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ABSTRACT: In this paper, an improved hybrid regularized grounded network imaging algorithm (ITR-Lp) combining Tikhonov regu-
larization and Lp regularization is proposed; through the improvement of the filtering function, the correction of small magnitude for
large singular values and increasing magnitude of correction with decreasing singular values for small singular values is implemented
for the improvement of the convergence of the solution. The proposed algorithm constructs a regularization matrix to achieve selective
correction of singular values and improve the convergence of the solution, while Lp regularization is used to enhance the sparsity of
the solution and improve the boundary contrast. the effect of node distribution on convergence is investigated, and finally the ITR-Lp
algorithm is validated by simulation and experiment. The results show that the ITR-Lp algorithm proposed in this paper achieves the
lowest resistivity relative errors of 0.1695 and 0.1089 for resistive networks with 1 corrosion and 2 corrosions, respectively. The method
has good convergence and boundary contrast, which effectively improves the pathology of the inverse problem of imaging the electrical
impedance tomography of grounding grid.

1. INTRODUCTION

The grounding grid is an important part of substations and
power plants, and the normal operation of the grounding

grid is a prerequisite for the protection of personnel and equip-
ment [1]. Because the grounding grid is located in a special
working environment, it is easy to be corroded and thus cannot
work properly [2], so it needs to be tested regularly to ensure
its normal and stable operation [3, 4]. Due to the complex elec-
tromagnetic environment in the actual environment, it is diffi-
cult to obtain accurate results by the currently used diagnostic
methods [5], and in practice, for the detection of corrosion of
the grounding grid, after the power outage, the grounding grid
will be dug out to observe the corrosion situation.
The Electrical Impedance Tomography (EIT) technique, as

an advanced visualization tool, is noninvasive, low cost, easy
to operate, and has fast response [6, 7], and it is widely used in
medical inspection and industrial inspection. Scholars were in-
spired by the application of medical and industrial inspection to
apply the EIT technique to grounding grid detection, Wang et
al. [8] proposed a magnetic source excitation detection method
to determine corrosion breakpoints by magnetic field signals.
Liu et al. [9] proposed a magnetic detection technique for elec-
trical impedance imaging of grounding grids. However, the
electromagnetic field is insensitive to changes in corrosion, and
the complex electromagnetic environment of substation leads to
inaccurate magnetic field signals. Yang et al. [10] proposed a
method to detect grounding grid corrosion by measuring volt-
age, and Li et al. [11] proposed a voltage measurement-based
electrical impedance tomography technique and improved the
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ill-conditioned of inverse problem using Tikhonov regulariza-
tion. Chen et al. [12] proposed to improve Tikhonov by chang-
ing the regularization matrix to improve the stability of the
solution and accuracy, but the image over-smoothing prob-
lem occurs during reconstruction using Tikhonov regulariza-
tion [13, 14]. To solve the problem of excessive smoothing of
Tikhonov regularization, scholars proposed Lp (1 ≤ p ≤ 2)
regularization based on L1 and L2 to increase the edge contrast
and improve the imaging quality. Estatico et al. [15] applied
Lp regularization to microwave imaging and showed that the
imaging effect of Lp regularization is better than L2 regulariza-
tion. Zhang et al. [16] demonstrated that Lp regularization had
the advantage of avoiding excessive smoothing of the recon-
structed image compared to L2 regularization. Liu et al. [17]
applied Lp regularization to image reconstruction, and the re-
sults proved that Lp regularization can improve spatial resolu-
tion. Li et al. [18] proposed an adaptive weighting algorithm
to solve the problem of Lp regularization parameter selection,
and Zhu [19] applied Lp regularization to image denoising and
proved that Lp regularization can maintain image contrast and
prevent step effect.
Therefore, in order to mitigate the ill-conditioning inherent

in the grounding grid resistance inverse problem, enhance so-
lution stability, and address the issue of image smoothing, this
study proposes a hybrid regularization algorithm based on an
improved Tikhonov and Lp approach. Firstly, two distinct
models of the grounding grid inverse problem are formulated
for imaging experiments: one based on priori topological in-
formation and the other on unknown topological information.
Subsequently, utilizing the grounding grid model with known
topological information, varying levels of noise are introduced

1doi:10.2528/PIERB24031403 Published by THE ELECTROMAGNETIC ACADEMY

https://doi.org/10.2528/PIERB24031403


He et al.

FIGURE 1. Measurement model for the forward problem of grounding
grid.

FIGURE 2. Voltage distribution map of grounding grid forward problem.

into the measurement data to assess the algorithm’s robustness
to noise. The effectiveness of the algorithm is further verified
by experiments.

