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ABSTRACT: In order to solve the problems of low reliability, low integration, and high cost brought by mechanical sensors in the control
system of permanent magnet-assisted bearingless synchronous reluctance motor (PMa-BSynRM), a displacement self-sensing method
of the back propagation (BP) neural network left-inverse system under the optimization of an improved particle swarm algorithm is
proposed. Firstly, the working principle of PMa-BSynRM is introduced, and the mathematical model of PMa-BSynRM is derived.
Secondly, the suspension force model is established to prove the left reversibility of the PMa-BSynRM displacement subsystem on
the basis of the observation principle of the left reversible system. Thirdly, the weights of BP neural network are optimized by using
the improved particle swarm algorithm to avoid local optimum, and the final weights are obtained to complete the construction of the
displacement self-detection control system. On this basis, velocity change and anti-interference simulations are conducted to prove
the tracking performance of the displacement system. Finally, static suspension, velocity change and anti-interference experiments are
executed which verify the accuracy and feasibility of the proposed displacement self-detection system.

1. INTRODUCTION

The synchronous reluctance motor (SynRM) differs from the
permanent magnet synchronous motor in that it can still ro-

tate when it has no excitation windings. The reluctance phe-
nomenon was discovered through previous studies. In order
to make full use of the d-q axis reluctance difference, reduce
the excitation current, and increase the power factor, the per-
manent magnet assisted synchronous reluctance motor (PMa-
SynRM) was born. PMa-SynRM inherits the significant ad-
vantages of synchronous reluctance motor and permanent mag-
net synchronous motor, such as large power density, high ef-
ficiency, wide speed range, light weight, and small size [1].
However, conventional motors face the problem of shortened
service life due to mechanical bearing contact wear under high-
speed operating conditions. The application of frictionless and
wear-free permanent magnet-assisted bearingless synchronous
reluctance motor (PMa-BSynRM) solves this problem. It also
has a wide range of applications in high-purity fields such as
chemical, pharmaceutical, biomedical and semiconductor in-
dustries due to its excellent performance of high speed, high
precision, and maintenance-free [2–4].
The BSynRM is a nonlinear, strongly coupled MIMO sys-

tem. For solving the coupling problem between two windings,
[5] proposed a model-based state-space magnetic chain control
method for a bearingless synchronous reluctance motor with
two three-phase windings. It also has robustness in the case
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of imprecise system parameters and rotor eccentricity. In [6], a
dual-windings magnetic field orientation control scheme is pro-
posed for the coupling problem of combined windings. Two
different rotating coordinate systems are used to eventually su-
perimpose the necessary phase currents to solve the problem.
There are also adaptive parameter decoupling control methods
[7] that can predict load variations and compensate for mag-
netic saturation. control scheme is proposed for the coupling
problem of combined windings. There are also support vector
machine decoupling control methods [8] and neural network
decoupling control methods in intelligent algorithms [9].
Accurate detection of the radial displacement of the rotor is a

key part of PMa-BSynRM stable suspension. Mechanical eddy
current sensors are often used in traditional detection circuits to
detect the displacement signal of the rotor. However, mechan-
ical sensors are not suitable for high-speed and high-precision
working environments due to high cost, large occupied area,
and increased system structure. Sensorless displacement self-
detection system has emerged.
Sensorless displacement technology through the acquisition

of motor operation is easy to detect the non-displacement sig-
nal, according to the algorithm formula to derive displace-
ment information to achieve the displacement sensor detec-
tion. Scholars have proposed a variety of displacement self-
detection methods for bearingless motors. These include the
classical high-frequency injection method [10–12], Kalman fil-
ter numerical simulation method [13], volumetric Kalman fil-
ter (CKF) rotor displacement prediction method under the op-
timization of Improved Quantum Particle Swarm Optimization
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(IQPSO) algorithm [14], and reciprocal inductive current detec-
tion rotor displacement estimation method [15]. Model Refer-
ence Adaptive System (MRAS) based rotor displacement esti-
mation method depends on the accuracy of the model [16]. Fur-
ther, the detection of rotor radial displacement is achieved using
intelligent algorithms such as the least squares support vector
machine [17]. This method has higher accuracy and good ro-
bustness, but the support vector machine theory is more compli-
cated, difficult to train for large samples and long computation
time.
In order to achieve the displacement-free sensor operation of

