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ABSTRACT: In the wireless communication industry, achieving gigabit-per-second data rates with low-profile, ultra-wideband (UWB)
microstrip patch antennae poses a significant challenge. Conventional optimization algorithms, though effective, are often computa-
tionally expensive, particularly for complex antenna geometries with high degrees of freedom. There is an imperative need for new
methodologies to address this challenge and revolutionize the antenna optimization process. Successful and timely development of an-
tennas relies on the efficiency and computational speed of optimization algorithms, full-wave electromagnetic solvers, and the intuition
of radio frequency engineers. To mitigate the dependence on complex and time-consuming processes, we propose an efficient machine
learning (ML)-based antenna optimization methodology that minimizes optimization time by more than 90%. This paper aims to apply
and study the performance of two specific ML models, the radial basis function (RBF), and the least squared regression (LSR) models, in
the bandwidth optimization without increasing the aperture area of a hexagon-shaped fractal antenna. The hexagon-shaped fractal antenna
was chosen for its UWB characteristics, low profile, and high degrees of freedom (10 adjustable parameters). The reflection coefficient
response of a hexagon-shaped fractal antenna is predicted by the trained RBF and LSR models and further optimized by the genetic
algorithm (GA). The proposed approach stands out among other notable works in this research domain, especially for UWB applications,
by prioritizing the optimization of the mean of the reflection coefficient across the entire frequency range instead of solely targeting
individual frequency points. The GA-based optimization using trained ML models has increased the bandwidth by 21.3% and reduced
the computational time by 90% compared to conventional optimization without increasing the physical or electrical size of the antenna.
Simulation and measurement results concurred with a maximum difference of 5%, demonstrating the efficacy of the ML approach for
antenna optimization.

1. INTRODUCTION

Ultra-wideband (UWB) microstrip (patch) antennas are see-
ing a 100x increase in demand in wireless communication

systems, including satellite and radio applications [1], ground
penetrating radars [2], bio-radars [3], GSM&LTE communica-
tions [4], microwave imaging [5], and phased-array radars [6].
UWB patch antennas are particularly popular for their low pro-
file, medium to high gain (4–10 dBi), and ease of fabrication.
The popularity of patch antennas is reflected in a 700% increase
in publications over the last decade, highlighting the need for
rapid and accurate optimization. However, most UWB patch
antennas have complicated structures or geometries, with many
adjustable parameters, making it tedious to perform a paramet-
ric study using commercially available full-wave electromag-
netic (EM) solvers. The time required for a single full-wave
EM simulation can vary from a few minutes to days, depend-
ing on the antenna’s complexity [7]. Traditional optimization
techniques [8–12] have been at the forefront for a long time in
finding the optimum design values, but the trade-off is com-
putational complexity, as they call the EM solvers iteratively,
i.e., anywhere from a few 100 to 10000 iterations or epochs [7].
Optimization techniques typically employ a fitness function to
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determine optimal values. This objective function solves a
specific problem, such as using EM solvers to calculate full-
wave solutions for antenna design. However, the process of
iteratively interacting with EM solvers within optimization al-
gorithms to find the best values can be computationally de-
manding and time-consuming. Machine learning (ML) mod-
els, known for their adaptability, offer a potential solution to
this problem. In this article, we present a detailed study and
comparison of conventional optimization and ML-assisted op-
timization. Although ML models have been extensively used
in fields such as biometrics [13–15], healthcare [16–18], and
finance [19, 20], their application in electromagnetics and an-
tenna design optimization is relatively new [21]. Previous stud-
ies have utilized various ML models to optimize antenna de-
signs, as summarized in [22]. For instance, [23] replaced EM
solvers with trained ML models such as Lasso, artificial neural
network (ANN), and k-nearest neighbor (kNN) models, with a
training data size of 450. In [24], an ANN was applied with
a training data size of 110. These studies have demonstrated
promising results in reduced time. However, the total compu-
tational time (Ct) required to generate training data depends
on the complexity of the antenna design and the time required
for EM software to simulate a single sample (Cs), as shown in
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Equation (1).