2. PRINCIPLE OF GROUNDING GRID ELECTRICAL
IMPEDANCE IMAGING
The essence of grounding grid impedance is to inject current
into the grounding grid, measure the voltage on the flat steel, re-
construct the distribution of grounding grid resistivity based on
current and voltage, determine the location of corrosion based
on resistivity distribution, and σ represents the distribution of
conductivity in the flat steel. Assuming that the boundary elec-
trodes are perfectly conductive, current is then applied through
these electrodes to obtain internal potential u. The mathemati-
cal model can be described as follows:

∇ · (σ∇u) = 0, ..., u ∈ Ω (1)

σ represents the distribution of conductivity, and u denotes the
voltage. In this assumed model, satisfying the static excitation
condition and absence of current sources, the boundary condi-
tions can be described as follows:

u+ zlσ∇u · e⃗ = vl, ..., u ∈ ∂Ω (2)

∫
σ∇u · e⃗ = Il, ..., u = ∂Ω (3)

where zl represents the measured resistance between elec-
trodes. vl represents the measured voltage at the electrode. ∂Ω
represents the boundary of the solution domain. e⃗ is the normal
vector to the boundary. Il represents the injected current at the
jth electrode. l represents the number of electrodes.
The inverse problem of grounding grid electrical impedance

tomography imaging can be considered as the process of solv-
ing the distribution of resistivity from the relationship between
calculated voltage and measured voltage, as expressed in Equa-

tion (4)
U(ρ) = V (4)

U(ρ) represents the voltage obtained within the target area af-
ter applying excitation current I , computed using the finite el-
ement method [20, 21]. V denotes the measured voltage ac-
quired through the measurement electrodes. Due to the pres-
ence of errors, it is challenging for the computed voltage U(ρ)
to exactly match the measured voltage V . Therefore, this prob-
lem can be addressed using the method of least squares. By
subtracting the computed voltageU(ρ) from the measured volt-
age V , an error function is obtained, which is used to solve for
the resistivity distribution of the grounding grid.

F (ρ) =
1

2
||U(ρ)− V | |22 (5)

Due to the severe ill-conditioning of the grounding grid in-
verse problem, the solution will eventually fail in the process
of iterative solution. Therefore, in order to improve the ill-
conditioning of the inverse problem, the most common method
is to use the regularization method [22], which adds penalty
terms to the error function for constraint and reduces the condi-
tion number of the Jacobian matrix to make the solution process
of the inverse problem more stable [23].

2.1. Grounding Grid Simulation Model
The simulation model for the forward problem of the grounding
grid is crucial for obtaining the measured voltage data. Since
grounding grids are typically grid-like structures, this study
constructs 2D models of a 3 × 3 grid and a 4 × 3 grid using
COMSOL software. The forward problemmeasurement model
of the 3 × 3 grid is shown in Fig. 1, comprising flat steel, cor-
rosion, and soil. The black areas represent flat steel with a con-
ductivity of 6 × 106S/m; the white areas represent corrosion
with a conductivity of 1 × 106S/m; the gray areas represent
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(a) (b)

FIGURE 3. Inverse problem model of grounding grid. (a) Model with known topology structure. (b) Model with unknown topology structure.

soil with a conductivity of 0.005 S/m; the yellow areas denote
measurement nodes, totaling 16 in this study.
The paper randomly selects 16 points as voltage data collec-

tion points in the model and injects 1A of direct current into
the grounding grid using a loop measurement method. Specif-
ically, the 16th electrode point serves as the reference node.
The injection nodes are determined by pairs such as 1 ∼ 2,
1 ∼ 3, ..., 1 ∼ 15; 2 ∼ 3, 2 ∼ 4, ..., 2 ∼ 14, ..., 14 ∼ 15,
with the former representing the injection node and the latter
representing the current outflow node. This process yields a to-
tal of 105× 13 measured voltage data points. In the combined
simulation using COMSOL and MATLAB, node 1 serves as
the measurement node. By stimulating the system according
to pairs such as 1 ∼ 2, 1 ∼ 3, ..., 1 ∼ 15, the corresponding
potential distribution for each of these 14 stimulation methods
can be obtained, as shown in Fig. 2. By analyzing the poten-
tial distribution, the voltage at the 16 measurement nodes under
these 14 stimulation methods can be determined.
The grounding grid inverse problem model is adopted to ob-

tain the resistivity ρ. In substations, the topology information
of the grounding grid is usually documented in drawings. How-
ever, in some substations, this information may be lacking due
to lost drawings. To address these two scenarios, this paper con-
ducts simulation studies by constructing two different ground-
ing grid models: one with a known topology structure and the
other with an unknown topology structure. In the known topol-
ogy structure, only the flat steel part is present, while in the
unknown topology structure, only the soil part exists. Fig. 3
shows the grounding grid inverse problem models for both the
known and unknown topology structures.

3. SOLVING THE ILL CONDITIONED PROBLEM OF
GROUNDING GRID

3.1. Improved Tikhonov Regularization Method
The Tikhonov regularization method is a commonly used
method for solving inverse problems, and its essence is to
apply a damping effect to the objective function to achieve
improvement of the solution process, and the strength of
the damping effect is achieved through the regulation of the
regularization parameters. The error function constructed by

the Tikhonov regularization is obtained by adding the penalty
function to Eq. (5)

F (ρ) =
1

2
||U(ρ)− V | |22 +

1

2
α ||L(ρ− ρ0)| |22 (6)

where L is the regularization matrix, which is generally the
identity matrix, and α is the regularization parameter, which
is generally 0 < α < 1. The original resistivity distribution ρ0
can be calculated via the following formulas [24].