PMa-BSynRM, this paper proposes to optimize the BP Neural
Network (BPNN) using the improved particle swarm algorithm
to adapt to the radial displacement of the system. The BPNN
parameters are optimized using the IPSO algorithm to avoid
falling into the local optimum and losing the global optimum
solution, and to improve the convergence speed of the BPNN.
The weights in the BPNN are mapped to particles in the IPSO
algorithm, and the optimal initial weights are obtained by ve-
locity update and position update to improve the speed and ac-
curacy of the BPNN algorithm. The accuracy of the proposed
displacement-free sensor model is verified by static suspension,
velocity change, and sudden load simulation experiments.

2. WORKING PRINCIPLE ANDMATHEMATICALMOD-
ELING

2.1. Operation Principle of the PMa-BSynRM
The object of this paper is a permanent magnet-assisted bear-
ingless synchronous reluctance motor (PMa-BSynRM) with a
basic structure of 24 stator slots and 2 pairs of poles as shown
in Fig. 1. The windings are two sets of torque windings and
suspension force windings using a concentric winding struc-
ture, and the rotor adopts a three-layer magnetic barrier struc-
ture with inserted permanent magnet strips. The principle of
torque generation of the PMa-BSynRM is the same as that of
the conventional convex pole type reluctance motors based on
the principle of minimum reluctance.
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FIGURE 1. Basic structure of the PMa-BSynRM.

Figure 2 shows the schematic diagram of the suspension
force generation. The suspension force windings NB supplied
with current generate the suspension force air gap magnetic
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FIGURE 2. Mechanism of suspension force generation.

chain ΨB, and the torque windings NM supplied with current
and the permanent magnet inserted in the magnetic barrier gen-
erate the torque windings air gap magnetic chainΨM. It can be
seen in Fig. 2 that in the right region, the two fluxes are gener-
ated in the same direction, and the flux density increases, while
in the left region, the two fluxes are in opposite directions, and
the flux density decreases so that a suspension force Fx is gen-
erated in the positive direction along the x-axis. Similarly, to
obtain a suspension force in the y-direction, it is sufficient to
change the current phase of the suspension windings by ±90◦.
Therefore, by changing the phase and magnitude of the current
in the suspension windings, suspension forces of different di-
rections and amplitudes can be obtained.

2.2. Mathematical Model of the PMa-BSynRM
In the PMa-BSynRM model, the change of the rotor in radial
displacement affects the magnetic chain of the suspension force
and torque windings, and there is a coupling relationship be-
tween the windings current and the magnetic chain, and the
magnetic chain equation of PMa-BSynRM can be expressed as:

ψMd
ψMq
ψBd
ψBq

 =


LMd 0 Mdxd −Mdyq
0 LMq Mqyq Mqxd

Mdxd Mqyq LB 0
−Mdyq Mqxd 0 LB




iMd
iMq − i0
iBd
iBq

 (1)

whereΨMd andΨBd are the d-axis air gap flux connection of the
torque winding and the suspension force winding, respectively;
ΨMq and ΨBq are the q-axis equivalent air gap flux connection
of the torque winding and suspension force winding, respec-
tively; LMd and LMq are the self-sensing of the d- and q-axes
of the torque winding, respectively; LB is the self-perception
of the suspension winding;Md andMq are the suspension con-
stants; xd and yq are the d- and q-axis components of the radial
displacement of the rotor. iMd and iBd are the equivalent control
current of the torque winding and the suspension force winding
d-axis, respectively; i is the equivalent excitation current of the
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permanent magnet defined in the negative direction of the q-
axis; iMq, iBq are the q-axis equivalent control current of the
torque winding and suspension force windings, respectively.
On the basic of the magnetic chain equation obtained from