Ct =
n∑

i=1

(Cs) (1)

Generating extensive training data is impractical and ineffi-
cient for all antenna designs, particularly those with complex
designs and UWB characteristics. This paper presents a novel
approach that eliminates the need for extensive training data
by (1) performing a tradespace analysis of the selected antenna
design to identify the most significant design features, (2) gen-
erating training data by varying values within the range of in-
terest of the identified design features, and (3) training the se-
lected ML models and using them as fitness functions for the
optimization algorithm. This approach minimizes the need for
extensive computational resources, enabling optimization algo-
rithms to explore a broad range of designs and enhancing an-
tenna design optimization objectives.
The optimal values obtained through the proposed method-

ology are compared and validated using the results obtained
from both simulation and prototyped designs, as outlined in
Section 3. The complete process was carried out using opti-
mization software Altair HyperStudy [25] and numerical EM
simulation from Altair FEKO2 .

2. ANTENNA DESIGN AND ANALYSIS
UWB antennas include various designs, such as planar
inverted-f antenna (PIFA), biconical antenna, and logperiodic
dipole array. Nevertheless, it is important to note that the pro-
posed methodology can be applied to any antenna, regardless
of the frequency range of operation, number of design vari-
ables, antenna size, or antenna design optimization objective.
The decision to select the hexagon-shaped fractal antenna
design over these renowned counterparts was motivated by its
capacity for multi-band operations and space-filling properties.
Additionally, a co-planar waveguide (CPW) was employed
because of its advantages, such as broad bandwidth, ease of
fabrication, and reduced losses due to its planar structure and
ease of tuning.
Our study focuses on a single CPW monopole antenna in-

tegrated with fractal elements, drawing inspiration from [26].
The antenna configuration comprises a hexagonal patch featur-
ing fractal elements at each corner, enhancing its performance
characteristics. Fabricated on an FR-4 substrate with a thick-
ness of 1.5mm, a relative permittivity (εr) of 4.4, and a loss
tangent of 0.002, this design allows flexibility in optimizing the
antenna’s operational parameters. Placing each fractal element
at a distance d from the hexagonal patch’s center introduces
variability, not necessarily aligning with the hexagonal radia-
tor’s radius a. For a visual representation and to highlight the
initial design parameter values, refer to Figure 1, showcasing
the hexagon-shaped fractal antenna topology.
Each hexagon-shaped fractal antenna design parameter

represents a unique design geometry feature, influencing the
antenna’s output characteristics individually and nonlinearly.
This study focuses on enhancing the reflection coefficient
(|S11|) bandwidth, conducting a parametric analysis to pinpoint

(a) (b)

FIGURE 1. The hexagon-shaped fractal antenna with a hexagonal patch
and hexagon-shaped fractal elements. a = 8.2mm, b = 1.1mm, d =
7.36mm, R = 2.4mm, N = 0.73mm, T = 8.85mm, F = 7mm,
W = 25, L = 25mm, g = 7.98mm. (a) Top view, and (b) bottom
view.

features affecting this response. In this section, we discuss the
impact of a, b, d, and N on |S11|. As depicted in Figure 2(a), an
increase in a value correlates with expanded upper frequencies,
resulting in a bandwidth increase. Conversely, variations in
b and d exhibit a decrease in upper frequencies, generating
closely spaced resonating frequencies in the mid-range,
illustrated in Figures 2(b)–2(c). Finally, the design parameter
N, shown in Figure 2(d), exhibits minimal impact on higher
and lower frequencies but significantly influences mid-range
frequencies, thereby facilitating bandwidth enhancement.
To understand the impact of N on the spike present around
6GHz in our FEKO results, a simulation was carried out
using another commercially available EM solver, CST Studio
Suite. A comparison of the |S11| results for N = 0.3mm in
FEKO and CST is depicted in Figure 2(e). A spike can be
seen clearly from the CST result around 6GHz, validating
the FEKO result. The authors believe that this is physical
to the structure, i.e., inherent to the spacing or gap between
the CPWs and the feedline. One possible explanation is the
increase in capacitance value between the feedline and CPW
as the value of N decreased from 0.7 to 0.3mm, creating a
non-resonance behavior. In summary, as the gap between the
CPW and feedline decreases, a spike can be expected in any
CPW-based antenna design, leading to decreased impedance
bandwidth. It is ideal to retain the highest value of N possible
to obtain lower values of |S11| and a UWB behavior.
After identifying these features, each of the selected fea-