ρ0 = (ρ1, ρ2, ..., ρN )
T
= cL = c

(
1, 1 · · · 1

)T (7)

c =

m∑
i=1

n∑
j=1

(VijUij (L))

m∑
i=1

n∑
j=1

(Uij (L))
2

(8)

Using Gaussian Newton iterative method to solve Equa-
tion (6) and Decomposition of Jacobian matrix J by singular
value decomposition, the resistivity ρ is obtained as [25]

ρk+1 =

m∑
i=1

γ2
i

γ2
i + α

uT
i

γi
vi ·(U(ρk)−V ), i = 1, 2, ...,m (9)

where the standard Tikhonov’s filter function is fi = γ2
i /(γ

2
i +

α), and m is the number of non-zero eigenvalues. In Equa-
tion (8), γ1 > γ2 > ... > γm is the non-zero eigenvalue in the
singular value decomposition of the Jacobian matrix J . The
filter function shows that the standard Tikhonov regularization
uses a uniform correction magnitude for all singular values to
suppress the effect of noise, but the uniform correction leads to
a decrease in the accuracy of the solution, and in practice, the
correction should be made according to the different sizes of
the singular values.
Therefore, we proposed a regularization matrix to achieve

selective correction of singular values, with small corrections
to greater singular values and focused corrections to minor sin-
gular values. First, a singular threshold value γt was selected
to classify all singular values. First t − 1 singular values were
larger singular values, and the later m − t + 1 singular values
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were smaller singular values. As the order of magnitude dif-
ference between the singular values in the Jacobi matrix is too
large, a 3 × 3 grid grounding network was adopted as an ex-
ample. The order of magnitude difference between the singular
values of its Jacobi matrix was 1014. The larger singular values
correspond to positions in the regularization matrix which were
set to 1 to reduce the impact of large singular value on the reg-
ularization results, thus better balancing the contribution of the
regularization terms. The corresponding positions for the small
singular values in the regularization matrix was set to 4

√
γt/γr

for the same purpose. To avoid the large order of magnitude of
elements in the regularization matrix, the constructed diagonal
matrix of regularization can be expressed as follows [12, 13]:

H =



1 0 0 0 0 0

0 1 0 0 0 0

...
...

...
...

...
...

0 0 · · · 4
√
γt/γr 0 0

0 0 0 0
. . . 0

0 0 0 0 0 4
√

γt/γm


(10)

When the regularization matrix is the constructed diagonal
matrix above, the filtering function can be segmentally ex-
pressed as

f =


γ2
i

γ2
i +α

... 1 ≤ i ≤ t

γ2
i

γ2
i +α 4

√
γt
γi

... t < i ≤ m
(11)

From the filter function, it can be seen that for large sin-
gular values, only small amplitude corrections are made, and
for small singular values, as i gets smaller, γt/γi gradually in-
creases. The corrections for small singular values are gradually
strengthened to achieve different amplitude corrections accord-
ing to the size of γt.
The threshold singular value γt is chosen by using the condi-

tion number method. The condition number C is a commonly
used metric to measure the ill-conditioning of matrix, if it sat-
isfies (

γ1
γt

)2

< C <

(
γ1
γt+1

)2

(12)

then the threshold singular value γt is determined.
The Tikhonov regularization using the two-parametric num-

ber of the solution as the penalty term leads to a smoothing
effect of the solved solution, which in turn leads to an overly
smooth imaged map and unclear boundary contrast.

3.2. Lp Regularization
Lp regularization, as a sparse regularization method, is pro-
posed on the basis of L1 regularization and L2 regularization.
L1 parametrization as a regularization term has high noise im-
munity and edge retention, and the reconstructed map of L2
parametrization will have an over-smooth effect; based on this,

Lp regularization is proposed, where the range of p values is
1 ≤ p ≤ 2 [26–28]. Choosing a suitable p value can ensure
that the derived regularization solution has a large sparsity, sup-
presses the smoothing effect of Tikhonov regularization, and
improves the boundary contrast. The error function constructed
by the Lp regularization is added to Equation (5)

F (ρ) =
1

2
||U(ρ)− V | |22 + λ ||ρ| |pp (13)

where λ is the regularization factor, and xp =

(
n∑

j=1

|xj |p
) 1

p

is
the p-norm of the solution.
When Eq. (13) is solved by Gaussian Newton’s algorithm,

Eq. (13) is unable to solve its differential when p = 1, so it is
necessary to approximate Eq. (13), and the approximate objec-
tive function obtained can be expressed as Eq. (14) [29, 30]

F (ρ) =
1

2
||U(ρ)− V | |22 + λ

n∑
i=1

(√
ρ2i + β

)p

(14)

where β > 0 is a tiny adjustable constant.