Equation (1), the deduced magnetic coenergy equation for the
PMa-BSynRM is:

Wm =
1

2

[
iMd iMq − i0 iBd iBq

]
·
[
ψMd ψMq ψBd ψBq

]T
=

1

2
[LMdi

2
Md + LMq(iMq − i0)

2 + LB(i
2
Bd + i2Bq)]

+[MdiMdiBd +Mq(iMq − i0)iBq]xd

−[MdiMdiBq −Mq(iMq − i0)iBd]yq (2)

The magnetic coenergy Wm is deflected with respect to the
radial displacements xd and yq, respectively, to obtain the sus-
pension force component of the rotor in the d-q coordinate sys-
tem as:

[
Fmd
Fmq

]
=

[
∂Wm
∂xd
∂Wm
∂yq

]
=

[
MdiMd Mq (iMq − i0)

Mq (iMq − i0) −MdiMd

]
[
iBd
iBq

]
(3)

In addition, the magnitude of the unilateral magnetic pull
force is directly proportional to the eccentric position of the ro-
tor. The unilateral magnetic pull force can be written in the
stationary two-phase α- and β-axis system as:

[
Fcα
Fcβ

]
=
[
kdi

2
Md + kq (iMq − i0)

2
] [ xd

yq

]
(4)

where kd, kq are the eccentric displacement constants.
Based on Equation (3) and Equation (4), the complete math-

ematical model of the suspension force of PMa-BSynRM can
be obtained as:

[
F ∗
Bα
F ∗
Bβ

]
=

[
Fcα
Fcβ

]
+

[
FBα
FBβ

]

=
[
kdi

2
Md + kq (iMq − i0)

2
] [ xd

yq

]

+

√
M2

d i
2
Md +M2

q

(
i2Mq − i0

)2
•

[
− cos(2ωt+ θ) sin(2ωt+ θ)
sin(2ωt+ θ) cos(2ωt+ θ)

] [
iBα
iBβ

]
(5)

3. ANALYSIS OF THE LEFT-INVERTIBILITY OF THE
DISPLACEMENT SUBSYSTEM
The left inverse is a basic concept in nonlinear control theory.
It is used to observe the quantity of system variables that can-
not be directly observed, just like observability in linear control
theory. A class of multiple-input multiple-output (MIMO) non-
linear systems Ω is shown in the following Equation (6):
The general nonlinear system Ω can be expressed as:

{
ẋ = f(x, u)
y = h(x, u)

x(t0) = x0 (6)

where u(t) = [u1 . . . uq]
T are the input variables of the system;

y(t) = [y1 . . . yq]
T are the Output variables of the system; x =

[x1 . . . xn]
T ∈ Rn are the state variables of the system; x(t0) =

x0 are the initial state of the system.
Assume that the system Ω can be represented by a mapping

operator λ in terms of its input-output relationship, the system
can be represented as:

y = λu (7)
Suppose that corresponding to the above system, there exists

systemΠ, with the same initial conditions as systemΩ, then the
system Π is expressed as:

u∗ = ξy∗ (8)

where u∗ is the output variable of the system Π, y∗ the input
variable, and ξ the mapping operator.
If system Ω satisfies the condition u = u∗ and system Π

satisfies the condition y = y∗, then the system Π is defined as
the left-inverse system of the system Ω.
When Equation (6) contains an internal sensor system Z, the

input is the direct observation variable xn, and the output of the
internal sensor system is the non-direct observation variable xi.
The input variable xn can be expressed as:

xn = fZΩ(xi, ẋn, ẍn, · · ·, u) (9)

where x = (xn, xi)T ∈ Rn is the state variable.
If system Z exists, then xi can be obtained, which can be

expressed as:

xi = fZΠ(xn, ẋn, ẍn, . . . , u, u̇, ü, . . .) (10)

In order to realize the observation of the displacement, xi =
[xd, yq]