tures (i.e., a, b, d, N) was varied within the range of sample
space {DP} (units in mm): a ∈ [7.8, 8.2], b ∈ [1.1, 1.8],
d ∈ [7.2, 7.8], N ∈ [0.3, 0.8] to generate the training data; that
is {(DPn;Sn

11); n = number of samples in training data} these
ranges were chosen purposefully to accommodate the copper
patch on substrate adequately. By doing so, the goal was to en-
compass essential variations crucial for studying the antenna’s
performance without exceeding the necessary scope.

3. METHODOLOGY

3.1. Optimization Using Conventional Approach
In the quest for optimizing the hexagon-shaped fractal an-
tenna design, a genetic algorithm (GA) within FEKO was em-
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FIGURE 2. Parametric analysis of (a) hexagonal radiator a, (b) fractal element radius b, (c) distance from centers of the hexagonal radiator and fractal
element d, (d) gap N , and (e) gap N (validation using CST for N = 0.3mm).

FIGURE 3. Work flow of conventional optimization with EM solver as the fitness function.

ployed. The primary objective of the GA was to minimize
|S11| over the desired frequency range of 2 to 12GHz while
adhering to sample space {DP}. Utilizing optimization algo-
rithms for a complicated antenna design on a local computer
(Intel Core i7-10810U CPU @ 1.10GHz) requires consider-
able computational resources. To examine and analyze the opti-
mization algorithms, the Lewis HPC cluster1 (Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40GHz) was employed. Figure 3 de-
picts the workflow of a conventional optimization algorithm.
The flowchart shows that the optimization algorithm repeatedly
calls the fitness function (EM solver) until the target condition
is met. This process can be resource-intensive as optimization
algorithmsmust wait for EM solvers’ response in each iteration.

1The computation for this work was performed on the high-performance
computing infrastructure provided by Research Computing Support Services
and in part by the National Science Foundation under grant number CNS-
1429294 at the University of Missouri, Columbia, MO.

3.2. Optimization Using Machine Learning

The ML algorithms enable users to predict the output without
explicit instruction. The adaptive nature of these models al-
lows users to construct or mimic any complex system without
empirical knowledge. The choice of ML models, namely ra-
dial basis function (RBF) [27, 28] and least square regression
(LSR) [29], is driven by their superior generalization compared
to other models available on HyperStudy. Unlike conventional
optimization, a new approach to employing ML algorithms is
proposed for faster and more efficient antenna output response
prediction. An ML model with good generalization can mimic
the EM solvers and instantly output the response. So, the con-
ventional EM solver is replaced with a trained MLmodel as the
fitness function in Figure 3.
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3.2.1. Radial Basis Function

The output response of an antenna is a nonlinear function of in-
put design parameters. Thus, the RBF is suitable as it converts
such nonlinear input space to higher dimensional linear space
to estimate the output response. The trained RBF network com-
prises input and output layers with only one hidden layer, and
it has a specification type set as CS21 in Altair HyperStudy.
Finally, to extend its utility to linear data sets, the RBF model
is enhanced with a polynomial function, as depicted in Equa-
tion (2).

f(x) =

n∑
i=1

λi · ϕ (||x− xi||) +
n∑

i=j

cjPj(x) (2)

where n is the number of sampling points; x is a input vector; xi

is the ith sampling point; λi is the coefficient of ith basis func-
tion; ϕ is a basis function; Pj(x) is the polynomial function; cj
is a coefficient.