3.3. Improved Tikhonov-Lp Regularization Algorithm
Based on the above analysis, this paper proposes a new er-
ror function, which uses a combination of improved Tikhonov
and Lp regularization in the penalty function, denoted as ITR-
Lp, to convert the inverse problem of grounding grid electri-
cal impedance tomography imaging into an optimization prob-
lem, and uses a Gauss-Newton iterative algorithm in the solu-
tion method to solve the optimized error function and obtain
a stable solution, based on the improved Tikhonov-Lp hybrid
regularization of the error function as

F (ρ) =
1

2
||U(ρ)− V | |22 +

1

2
α ||H(ρ− ρ0)| |22

+λ

n∑
i=1

(√
ρ2i + β

)p

(15)

To solve the minimum of Eq. (12) by Gaussian-Newton iter-
ation, we acquire the gradient vector of Eq. (12) via the Hessian
matrix substituted into the framework of Newton-Gaussian it-
eration

ρk+1 = ρk −
[
∇2F (ρ)

]−1 ∇F (ρ) (16)
LetF (ρ) find the first-order derivative of the resistivity ρ and

make its first-order derivative equal to 0 to obtain the gradient
vector of the error function

E(ρ) = JT (U(ρ)− V ) + αHT ·H(ρ− ρ0)

+λ diag

(
p

(√
ρ2i + β

)p−2
)
ρ (17)

Then let the gradient vectorE(ρ) of F (ρ) find the first order
derivative with respect to the resistivity ρ to obtain the Hessian
matrix ignoring the higher order terms

E′(ρ) = JT · J + αHT ·H
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TABLE 1. ITR-Lp based regularized grounded grid imaging algorithm.

+λ diag

(
p

(√
ρ2i + β

)p−2
)

(18)

Finally, the solution formula for the resistivity is obtained by
substituting the obtained gradient vectorE(ρ)with the Hessian
matrix E′(ρ) into the Gaussian Newton iteration formula

ρk+1 = ρk −

JT (U(ρ)− V ) + αHT ·H(ρ− ρ0)

+λ diag
(
p
(√

ρ2i + β
)p−2

)
ρ

JT ·J+αHT ·H+λ diag
(
p
(√

ρ2i +β
)p−2

) (19)

A pseudo-code implementation of the proposed algorithm for
EIT image reconstruction is provided in Table 1.

3.4. Calculation of the Jacobi Matrix
In the grounding grid EIT inverse problem, J denotes the re-
lationship between voltage change between electrodes and re-
sistivity change, i.e., the potential change value induced by the
resistivity change. The computed Jacobi matrix Jk can be ex-
pressed as follows when the kth excitation is input [31].

Jk =


∂U1

∂ρ1

∂U1

∂ρ2
· · · ∂U1

∂ρm

∂U2

∂ρ1

∂U2

∂ρ2
· · · ∂U2

∂ρm

...
... · · ·

...
∂UL

∂ρ1

∂UL

∂ρ2
· · · ∂UL

∂ρm

 (20)

where L is the number of electrodes measured, and m is the
number of profiling units. Multiple injections are generally re-
quired to increase the amount of information to ensure the suc-
cess of the reconstruction, and if the number of independent
injections is S, S such matrices together form the entire Jacobi
matrix J , J = [J1, J2, ..., Jt, ..., JS ]

T .
The most common method Jacobi matrix calculation in

grounding grid EIT is the difference method, which calculates
as follows

J =
∂U

∂ρ
≈ U(ρ+∆ρ)− U(ρ)

∆ρ
=

∆U

∆ρ
(21)

The method needs to calculate the positive problem for once
to obtain each column of the Jacobimatrix, and the entirematrix
will needS×(m+1) times of positive problem calculation, and
the positive problem calculation time is proportional to the cell
numberm. Longer time will be consumed by positive problem
calculation when the cell number is large. We adopt the cyclic
injection method in this study. The current injection time S in
this method is 105, and the number of electrodes, L, measured
in this excitation method is 13, which gives a total of 105Jk
matrices.

4. SIMULATED IMAGING OF ELECTRICAL
IMPEDANCE TOMOGRAPHY IN GROUNDING GRID
In order to verify the improvement effect of the ITR-Lp algo-
rithm for the ill conditioned inverse problem of grounding grid,
this paper first considers the influence of different node distri-
butions on the imaging results to determine the node distribu-
tion types that are relatively easy to image. Next, by construct-
ing two different grounding grid models, one with a known
topology structure and the other with an unknown topology
structure, simulation studies are conducted. Lastly, to address
the long detection time for large grounding grids, a block imag-
ing based on a 2× 2 grid is proposed. In this study, grounding
grid models with different numbers of corrosion are established
in COMSOL. Then, measurement voltage data are obtained
through combined simulation using MATLAB and COMSOL.
Finally, image reconstruction is performed using MATLAB to
validate the effectiveness of the ITR-Lp algorithm.