T is selected as the non-direct observed variable, and
xn = [ψBd, ψBq]

T is selected as the direct observed variable.
Then the differential equations of the flux linkage of the sus-
pension force windings are formulated as:

[
ψ̇Bd
ψ̇Bq

]
=

[
−RB

LB
fB

−fB −RB
LB

]
·
[
Mdxd Mqyq LB 0
−Mdyq Mqxd 0 LB

]

·
[
iMd iMq − i0 iBd iBq

]T
+
[
uBd uBq

]T (11)
where fB is the angular frequency of the magnetic field of the
suspension force winding; RB is the resistance of the suspen-
sion force winding; and uBd, uBq are the equivalent voltages of
the d- and q-axes of the suspension force winding.
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The corresponding Jacobi matrix correlation is determined
as follows:

A(x)=

(
∂ (xi, ẋi)

∂xn

)

=

(∣∣∣∣∣− RB
LB

fB
−fB − RB

LB

∣∣∣∣∣
∣∣∣∣ iMgMd (iMq − i0)Mq
(iMq − i0)Mq −iMdMd

∣∣∣∣
)
(12)

The determinant of the Jacobi matrix is:

det[A(x)] = −
(
R2

B
L2
Bd

+ f2B

)[
i2MdM

2
d + (iMq − i0)

2
M2

q

]
̸= 0

(13)
Since det[A(x)] ̸= 0, it can be known that A(x) is non-

singular. The magnitude of the rank is equal to the non-directly
observable quantity, and rank[A(x)] = 2, which indicates that
there is a left inverse system of the constructed radial displace-
ment subsystem xn = [ψBd, ψBq]

T, and its left inverse system
expression can be expressed as:

xi = [xd, xq] = fZΠ(xn, ẋn, u) (14)

4. IMPROVED PARTICLE SWARM OPTIMIZATION BP
NEURAL NETWORK DISPLACEMENT LEFT INVERSE
SYSTEM MODELING

4.1. BP Neural Network Algorithm
BPNN is a multi-layer forward structure network, which uses
its advantages of accurately approximating nonlinear functions
to fit the left inverse model of the displacement subsystem,
thereby reducing calculation time and making up for the dif-
ficulty of establishing an accurate mathematical model. In this
paper, a three-layer BPNN including input layer, hidden layer,
and output layer is selected, and the structure is shown in the
following Fig. 3.
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FIGURE 3. BP Neural Network structure diagram.

Each layer of BPNN is interpreted as:
Input Layer: the sample values are fed into the input vector

of the implicit layer, which can be written for each node:

O1
j = xj , j = 1, 2, . . . , 4 (15)

where xj is the input variable of the BPNN, and superscripts
1, 2, and 3 denote the input, hidden, and output layers, respec-
tively.

The input and output of each node of the hidden layer can be
written as:

h2i =

9∑
i=1

wijO
1
j

O2
i = gi(h

2
i − δi)

(16)

where wij is the connection weight between the jth neuron in
the input layer and the ith neuron in the hidden layer; δi is the
bias of the ith neuron in the hidden layer; gi(x) is the activation
function of the hidden layer, and the tanh function with high
priority is used with the following expression:

gi(x) =
ex − e−x

ex + e−x
(17)

The inputs and outputs of each node of the output layer can be
written as:

p3k =

2∑
k=1

wkiO
2
i

O3
k = gk(p

3
k − δk)

(18)

where wki is the connection weight between the ith neuron in
the hidden layer and the kth neuron in the output layer; δk is
the bias of the kth neuron in the output layer; and gk(x) is the
activation function of the output layer, which uses a sigmoid
function normalized to the output of each neuron with the fol-
lowing expression:

gk(x) =
1

1 + e−x
(19)

In order to calculate the individual fitness values and observe
the fitting accuracy, the following equation is given as the fit-
ness function:

E1 =
1

2

N∑
i=1

(yi − ŷi)
2 (20)

whereN is the number of training samples, yi the actual output,
and ŷi the desired output.

