that corresponding rows in w

′
j+1 are

extracted.
As the Krylov subspace gradually expands, it can be ob-

served that, by repeating the iterations defined by (12)–(14), the
generated basis vectors, i.e., q′1, q′2, ..., q′j+1, are not orthogo-
nal. However, we can derive that q′1ud⊥q′2ud⊥...q′(j+1)ud, and
q′1, q′2, ..., q′j+1 are linearly independent.

Finally, by denoting Q′
n = [q′1 q′2 ... q′n] and An = ZudQ′

n,
(2) will be transformed into

Any′n = Vud (15)

where y′n represents the projection coefficient vector of I on
Q′

n. By solving (15), which is a single least squares problem,
the unknown current coefficients are obtained from

Î = Q′
nŷn (16)

where ŷ′n represents the least squares solution for y′n.
Based on the above description, incorporating Krylov sub-

space into the underdetermined equation model effectively
avoids the problem that the sparse basis of the current sig-
nal is difficult to construct for 3-D objects and simplifies the
CS recovery process to only one least-square calculation. The
strategy of constructing non-orthogonal bases considerably re-
duces the computational cost required to build the Krylov sub-
space. Assume that the number of unknowns in the undeter-
mined equation is N , and M rows are extracted from Z,V to
construct Zud and Vud. The dimension of the Krylov subspace
is n. Since the matrix-vector multiplication is accelerated dra-
matically by MLFMM, ACA, etc., the vector orthogonaliza-
tion operation, whose computational complexity could be rep-
resented by O(Nn2), gradually commands the computational
resources within the conventional construction process of the
Krylov subspace. By utilizing the proposed scheme of gener-
ating non-orthogonal Krylov basis vectors, this complexity de-
creases to O(Mn2). In general, M is much smaller than N ,
thus the efficiency of constructing Krylov subspace is greatly
improved.

3. NUMERICAL RESULT
In order to verify the effectiveness of the proposed method,
three numerical examples are provided, among which ACA
is chosen as a representative of fast methods to accelerate the
computation of matrix-vector multiplication. The program was
run on an Inter Core i5-6200U CPU at 2.3GHz with an internal
memory capacity of 8GB in double precision.

3.1. Numerical Example 1
A plane wave with a frequency of 3GHz is incident on a prefect
electric conductor (PEC) sphere with a radius of 0.1m. 1920
Rao-Wilton-Glisson (RWG) basis functions are established on
the surface of the sphere to solve EFIE using MoM. In order to
determine the Krylov subspace dimension required to solve this
problem by the underdetermined equation in conjunction with
Krylov subspace, the number of rows randomly selected from
the original matrix equation of MoM is assumed to always be
one more than the number of generated Krylov basis vectors
in this numerical experiment. The computational errors vary-
ing with the subspace dimension by using the non-orthogonal
bases and the ones with the conventional orthogonal bases are
calculated and compared, as shown in Figure 1, in which the
relative root mean square error (R-RMSE) is obtained by

R-RMSE =

∥∥∥Î− I
∥∥∥
2

∥I∥2
(17)
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FIGURE 1. Comparison of R-RMSE curves before and after the implementation of the proposed strategy for numerical example 1.

(a) (b)

FIGURE 2. Comparison of the calculated current coefficient for numerical example 1. (a) Real part. (b) Imaginary part.

where Î represents the solution obtained from the underdeter-
mined equation model, and I represents the solution from tra-
ditional MoM.
The error curves match well according to Figure 1, indicating

that the computational accuracy using non-orthogonal bases is
the same as that using orthogonal Krylov bases.
Then, selecting the subspace dimension as 122, where the

error reaches 10−4, we compare the computational result of the
proposed method with the solution of the traditional MoM in
Figure 2.
In numerical example 1, when the subspace dimension is

122, the total computation time using the traditional orthogo-
nal Krylov bases is 4.42 s, while the total computation time us-
ing the proposed non-orthogonal Krylov bases in this paper is
1.39 s. From comparison of the total computation time, it can
be seen that the proposed method can save a significant amount
of computation time without affecting the calculation accuracy.

3.2. Numerical Example 2

The scatterer is set to an aircraft model with 1486 triangle sur-
face meshes, which is illuminated by incident waves at a fre-
quency of 3GHz. With the establishment of RWG basis func-
tions, a matrix equation with 2212 unknowns is obtained by
solvingMFIE usingMoM. In this numerical experiment, we fix
the extraction about 1/3 of the impedance matrix rows, which
amounts to 700 rows, to construct an underdetermined equa-
tion. As the Krylov subspace expands, the error curves calcu-
lated from the underdetermined equation model, using orthog-
onal and non-orthogonal basis vectors respectively, are shown
in Figure 3.
FromFigure 3, we found that beyond the subspace dimension

of 678, the error remains consistently below 10−4, e.g., when
the dimension is 679, and the error is 9.7× 10−5.
Subsequently, taking the generating of 680 Krylov basis vec-

tors as an example, the radar cross-section (RCS) is calculated
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FIGURE 3. Comparison of R-RMSE curves before and after the imple-
mentation of the proposed strategy for numerical example 2.

FIGURE 4. Comparison of RCS curves of the scatterer for numerical
example 2.

from the proposed method and compared with the results ob-
tained from the traditional MoM, as shown in Figure 4.
In numerical example 2, when the subspace dimension is

168, the total computation time using the traditional orthogo-
nal Krylov bases is 28.24 s, while the total computation time
using the proposed non-orthogonal Krylov bases in this paper
is 12.33 s. It can be observed that the proposed method can
yield accurate RCS results while also managing to save more
time.

3.3. Numerical Example 3
A large electrical PEC cylinder with a base radius of 50 meters
and a height of 70meters illuminated by a planewavewith a fre-
quency of 10MHz is considered. 12168 RWG basis functions
are established on the surface of the target to solve the CFIE us-
ing MoM, and 1/4 of the rows are extracted from the original
matrix equation to form the underdetermined equations. Fig-
ure 5 displays the error curves for the current coefficients calcu-

FIGURE 5. Comparison of R-RMSE curves for numerical example 3.

lated by the underdetermined equation model with orthogonal
subspace bases and non-orthogonal bases.
While the subspace dimension reaches 514, the two error

curves both remain below 10−4. Then, taking the generation
of the 515-dimension Krylov subspace as an example, the total
computation time using the traditional orthogonal Krylov bases
is 1000.52 s, and the total computation time using the proposed
non-orthogonal Krylov bases is 369.93 s.

4. CONCLUSION
To address the challenge of constructing a suitable sparse ba-
sis of current signals for solving three-dimensional electromag-
netic scattering problems by a MoM-based underdetermined
equation model, a scheme that employs Krylov subspace to re-
place the conventional sparse transform has been proposed. In
order to further reduce the computational complexity of this
approach, this paper presents a strategy of constructing non-
orthogonal Krylov subspace bases, which can effectively de-
crease the computation cost arising from the process of vector
orthogonalization while the computation of matrix-vector mul-
tiplication is accelerated by techniques such as FMM and ACA.
The numerical experiments demonstrate the excellent perfor-
mance of the proposed method.
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