4.1. The Impact of Node Distribution on Convergence
In grounding grid electrical impedance tomography imaging,
the distribution of nodes is not like that in medical electrical
impedance tomography imaging, where nodes are distributed
around the imaged object. Instead, in grounding grid electri-
cal impedance tomography imaging, nodes are distributed on
the flat steel of the grounding grid. To investigate whether the
distribution of nodes at different positions affects the imaging
results, this study categorizes the nodes into three types: all
boundary nodes, all interior nodes, and a combination of half
boundary and half interior nodes. Simulation studies are con-
ducted on these three types of node distributions using the ITR-

5 www.jpier.org



He et al.

(a) (b) (c) (d)

FIGURE 4. Corrosion and diagram of different node distributioon. (a) Corrosion schematic. (b) Boundary nodes. (c) Interior nodes. (d) Mixed nodes.

(a) (b) (c)

FIGURE 5. Imaging maps of different node distributions. (a) Boundary nodes. (b) Interior nodes. (c) Mixed nodes.

Lp algorithm. Figs. 4(a), (b), (c), and (d) depict the different
node distribution schematics. Since most substation ground-
ing grid structures are consistent in practice, a model with a
known grounding grid structure is used for modeling and cal-
culation. In this model, the soil and corrosion are removed,
leaving only the flat steel structure of the grounding grid. Be-
cause this model only consists of flat steel and does not have se-
vere ill-conditioning in the inverse problem compared to mod-
els with unknown topology information, the regularization pa-
rameter is obtained through multiple simulation experiments.
For the improved Tikhonov regularization, the regularization
parameter is determined through simulations, whereas, a value
of p = 1.5 is chosen based on the literature for the Lp regular-
ization parameter [32, 33], which indicates that the convergence
and accuracy of Lp regularization are good when p = 1.5.
Thus, in this study, the regularization parameter is determined
to be 0.0001 under the condition of p = 1.5.
From Fig. 5, it can be observed that the image of the bound-

ary nodes converges, accurately indicating the location of cor-
rosion. However, the image of the interior nodes does not con-
verge, making it impossible to accurately distinguish the branch
where corrosion is located. The image of the mixed nodes
also converges, but it only displays the corrosion on half of the
branch, failing to show all the corrosion.
In order to quantitatively evaluate the quality of the recon-

structed image, the relative error of resistivity is introduced to
evaluate the image reconstruction. The formula of relative error
of resistivity is:

Er =
1

N

N∑
i=1

ρki − ρi
ρi

(22)

where ρki is the resistivity of the ith cell obtained from the kth it-
eration, ρi the initial resistivity of the ith cell, andN the number
of finite element discretization elements in the inverse problem
model.
From Fig. 6 of the iterative convergence, it can be observed

that the convergence of boundary nodes is the best, while that
of the central nodes is the worst. Although the convergence of
mixed nodes can also show partial corrosion, its convergence
is also poor. With the increase of iteration times, its imaging
will also become non-convergent, unable to identify the branch
where the corrosion occurs. It is known that the distribution
of nodes will affect the quality and convergence of imaging.
Therefore, the subsequent simulation nodes will be based on
the boundary nodes with good convergence performance.

FIGURE 6. Convergence graph of different node distributions.
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(a) (b)

FIGURE 7. Convergence curve of iterations on 3× 3 grid. (a) One corrosion. (b) Three corrosion.

4.2. Grounding Grid Model Based on Known Topology Structure
To validate the improved performance of the ITR-Lp algorithm
proposed in this paper for inverse problems, four different sim-
ulation cases were considered. These cases were studied taking
into account the size of the model, the number and distribution
of corrosions. The forward problem model parameters for each
simulation case were the same as described earlier, and the so-
lution of their inverse problems was conducted using a model
with known structure for imaging studies. The regularization
parameters required for each algorithm were also the same as
described earlier.
From the convergence curves of these three algorithms

shown in Fig. 7 and Fig. 8, it can be observed that, compared
to the other two algorithms, the ITR-Lp mixed regularization
shows faster convergence speed for corrosion at locations 1
to 2, converging after 2 to 3 iterations. In contrast, the Lp
regularization and Tikhonov regularization exhibit slower
iteration speeds, requiring 7 or 8 iterations to converge.
Therefore, the ITR-Lp mixed regularization algorithm has
the fewest iterations and the lowest relative error in electrical
resistivity, indicating higher imaging quality.
From Fig. 9, it can be seen that both the 3 × 3 grid and

4×3 grid show that the Tikhonov regularization, Lp regulariza-
tion, and ITR-Lp mixed regularization can accurately display
the branches where corrosion occurs as well as the number of
corrosions. As shown in Table 2, the relative error in electri-
cal resistivity computed using the ITR-Lp mixed regularization
method is the lowest, indicating a good imaging effect.

TABLE 2. Relative errors of resistivity.