4.2. Parameter Optimization Based on IPSO
BPNN algorithm is widely used in model prediction because
of the advantage of its strong nonlinear fitting ability, but it is
prone to the problem of falling into local extremes and losing
the global optimal solution. NSGA-II has high computational
complexity, lack of elite strategy, and other problems. There-
fore, IPSO is proposed to optimize the BPNN. Based on the
traditional particle swarm algorithm, the learning factor and in-
ertia weights are improved to further improve the speed and
accuracy of the system in searching the global optimum.
In the IPSO algorithm, each particle can be considered as a

point in the solution space. Assuming that the target is searched
in an M-dimensional space and there are n particles in the
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group, xi is the M-dimensional space position vector of the ith
particle. Pbest[i] and gbest[i] denote the optimal position ob-
tained by a single particle and the whole group, respectively, at
the current position, and the velocity of the particles is denoted
by vi.
The iterative equation for the velocity and position of each

particle is obtained as:{
vk+1
im = wvkim + c1r1(pim − xkim) + c2r2(pgm − xkim)

xk+1
im = xkim + vk+1

im

(21)
where i = 1, 2, . . . n, m = 1, 2, . . .M , and k is the number
of current iterations. r1 and r2 are random numbers between
[0,1], which play the role of maintaining population diversity.
Meanwhile, vmin ≤ vi ≤ vmax, xmin ≤ xi ≤ xmax. c1, c2 are the
learning factors, and m is the inertia weights. The improved
formula is as follows:

c1 = (csta − cend)
kmax−k
kmax

+ cend
c2 = 4− c1
m = (msta −mend)

kmax−k
kmax

+mend

(22)

where kmax is the maximum number of iterations, and csta and
cend are the initial and final values of c1. Set 0 < csta <
cend ≤ 4; csta and cend are the initial and final values of the
learning factor c1. In the early stage, setting a larger c1 and a
smaller c2 allows the particles to accelerate to a single extreme
value. As the number of iterations increases, c1 gradually de-
creases, and c2 gradually increases, which accelerates the parti-
cle tracking group poles and speeds up the convergence speed;
set 0.1mend < msta ≤ 0.9, generally take msta larger and mend
smaller to improve the global search ability.
Table 1 below shows the iteration speed and accuracy of the

BP algorithm, PSO-BP algorithm, and IPSO-BP algorithm.

TABLE 1. The comparison of the three algorithms.

Algorithm
Number of
hidden layer

nodes

Mean
number of
iterations

Anticipation
error

Mean CPU
Time (µm)

BP 12 192 0.17 374
PSO-BP 11 46 0.01 197
IPSO-BP 9 34 0.001 131

We can see from Table 1 that the BPNN optimized by IPSO is
greatly improved in terms of connection number, average iterations,
and average CPU time, especially far better than the traditional BPNN,
which indicates that the BP neural network optimized by IPSO has a
good training effect.

4.3. Displacement Self-Sensing System Modeling
When using IPSO-BP to establish the displacement self-detection
model, the initial values of BPNN weights wij and wki have an im-
portant influence on the model prediction effect. The Xavier method
is first used to solve the initialization problem of IPSO weights. Af-
ter determining the initial weights of IPSO, the weights of BPNN are

optimized by using IPSO. Each particle in IPSO represents the set of
weights in BPNN, and the optimal particle is obtained by changing the
velocity and position of the particle through the iterative optimization
of IPSO. The optimal particle is assigned to BPNN to obtain the final
weights. For PMa-BSynRM, the specific flowchart of the established
IPSO-BP displacement self-sensing-based model is shown in Fig. 4:
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FIGURE 4. Flowchart of the displacement self-sensing model based on
IPSO-BP.

1) Obtain the data set of displacement and related variables and per-
form data preprocessing.

2) Determine the parameters of the displacement self-detection
model. Determine the neural network topology based on the neu-
ral network input and output data sets.