3.2.2. Least Squared Regression

An LSR model (or) linear regression model is used for nonlin-
ear data using a polynomial regression model. As the antenna
output response (i.e., reflection coefficient) is a nonlinear func-
tion of input design parameters, we use a polynomial regression
model of degree 1, also available in Altair HyperStudy. The
LSR model is mathematically expressed in Equation (3).

f(x) = ao + a1x1 + a2x2 + ε (3)

where the goal of this model is to minimize the error ε between
output response values of the regression model (3) and corre-
sponding simulation model2. The error term is shown in Equa-
tion (3).

ε =

n∑
i=1

(
f predicted
i − fi

)2

(4)

3.2.3. Altair HyperStudy

The main role of Altair HyperStudy was to conduct surrogate-
based optimizations utilizing trainedMLmodels. This software
enables users to import CAD designs, specifically FEKO an-
tenna designs, without additional packages or scripting. With
its intuitive interface, users can effortlessly select training data
parameters, generate the necessary training data, train and val-
idate ML models, and optimize antenna designs. Moreover,
Altair HyperStudy offers the flexibility to modify optimization
models’ fitness functions, empowering users to tailor the pro-
cess to their needs. This crucial capability facilitated the sub-
stitution of FEKO, the EM solver, with a trained ML model,
enabling the seamless execution of the proposed methodology.
Altair HyperStudy was employed for ML-driven antenna de-
sign optimization, leveraging its capability for surrogate-based
optimizations with trained ML models. Here is a high-level
breakdown of the steps followed in the approach to Altair Hy-
perStudy:

2Feko, Altair Engineering, Inc.

1. Importing and Defining Parameters: The process
was initiated by importing the FEKO CAD design of the
hexagon-shaped fractal antenna model into Altair Hyper-
Study. Here, the authors defined and selected the design
parameters for optimization and specified their respective
ranges.
2. Model Validation and Output Definition: The im-
ported model was validated by executing the run defini-
tion, ensuring functionality across write, execute, and ex-
tract tasks. Subsequently, the output response was defined
by selecting the appropriate keyword and corresponding
value from the output file. In this case, the designated key-
word was |S11|, representing the mean of |S11| response
values obtained from 30 discrete frequency points span-
ning 2 to 12GHz.
3. Data Generation with design of experiment (DOE):
Training and test data were systematically generated
by employing a modified extensible lattice sequence
(MELS) DOE approach. MELS enabled the authors to
distribute training input points evenly, thereby enhancing
the model’s ability to discern underlying patterns despite
minimal training data.
4. Model Training and Evaluation: Utilizing the fit ap-
proach, concurrent RBF and LSR models were trained
with the data generated in the previous step. The per-
formance of these models was evaluated using root mean
squared error (RMSE), refining the training process iter-
atively to achieve lower RMSE values while optimizing
computational efficiency.
5. Integration of Genetic AlgorithmOptimization: The
GA optimizer was integrated into the study, designating
the trained ML model as a fitness function. Alongside
specifying design parameters and their ranges, constraints
were incorporated to minimize the mean of the |S11| re-
sponse. This step aimed to achieve the optimal design pa-
rameter values for the antenna.

Both of these MLmodels (RBF & LSR) require training data
(i.e., input and output) for training the model, which are an-
tenna design parameters and simulated output such as the |S11|
or gain. In this study, hexagonal radiator radius ‘a’, fractal ele-
ment radius ‘b’, distance from the centers of the hexagonal radi-
ator and fractal element ‘d’, and the gap between ground planes
on top of the substrate and the transmission line ‘N ’ are selected
to be used in the input of the training data as they have a signifi-
cant impact on the |S11| as discussed below. |S11| response for
each training input is used as the training data output. So, train-
ing data consists of an input matrix, ‘n × 4’, while the output
matrix contains ‘n×30’, where ‘n’ is the number of samples in
the training data or the size of the training data set. The mean
of |S11| responses at 30 different discrete frequency points over
2 to 12GHz is considered for the output data. The total proce-
dure is carried out in Altair HyperStudy [25], which enables the
study and optimization of the antenna design using built-in ML
algorithms. For complex antenna design, parametric analysis
and optimization for a larger number of parameters is a tough
job. ML models are very helpful in this scenario. With very
small training data, ML models are very accurate and used as a
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(a) (b)

FIGURE 4. (a) Conventional optimization approach. (b)Machine learn-
ing approach.

catalyst in the optimization process. The flowchart in Figure 4
demonstrates the workflow for implementing ML models.