Grid
Types

Number of
Corrosions

Tikhonov Lp ITR-Lp

3× 3 1 0.1779 0.2764 0.2764
3× 3 3 0.3715 0.4287 0.2853
4× 3 1 0.1334 0.2593 0.0897
4× 3 3 0.2331 0.4737 0.1389

4.3. Grounding Grid Model Based on Unknown Topology Infor-
mation

Due to the unknown topology structure of the grounding grid,
the area to be imaged is larger, resulting in a more severe ill-
posed nature of the electrical impedance tomography imaging
problem. Therefore, selecting an appropriate regularization pa-
rameter is crucial for successful imaging. For the regularization
parameter of the Tikhonov regularization, this paper determines
it using the U-Curve method. The U-Curve method, which is a
modification of the L-Curve, is used to determine the regular-
ization parameter. Themethod finds the value of the regulariza-
tion parameter that minimizes the error function by plotting the
relationship between the error function and regularization pa-
rameter. Compared to L-Curve method, the U-Curve method
is more adaptive because it dynamically selects the inflection
point of the U-shaped curve as the optimal parameter accord-
ing to the shape of the curve [34].
The regularization parameters for corrosion at one location

and two locations are found to be 0.3662 and 0.1593, respec-
tively, for Tikhonov regularization, as shown in the U-curve of
Tikhonov regularization in Fig. 10. Regarding the selection of
the Lp regularization parameters p and λ, based on previous
literature, this paper chooses p = 1.5. For the regularization
parameter λ, under the condition of p = 1.5, after multiple sim-
ulations, it was found that λ = 0.0055 yields good reconstruc-
tion for corrosion at one location, whileλ = 0.0025 yields good
reconstruction for corrosion at two locations. Fig. 11 shows the
grounding grid images for corrosion at one location and two lo-
cations using the Tikhonov algorithm, Lp algorithm, and ITR-
Lp algorithm.
From the imaging results in Fig. 11, it can be observed that

the imaging area of Tikhonov regularization is relatively scat-
tered and cannot accurately distinguish the boundary between
soil and flat steel. The imaging area of Lp regularization is con-
centrated, and the contrast of the boundary is higher than that
of Tikhonov regularization, but its stability is poor, leading to
inaccurate solution region. The ITR-Lp mixed regularization
algorithm combines the advantages of both approaches, result-
ing in high contrast of the boundary between soil and flat steel
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(a) (b)

FIGURE 8. Convergence curve of iterations on 4× 3 grid. (a) One corrosion. (b) Three corrosion.

FIGURE 9. Different grid imaging images.
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(a) (b)

FIGURE 10. U-shaped curves with different degrees of corrosion. (a) One corrosion. (b) Two corrosions.

FIGURE 11. Comparison of grounding grid reconstruction images using different algorithms.

in the imaging area, and the unknown and size of the target re-
gion are well aligned with corrosion diagram.
Table 3 shows that, whether it is a single or double corrosion

scenario, the ITR-Lp mixed regularization algorithm yields the
smaller relative error in resistivity than the other two algo-
rithms. The comparison results demonstrate that the proposed
ITR-Lp mixed regularization algorithm improves the contrast
of the boundary between soil and flat steel in the image while
ensuring solution stability, and achieves better imaging quality
than the other two algorithms.

TABLE 3. Relative errors of resistivity.

Type Tikhonov Lp ITR-Lp
One corrosion 0.1354 0.1441 0.0168
Twe corrosions 0.1653 0.1920 0.0451

4.4. Partition Imaging Based on 2× 2 Grid

In practical applications, due to the large area occupied by
grounding grids, there are issues such as the computational bur-
den and long calculation times when overall imaging is con-
ducted using the Jacobian matrix. Therefore, the approach of
partition imaging for large grounding grid is used, where the
block images are combined to obtain the overall grounding grid
image. Through simulation analysis, it was found that the com-
putation time for the Jacobian matrix of a 2× 2 grid is approxi-
mately 10minutes, which is significantly lower than the 4 hours
for a 3×3 grid. Additionally, most grounding grid have a mesh
structure, making the selection of a 2× 2 grid quite flexible. In
this study, a 4 × 6 grid is divided into 6 regions of 2 × 2 grids
for imaging. The voltage data from these six block regions are
measured for imaging. A 4× 6 grounding grid model is estab-
lished in COMSOL, consisting of 766 partition elements, with
dimensions of 2.05m×3.05m. This model is then divided into
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FIGURE 12. 4× 6 corrosion diagram and imaging results.

1 2 3

FIGURE 13. 4× 6 grid separated imaging.