3) IPSO initialization. Set 80% of the samples as the training set.
Set the initial IPSO weights msta = 0.9; set the final IPSO
weightsmend = 0.4; set the initial value csta = 3.4 of the learn-
ing factor c1, and the final value cend = 0.6. Initialize the number
of particles, where the number of particles is determined by the
number of weights between the layers of the neural network.

4) Input and output data sets. Calculate the actual output displace-
ment and predicted output displacement adjustment value.

5) Update the individual optimum and the population optimum by
particle motion, and keep the particle velocity and position in the
appropriate range.

6) When the maximum number of iterations is reached, or the er-
ror value between the actual displacement and the predicted dis-
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FIGURE 5. Displacement self-sensing control block diagram of the PMa-BSynRM.

placement is less than the minimum error requirement, output the
optimal particle value, otherwise return to STEP (4).

7) Assign the optimal particle values to the weights of the BPNN;
test the IPSO-BP displacement-based self-sensing model; and
analyze the simulation results.

In this paper, the IPSO algorithm is used to optimize a three-layer
BPNN, which has four input nodes with input vector [xn, ẋn] =
[ψBd, ψBq, ψ̇Bd, ψ̇Bq]

T, nine hidden layer nodes, and two output nodes
with output vector ym = [xd, yq]

T. The total sampling time is set
to 1 s, and 1ms is sampled once. A total of 1000 input vectors and
1000 output vectors are obtained. Of this, 80% of the data is used for
training and 20% for testing.

In order to improve the accuracy and convergence speed of the
model, the sample training and testing sets are normalized; the data of
the samples are more concentrated; and the original data are converted
to the range of [0,1] by using the normalization method of maximum-
minimum normalization (MMN)with the following normalization for-
mula:

norm(x) =
x−min(x)

max(x)−min(x)
(23)

where norm(x) represents the normalization of the results, and min(x)
and max(x) are the minimum and maximum values of the input sam-
ples, respectively.

The IPSO algorithm is used to iteratively find the optimum for the
normalized samples; the optimum value is assigned to the BPNN for
training; and the trained data are back-normalized to produce the re-
sults predicted by the simulation. So far the PMa-BSynRM displace-
ment self-sensing control system is established, as shown in Fig. 5.

5. SIMULATION TEST

5.1. Algorithm Optimization
MATLAB was used to compare and analyze the IPSO algorithm and
PSO algorithm. Set the overall sample size to 100; the maximum num-
ber of iterations is 80 times; the particle velocity range is in [−1,1];

and the particle position range is in [−5,5]. Map the BPNN weights
to particles. The optimized BPNN weights are shown below:

wij =



1.3411 4.5708 4.0712 0.3624
−0.2389 −0.2891 −1.0643 4.5946
2.6532 0.9645 1.9909 −0.3913
0.8933 0.2420 −0.5511 1.4846
1.9368 2.9126 0.7412 0.9513
−0.3275 1.1573 1.4521 1.1076
0.7061 −0.4663 2.0684 −1.0755
1.3509 1.7328 3.0466 3.9666
0.5524 1.2990 −0.5387 0.5615



wki =



0.3149 −1.4260
1.8060 2.2702
−0.7355 0.0479
−1.5227 −0.4758
2.0483 1.8220
−3.1249 −0.5845
0.7624 −0.9886
0.9562 0.1915
0.3552 1.0336


The fitness value curves of IPSO are shown in Fig. 6. It can be seen

that the standard PSO algorithm minimizes the fitness value and starts
to converge in the 48th generation with a fitness value of 0.00789,
whereas the IPSO algorithm minimizes the fitness value and starts to
converge in the 39th generation with a fitness value of 0.000688. It
can be seen that the IPSO algorithm has higher fitting accuracy and
faster convergence speed than the standard PSO algorithm.