RMSE =

√√√√ 1

n

n∑
i=1

(
f predicted
i − fi

)2

(5)

In the case of ML prediction in antenna design, finding the
correct balance between the training data set size and the time
required to generate is necessary. The RMSE serves as a cru-
cial metric for assessing the variance between predicted and ob-
served data. This study used it to measure the disparity between
predicted and actual values of |S11|. Defined mathematically
by Equation (5), a good RMSE’s significance hinges upon the
data set’s characteristics under consideration. Consequently, in
determining the ideal training data size, the study opts for a size
capable of yielding a lower RMSE (closer to 0) while minimiz-
ing the data generation time. From Figure 5(a), the RMSE, time
values have increased with training data set size for RBF. For
LSR, as depicted in Figure 5(b), the RMSE value has decreased
with an increase in training data size from 5 to 15 and increased
further. Training data set size 10 has less RMSE and training
data generation time and is used further.

4. RESULTS AND DISCUSSION
The conventional approach (i.e., FEKO+GA) has reported the
optimum design values as a = 7.8, b = 1.1, d = 7.4,N = 0.3,
after 1000 (stop criteria) iterative comparisons of |S11| solu-
tion from fitness function (FEKO), while the ML approach op-
timization (i.e., RBF+GA, LSR+GA) took 1908 iterative com-
parisons to report design values: a = 8.1, b = 1.1, d = 7.2,
N = 0.6 and a = 8.2, b = 1.1, d = 7.2,N = 0.3, respectively.
The trade-off between the conventional approach and the ma-
chine learning approach is the computational time required to
evaluate the fitness function in each iteration. The EM solver

(a)

(b)

FIGURE 5. Illustration of change inML performancemetrics with train-
ing data set size for (a) RBF, and (b) LSR.

as a fitness function in conventional approach took 48 hrs on
a Lewis HPC cluster2 to obtain the above values, whereas the
ML models achieved convergence to the optimization solution
in just a single second on a Dell laptop with an i7 processor with
16GB RAM to converge to the optimization solution. A com-
parative analysis of these approaches is presented in Table 1.

Three antennas were designed using the optimized design
values obtained from FEKO+GA, RBF+GA, and LSR+GA
and simulated using FEKO within the frequency range of op-
eration and depicted in Figure 6. The sudden spike around
6.4GHz is a simulation artifact only observed in the select cases
(LSR+GA and FEKO+GA) and is probably due to the unique
combination of design variables, mesh size, and the number of
frequency points. The same spike is absent in the measurement

FIGURE 6. Comparision of |S11| response from hexagon-shaped
fractal antenna designs produced from FEKO+GA, RBF+GA, and
LSR+GA methods.
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TABLE 1. Characteristic comparison of FEKO+GA, RBF+GA, and LSR+GA.

RBF+GA LSR+GA FEKO+GA

Yielded values (mm)
a = 8.1, b = 1.1,
d = 7.2, N = 0.6

a = 8.2, b = 1.1,
d = 7.2, N = 0.3

a = 7.8, b = 1.1,
d = 7.4, N = 0.3

Computational time ≤ 1 sec ≤ 1 sec 48 hrs
No. of design comparisons 1908 1908 1000

% BW (simulated) 93% 98% 84%
% BW (measured) 99% 101% 76%
Training data size 10 10 NA

Computer specifications Dell latitude 5510 Dell latitude 5510 Lewis HPC cluster
1

TABLE 2. Comparison performance metrics of proposed method with other research works.