6 inverse problemmodels of 2×2 grids, each with 156 partition
elements.
According to Eq. (21), the positive problem computing times

of the 4×6 grid and 2×2 grid for computing the Jacobi matrix
are 80535 and 16485, respectively, and the numbers of times
these two types of grids do the difference operation to com-
pute the Jacobi matrix are 1045590 and 212940, respectively,
in which the size of the Jacobi matrix for 4×6 grid is 1365 rows
and 766 columns, and the size of the Jacobi matrix for 2×2 grid
is 1365 rows and 156 columns. From the comparison, we can
see that the Jacobi matrix size of the 2× 2 grid is smaller than
that of the 4× 6 grid in terms of the number of times of calcu-
lating the positive problem, the number of times of doing the
difference operation, and the size of the Jacobi matrix.
Figures 12 and 13 correspond to the overall imaging and sep-

arated imaging of the 4×6 grid, respectively. It can be observed

that for the overall imaging of the 4 × 6 grid, the ITR-Lp reg-
ularization can successfully display the branches where corro-
sion occurs, validating the effectiveness of the algorithm. From
the fourth part of Fig. 13, it can be seen that the block imaging
method displays the branches where corrosion occurs, which
can be used for diagnosing corrosion in the grounding grid.
The time taken to compute the Jacobian matrix for these two
methods is shown in Table 4. All simulations were performed
on a computer with an R5 CPU (3.30GHz) and 16GB RAM
configuration, using MATLAB for computation. As shown in
Table 4, the time taken for separated imaging is much less than
that for overall imaging. This indicates that the block imaging
method can shorten the detection time and can also be used to
individually detect specific regions of interest in the grounding
grid, without the need for overall imaging, thereby improving
detection efficiency.
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FIGURE 14. 3× 3 grid imaging in 10% noise and relative error of resistivity.

FIGURE 15. 3× 3 grid imaging in 10% noise and relative error of resistivity.

TABLE 4. Time for calculating Jacobian matrix.

way time (min)
Overall Imaging 1503
separated imaging 60

4.5. The Effect of Different Measurement Noises

In practical applications, measurement noise is inevitable due to
the insufficient measurement performance of the measurement
equipment or the interference of environmental factors, so the
measurement noise of the measurement data has a certain im-
pact on the reconstruction of the inverse problem. In order to
test the anti-noise performance of the method proposed in this
paper, based on the 3×3 grid and 4×3 grid models constructed

in Section 4.2, the corrosion location and the number of corro-
sions are reset, and cyclic measurements are made to get the
voltage data of the new model, and add different degrees of
Gaussian noise to the measurement data of the grounding grid
model, which is used to simulate the noise in the actual mea-
surement process, so Gaussian noise with a mean value of 0,
and standard deviation of 1%, 2%, 5%, and 10% is added to the
data of each model. Figs. 14 and 15 show the reconstruction
of the grounding grid model after adding 10% Gaussian white
noise and relative resistivity error for different noise levels.
By comparing the reconstructed maps of grounding grids

with 10%Gaussian white noise, we observe that both Tikhonov
regularization and ITR-Lp regularization accurately depict the
locations of corrosion branches, regardless of whether it is a
3 × 3 grid or a 4 × 3 grid. However, for the 4 × 3 grid with

11 www.jpier.org



He et al.

FIGURE 16. Experimental imaging of resistor network.

two instances of corrosion, Lp regularization is significantly af-
fected by noise, resulting in smaller differences between the
second corroded branch and the normal branches. All three
regularization algorithms are influenced bymeasurement noise,
and as the noise level increases, the relative errors in the re-
constructed resistivity images increase, leading to lower im-
age quality. Comparing the imaging quality of the three algo-
rithms at the same noise level, we find that the ITR-Lp reg-
ularization algorithm exhibits the lowest relative error in re-
sistivity imaging, followed by Tikhonov regularization, while
Lp regularization produces the largest reconstruction image er-
rors. The simulation results indicate that the proposed ITR-
Lp regularization algorithm demonstrates greater robustness to
noise than Tikhonov regularization and Lp regularization algo-
rithms. Since the topological structure of the grounding grid
model is known, the ill-conditioning of the grounding grid in-
verse problem is relatively mild. Therefore, the parameters of
these three regularization algorithms were determined through
a large number of simulations, with specific values given in Ta-
ble 5.

TABLE 5. Value of regularization parameter.