5.2. Speed Variation Simulation
Due to the gravity of the rotor, the initial displacements of the rotor are
set to x = 0mm and y = −0.24mm, respectively. The rated speed
is 5000 r/min, and the control period of the system is 0.1ms. When
the rotor speed rises to 5 000 r/min, the rotational speed diagram is
shown in Fig. 7. The displacement fitting curve is shown in Fig. 8.
The displacement fitting error is shown in Fig. 9. The actual values in
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the x-direction and y-direction are 7µm and 18µm, respectively. At
the beginning, the rotor is accelerated to 3,000 r/min after 0.12 s. As
shown in Fig. 8, the maximum magnitudes of the actual values in the
x- and y-directions are 7µm and 18µm; the maximum magnitudes
of the IPSO-BP in the x- and y-directions are 8µm and 22µm, re-
spectively; and the speed stabilizes at 3 000 r/min after 0.14 s. The
maximum magnitudes of the actual values in the x- and y-directions
are 7µm and 18µm, and the maximum magnitudes of the IPSO-BP in
the x- and y-directions are 8µm and 22µm, respectively. The max-
imum magnitudes of the actual values in the x- and y-directions are

7µm and 4µm, and the maximum magnitudes of the IPSO-BP in the
x- and y-directions are 9µm and 6µm, respectively. From the anal-
ysis of the above data, the fitting result of IPSO-BP generally agrees
with the actual results.

5.3. Anti-Interference Simulation

After the rotor is stabilized in suspension, a 35N y-axis positive im-
pulse disturbance force is added at 0.3 s. The waveforms of the radial
displacements in the x- and y-directions are shown in Fig. 10, and the
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FIGURE 12. The experimental platform of PMa-BSynRM.
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FIGURE 13. Displacement waveform with rotor stable suspension at
3000 r/min. (a) The eddy current sensor. (b) IPSO optimized BPNN.
(c) Improved NSGA-II optimized LSSVM.
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FIGURE 14. Displacement waveform of the rotor accelerating from
3000 r/min to 5000 r/min. (a) The eddy current sensor. (b) IPSO op-
timized BPNN. (c) Improved NSGA-II optimized LSSVM.

displacement fitting errors are shown in Fig. 11. Themaximummagni-
tudes of the real values in the x- and y-directions are 6µm and 17µm,
respectively, and the maximum magnitudes of the IPSO-BP in the x-
and y-directions are 8µm and 18µm, respectively. It can be seen that
under the application of the interference force, the IPSO-BP fitting is
effective, and it is able to change in real time along with the change of
the real values. It has a good tracking performance.

It is capable of tracking and predicting the displacement of the sus-
pension system without using mechanical displacement sensors.

6. EXPERIMENT VALIDATION
The digital experimental platform of the PMa-BSynRM is shown in
Fig. 12. It mainly includes PMa-BSynRM, digital signal processor
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(DSP), inverter, PC host, optoelectronic encoder disk, oscilloscope,
etc. In this paper, the DSP is used to realize the acquisition and pro-
cessing of the experimental data, and the VB6.0 software is used to
develop the man-machine integrated interactive interface. In the ex-
periment, BPNN is offline. The PMa-BSynRM uses an auxiliary me-
chanical bearing with a clearance of 0.25mm to cope with the unbal-
anced vibrations generated.

The main specifications and parameters of the platform are shown
in Table 2.

TABLE 2. Parameters and description of the experimental platform.

Parameters Values Parameters Values
n (r/min) 5 000 UN (V) 220
δ0 (mm) 0.25 ψ0 (Wb) 0.0359
PN (kW) 1.1 NM/NB 72/24
PM/PB 2/1 Km 1.338
m (kg) 1.6 PM material NdFeB

LSI/LSO (mm) 80/130 LM (mm) 90
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FIGURE 15. Displacement waveform of disturbing force applied in the
y direction. (a) The eddy current sensor. (b) IPSO optimized BPNN.
(c) Improved NSGA-II optimized LSSVM.