ML model Training data size No. of parameters Optimization method R2 Objective
RBF (Proposed) 10 4 GA 0.9 mean (|S11|)

ANN, Lasso and kNN [23] 450 5 Manual grid search > 0.85 FOM
Modified KNN [30] 15, 8 3 Bayesian N/A min (|S11|)

results, shown in the future sections, indicating that the spike is
a simulation artifact and not a band-stop behavior. It is evident
from |S11| solutions in Figure 6 that both the ML approaches
have achieved a higher bandwidth than the conventional ap-
proach. The optimal selection of the number of training data
samples hinges upon the ranges of design parameters. In our
study, the parameters (a, b, d, N) were varied within a nar-
row range of values. Therefore, having a large training data set
would result in closely spaced input values, potentially leading
to redundant data during training. Choosing unique and inde-
pendent values for design parameters that significantly impact
the training output is crucial. This approach enables ML mod-
els to effectively discern the underlying patterns between in-
put and output values. Table 2 presents a comprehensive com-
parison of various performance metrics, encompassing training
data size, number of design parameters, optimization method,
R2 error, and the objective of the proposed method, against
other research works. Particularly noteworthy is the achieve-
ment of a 0.9R2 error value with a smaller training data set in
this study’s RBF, underscoring a robust comprehension of the
relationship between inputs and outputs.

4.1. Fabrication Results

The optimized design values obtained from the aforementioned
approaches were employed in fabricating all three antennas.
Due to the intricacies of the antenna design, a photolithographic
method was chosen for fabrication. A 1.6mm thick posi-
tive photoresist-laminated FR4 board was utilized, and albeit
1.5mm thickness was desired, it was unavailable. An SMA
connector was soldered to the edge of the transmission line, as
depicted in Figure 7. Subsequently, a Field Fox Vector Net-

FIGURE 7. Top and bottom view of fabricated antenna designs using
photolithography.

work Analyzer was employed to measure the |S11| responses
of all three fabricated antennas.
The comparison between the measured and simulated |S11|

results is presented across three distinct scenarios. In Fig-
ure 8(a), the results for the FEKO+GA case are depicted, while
Figure 8(b) showcases the outcomes for the LSR+GA scenario.
Furthermore, Figure 8(c) provides the results for the RBF+GA
case. There is a general agreement in all of the three cases be-
tween the measured and simulated results, particularly in terms
of bandwidth, upper (Fu) and lower (Fl) cutoff frequencies.
The inconsistent |S11| magnitude values observed in the mea-
surements compared to the simulation values can be attributed
to the multi-step fabrication process. The photolithography
process was employed to fabricate the antennas due to the small
size (25 × 25mm2) of the proposed antennas and the unavail-
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(a) (b) (c)

FIGURE 8. Comparison of simulated and measured |S11| results of (a) FEKO+GA, (b) LSR+GA, and (c) RBF+GA.

TABLE 3. Comparison of bandwidth achieved through different optimization approaches: Simulation and measurement results.

Approach Fl (GHz) Fu (GHz) Percent Bandwidth (%) Bandwidth (GHz)
Simulation (FEKO+GA) 4.07 9.99 84 5.92

Measured (FEKO+GA)
3.98 4.12 3.46 0.14
4.80 10.76 76.61 5.96

Simulation (LSR+GA) 4.02 11.78 98 7.76

Measured (LSR+GA)
3.79 4.44 15.80 0.65
4.79 11.54 82.67 6.75

Simulation (RBF+GA) 4.13 11.37 93 7.23

Measured (RBF+GA)
3.84 4.41 13.82 0.57
4.70 11.37 83.01 6.67

ability of appropriate CNC drill bits in-house to create the frac-
tals. Photolithography is a multi-step fabrication process that
requires careful implementation of coating, exposure, develop-
ment, and etching procedures. During the etching process, the
unwanted photoresistive layer was removed using Ferric Chlo-
ride acid, making this part of the procedure challenging as some
parts of the copper were accidentally removed. This resulted in
uneven surface polishing and air slots on the hexagon-shaped
patch antenna prototypes, notably in the LSR+GA prototype.
All the above factors contributed to the slight mismatch in |S11|
values. However, the measurements’ bandwidth, Fl, and Fu