Type Tikhonov Lp ITR-Lp
3× 3 grid 1
corrosion

α = 0.1
p = 1.5

λ = 0.001

α = 0.1 p = 1.5

λ = 0.0001

3× 3 grid 2
corrosion

α = 0.1
p = 1.5

λ = 0.001

α = 0.1 p = 1.5

λ = 0.0001

4× 3 grid 1
corrosion

α = 0.1
p = 1.5

λ = 0.001

α = 0.1 p = 1.5

λ = 0.00001

4× 3 grid 2
corrosion

α = 0.1
p = 1.5

λ = 0.0001

α = 0.1 p = 1.5

λ = 0.0001

5. GROUNDING GRID SIMULATION EXPERIMENT

5.1. Simulated Grounding Grid Test
In this section, we conducted experiments on corrosion diagno-
sis of both a resistor network and a simulated grounding grid.
A 3× 3 and a 4× 3 resistor network were constructed to sim-
ulate the grounding grid, where a 1Ω resistor represented the
branch of the normal flat steel in the grounding grid, and a 3Ω
resistor represented the branch of corroded flat steel. A sim-
ulated grounding grid was also constructed by welding galva-
nized flat steel with a cross section of 50mm × 5mm into a
4 × 6 grid, where the length of the flat steel was 50 cm. The
flat steel was cut off by 2mm at the corroded location, and a
10 cm long flat steel was tied to the cut-off position with insu-
lating tape to simulate the corrosion scenario. The corrosion
branch presents a higher resistance value than healthy branches
as corrosion leads to oxidation of the metal surface and for-
mation of corrosive substances which increase the obstruction
to the passage of current, therefore increasing the resistance of
the branch, whereas a branch circuit without corrosion is not
affected by these and hence has a lower resistance value. In
this experiment, galvanized flat steel pieces of 50 cm in length
were adopted. The measured resistance of the flat steel was
2.623mΩ, and the measured resistance of the simulated cor-
roded branch was 4.346mΩ. The ratio of the resistance values
was 1.656 : 1, which satisfies the requirements for corrosion
imaging. The corroded position was marked with a red circle.
Figure 16 shows the experimental image of resistance net-

work imaging. Fig. 17 shows the 16-electrode grounding grid
imaging experimental platform, including 16 detection elec-
trodes, data acquisition board, main control chip, constant cur-
rent source, flat steel model, and the upper computer. Table 6
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TABLE 6. Value of regularization parameter.

Type Tikhonov Lp ITR-Lp
3× 3

resistance α = 0.1
p = 1.5

λ = 0.0001
α = 0.1 p = 1.5
λ = 0.0001

4× 3
resistance α = 0.1

p = 1.5
λ = 0.001

α = 0.1 p = 1.5
λ = 0.0001

4× 6
flat steel α = 0.1

p = 1.5
λ = 0.00025

α = 0.1 p = 1.5
λ = 0.0001

TABLE 7. Relative errors of resistivity.

Type Tikhonov Lp ITR-Lp

3× 3 resistance 0.2241 0.3774 0.1935

4× 3 resistance 0.1178 0.3210 0.1089

4× 6 flat steel 0.2874 0.3668 0.2434

FIGURE 17. Grounding grid imaging platform.

way time (min)

Overall Imaging 425

separated imaging 43

TABLE 8. Time for calculating Jacobian matrix.

FIGURE 18. Experimental imaging of simulated grounding grid.
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FIGURE 19. Block diagram of resistance network.

FIGURE 20. Comparison of overall imaging map and sub-regional imaging map.

shows the regularization parameters used in the imaging exper-
iment.
From the imaging results of the experimental diagrams, it can

be observed that for both the resistor network experiment and
simulated grounding grid experiment, all three regularization
algorithms can accurately display the branch where corrosion
occurred. However, compared with the other two algorithms,
the imaging quality of the Lp regularization algorithm is infe-
rior. The ITR-Lp mixed regularization algorithm proposed in
this paper has the less relative error in electrical resistivity and
higher imaging quality than the other two regularization algo-
rithms. The experimental results are consistent with the simu-
lation results.

5.2. Subregion Imaging Experiment

To validate the feasibility of the subregion imaging method, a
4 × 4 resistive network model is constructed to simulate the
grounding network for the partition imaging experiments. The

resistive network is established with a corrosion branch, and the
4×4 resistive network model is partitioned with a 2×2 grid to
split the whole large imaging region into four small imaging re-
gions. In the partition imaging experiments, the main compar-
ison in the subregion imaging experiments is the time to com-
pute the Jacobi matrix, so the environment to run the MATLAB
imaging program is kept the same, and all computations are car-
ried out on a computer with an R5 CPU (3.30GHz) and 16GB
RAM. The overall and subregion imaging maps are shown in
Fig. 18. Table 7 shows a comparison of the time consumed
by these two methods to solve the Jacobi matrix. The block
diagram of resistance networks is shown in Fig. 19. Table 8
shows that the total time taken to calculate the Jacobian matrix
for the four 2×2 grids in the subregion imaging method is only
43 minutes, which is approximately one-tenth of the time con-
sumed by the overall imaging method. The proposed method
significantly reduces the time required for imaging. As shown
in Fig. 20, the proposedmethod accurately displays the position
and quantity of the corroded branches.
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6. CONCLUSION
This paper proposes the ITR-Lp hybrid regularization algo-
rithm to address the ill-posed nature of the impedance imag-
ing inverse problem in grounding grid. Firstly, study the im-
pact of node distribution on imaging quality and select nodes
with high imaging quality distribution. Secondly, through the-
oretical analysis and simulation verification, it has been proven
that this method improves the convergence of the solution by
introducing a correction matrix with different correction am-
plitudes for different singular values, effectively reducing the
ill-conditioning in the reconstruction process of the grounding
grid inverse problem. This method obtains solutions with lower
sparsity through Lp regularization, improves the boundary con-
trast of the reconstructed image, and obtains high-quality re-
constructed images. The final experimental results show that
the ITR-Lp hybrid regularization algorithm has lower relative
resistivity error and higher edge contrast, which better reduces
the ill posed nature of electrical impedance imaging tomogra-
phy inverse problems.
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