6.1. Static Suspension Experiment
The experimental waveforms of the radial displacement of the rotor
in the x- and y-directions are shown in Fig. 13 when the rotor speed
reaches 3000 r/min, and the suspension is stabilized. The eddy current
sensor has a maximum displacement of 13µm in the x-direction and
16µm in the y-direction. The IPSO-BPNN has a maximum displace-
ment of 15µm in the x-direction and 18µm in the y-direction. The
improved NSGA-II optimized LSSVM has a maximum displacement
of 15µm in the x-direction and 18µm in the y-direction. According
to the experimental results, it can be seen that the proposed method
has a good displacement fit and can be stably suspended.

6.2. Speed Variation Experiment
When the speed is accelerated from 3 000 to 5 000 r/min, the displace-
ment waveforms in the x- and y-directions are shown in Fig. 14. The
eddy current sensor has a maximum displacement of 22µm in the x-
direction and 23µm in the y-direction, and the recovery time is 140ms.
The IPSO-BPNN has a maximum displacement of 24µm in the x-
direction and 26µm in the y-direction, and the recovery time is 160ms.
The improved NSGA-II optimized LSSVM has a maximum displace-
ment of 25µm in the x-direction and 26µm in the y-direction, and the
recovery time is 160ms. Compared with the LSSVM optimized by
improved NSGA-II displacement self-detection method, the proposed
method has better displacement accuracy and the same recovery time.
From the data analysis, it can be seen that the proposed displacement
self-sensing method can achieve a stable suspension of the rotor when
the rotor accelerates and has good tracking performance.

6.3. Suspension Force Load Experiment
When the rotor is steadily suspended at 3000 r/min, an impulsive inter-
ference force of 35N is added to the shaft using a spring dynamome-
ter. Due to the presence of coupling, the successive interference forces
result in fluctuations in the x- and y-directions. The radial displace-
ment waveform when the rotor is disturbed in the y-direction is shown
in Fig. 15. The eddy current sensor has a maximum displacement of
26µm in the x-direction and 28µm in the y-direction, with an recov-
ery time of 80ms. The IPSO-BPNN has a maximum displacement of
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FIGURE 16. The d-q axis current in BPNN optimized by IPSO. (a) The
d-q axis current of suspension force winding. (b) The d-q-axis current
of torque winding.
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27µm in the x-direction and 29µm in the y-direction, with a recov-
ery time of 105ms. The improved NSGA-II optimized LSSVM has
a maximum displacement of 29µm in the x-direction and 30µm in
the y-direction, with a recovery time of 120ms. It can be seen from
the analysis of the above data that the method proposed in this paper
ensures the fitting accuracy and has good response recovery capabil-
ity and tracking performance. The experimental results show that the
proposed method has good dynamic characteristics and verifies the ro-
bustness of the system.

Figure 16 shows the current waveform patterns of the d- and q-axis
of the BPNN optimized by IPSO. Fig. 16(a) is the d- and q-axis current
waveform diagram of the suspension force winding. The interference
force is introduced at 0.55 s to change the winding current of the sus-
pension force. The amplitude of the suspended force winding current
iBd oscillation changes from 2.45A to 3.25A, and the iBq oscillation
amplitude of the suspended force winding changes from −1.1A to
−2.6A. Fig. 16(b) shows the d- and q-axis current wave pattern of the
torque winding. The torque winding current iMd oscillation amplitude
is stabilized at 0.1A, and the iMq oscillation amplitude of the torque
winding is stabilized at 1.1A.

7. CONCLUSION
Aiming at the problems of high cost and low reliability brought by
mechanical displacement sensors to PMa-BSynRM, in this paper, a
displacement self-sensing method is proposed, and the displacement
curve of the rotor is fitted by the IPSO-BPNN method
1) In the simulation and experiment, the displacement self-sensing

method can realize the rotor displacement detection under the
conditions of static and stable suspension, speed change, and ex-
ternal disturbance force, with small accuracy error and good es-
timation effect.

2) It also has good rotor displacement tracking performance during
the PMa-BSynRM startup phase due to the gravity of the rotor.

3) The displacement detection of the left inverse of the BP Neu-
ral Network, which does not depend on the model and parame-
ters of the system, has good tracking performance and good anti-
interference performance.
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