values remained close to the simulated outputs and demon-
strated improved bandwidth from the LSR+GA and RBF+GA
cases over the FEKO+GA case.
After analyzing Table 3, it is evident that the LSR+GA

optimization approach demonstrates robust performance across
both simulation and photolithography methods. In particular,
the photolithographic implementation of LSR+GA yields a
total bandwidth of 7.4GHz, which is 0.16GHz higher than that
of RBF+GA. Additionally, LSR+GA achieves a total percent-
age bandwidth of 98.47%, surpassing RBF+GA approach by
a margin of 1.64%. Conversely, the FEKO+GA optimization
approach exhibits comparatively limited performance, with a
bandwidth of 5.92GHz in simulation and 6GHz in photolithog-
raphy. These values are notably lower than those achieved by
LSR+GA and RBF+GA methods. RBF+GA, while offering
competitive performance, falls slightly behind LSR+GA in
both bandwidth and percentage bandwidth. Specifically, it

achieves a bandwidth of 7.24GHz in photolithography, trailing
LSR+GA by 0.16GHz. Thus, based on these numerical
comparisons, the LSR+GA optimization approach emerges as
the most effective in maximizing bandwidth and percentage
bandwidth, followed closely by RBF+GA, while FEKO+GA
lags behind in performance metrics. The ML approach
(LSR+GA) achieves a 21.3% increase in bandwidth compared
to the FEKO+GA approach, validating both simulated and
measured data. These findings underscore the efficacy of ML
models in enhancing bandwidth. Additionally, employing
ML has enabled a remarkable bandwidth enhancement while
reducing computational time by over 1000 times.

Percent Bandwidth (%) =
(
Fu − Fl

Fu + Fl

)
× 200 (6)

Finally, the mathematical equation used to calculate the per-
centage bandwidth is provided in Equation (6), where Fu rep-
resents the upper frequency, and Fl represents the lower fre-
quency.
The authors utilized the CST Studio Suite’s frequency

domain solver in combination with the GA to optimize the
hexagon-shaped fractal antenna. This step aimed to compare
optimization outcomes across various EM solvers (i.e., CST
Studio Suite vs. FEKO). As shown in Figure 9, the optimization
process achieved an 81.02% bandwidth and necessitated 24
hours of computation on the specified hardware configuration:
CPU: 2xAMD EPYC 7H12 (128 cores total per node), RAM:
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FIGURE 9. Comparison of |S11| response for the antenna designs pro-
duced from FEKO+GA, LSR+GA, RBF+GA, and CST+GA.

512GB, GPU: 8xNvidia RTX A6000 with 48GB of RAM
each. In summary, the CST+GA and FEKO+GA approaches
yielded the lowest percent bandwidth, albeit with longer com-
putation times than the RBF+GA and LSR+GA approaches.
The latter achieved the highest percent bandwidth within a
shorter duration than the traditional optimization method.

5. CONCLUSION
In conclusion, this study presents a new methodology for opti-
mizing UWB patch antennas by using ML algorithms, specifi-
cally RBF and LSR models. By leveraging ML models as fit-
ness functions, this study achieves a remarkable reduction in
computational time by over 1000 times while significantly en-
hancing antenna bandwidth by over 21.3%.
The results demonstrate the superiority of the ML-based op-

timization approach in both computational efficiency and an-
tenna performance. The trained ML models accurately predict
antenna responses, enabling rapid design space exploration.
Fabricated antennas based on the optimized designs exhibit
good agreement between simulated and measured results in
terms of bandwidth and upper and lower cutoff frequencies,
validating the efficacy of theML-assisted optimizationmethod-
ology. This research marks a paradigm shift in antenna design
optimization, offering a transformative approach that combines
advanced ML techniques with traditional optimization meth-
ods. The dramatic reduction in computational time and signifi-
cant enhancement in antenna bandwidth showcase the potential
of ML-based approaches to revolutionize the development of
high-performance antennas for various applications.
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