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ABSTRACT: The problem of unstable vibration signal and accurate fault feature extraction of motor bearing fault causes the low accuracy
of motor bearing fault diagnosis. In order to improve the accuracy of motor bearing fault diagnosis, the variational mode decomposition
(VMD) is used to decompose the vibration signal and combine with the convolutional neural network (CNN). The bearing faults are
categorized into inner ring wear, outer ring wear, and cage fracture; then each category of faults is further subdivided into the degree of
loading, which is categorized into 0, 25%, and 50%, with a total of 9 cases. In order to select sensitive fault features, the vibration signals
of motor bearings in three dimensions are collected, decomposed into multiple endowment modal function (IMF) components by VMD.
The energy entropy of each IMF in each dimension is extracted, and the sensitive fault features are selected by feature selection (ReliefF),
and then input into CNN for fault diagnosis. At the same time, the fault diagnosis of transverse vibration signal and three-dimensional
vibration signal is also carried out respectively. The experimental results show that the accuracy of the method is greatly improved, and
the fault diagnosis can be realized.

1. INTRODUCTION

With the rise of industry 5.0, the demand for motors is in-
creasing. An important part of the motor is motor bear-

ing [1, 2]. Bearings are susceptible to corrosion, foreign bodies,
etc. Once damaged, it will have a serious impact on the oper-
ation of the entire motor [3]. Bearing failures have the highest
incidence, accounting for 40% of overall motor failures. The
fault diagnosis of motor bearing can be divided into two parts.
The first part is to extract its fault characteristics, and the second
part is fault identification. If the motor bearing is abnormal or
faulty, its fault characteristics can be reflected in the vibration
signal spectrum. By collecting the vibration signal and decom-
posing the characteristics in the signal, it is one of the com-
monly used methods for the first half of the motor bearing fault
[4]. Ref. [5] analyses motor bearings and then uses orthogonal
wavelet method to diagnose the location where the fault occurs.
Ref. [6] is an early fault diagnosis method for rolling bearings
based on VMD. VMD is used to decompose the bearing fault
signal, and then the extracted fault features are input into the
envelope spectrum for analysis to diagnose the bearing fault.
Ref. [7] uses a combination of adaptive variational modal de-
composition and least squares support vector machine to de-
compose multi-frequency complex signals for fault diagnosis
of rolling bearings. A bearing fault diagnosis method based on
CNN and Support Vector Machine (SVM) is proposed in [8].
The proposed method is verified on the dataset from the Case
Western Reserve University (CWRU) and the Machine Fail-
ure Prevention Technology (MFPT). Ref. [9] uses short-time
Fourier transform to convert multi-channel original bearing sig-
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nals into two-dimensional time-frequency images and sends
them to the residual network for fault classification. Ref. [10]
proposes a bearing fault diagnosis method based on informa-
tion entropy. The integrated empirical mode decomposition
(EEMD) was used to extract the information entropy of each
order component, and the SVM after parameter optimization
was used for bearing fault diagnosis. In order to improve the
accuracy of bearing fault diagnosis. Ref. [11] optimizes the pa-
rameters of VMD, extracts the kurtosis coefficient and energy
equivalent of the reconstructed signal, and quantifies the fault
signal. In [12], a method combining wavelet packet energy en-
tropy and deep belief network (DBN) is proposed to diagnose
bearing faults. Firstly, the wavelet packet is used to decompose
the fault vibration signal of the bearing, and then the feature
vector is composed in the form of energy entropy. The depth
model of DBN is used to identify the fault of the energy entropy
feature vector. Ref. [13] uses a one-dimensional convolutional
neural network for fault feature extraction and fault diagnosis
output. Although artificial fault feature extraction is omitted, it
will cause the problem of feature loss.
In this paper, a fault diagnosis mode combining variational

mode decomposition (VMD) and convolutional neural network
(CNN) is adopted. The vibration signals of the transverse, ra-
dial and axial dimensions of the bearing are collected and de-
composed by VMD. The energy entropy fault feature vector is
extracted from the decomposed IMF components, and then the
feature weight (ReliefF) is used to select the sensitive fault fea-
ture vector. Finally, it is input into the convolutional neural
network (CNN) for bearing fault diagnosis.
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2. FAULT SIGNAL DECOMPOSITION AND FEATURE
EXTRACTION

2.1. Principle of Variational Modal Decomposition
VMD is an analysis method applied to signal analysis. The
original composite signal is decomposed into several frequency
modulation sub-signals in different frequency bands, which ef-
fectively avoids the phenomenon of modal aliasing and is con-
ducive to the analysis of fault information and the feature ex-
traction of fault signals.
VMD algorithm is used to decompose the fault signal into

several intrinsic mode functions, which are expressed as:

uk (t) = wk (t) cos (φk (t)) (1)

In formula (1), uk(t) is the kth signal component after VMD
decomposition; wk(t) is the instantaneous amplitude of the sig-
nal; φk(t) is the phase of the signal.
In order to obtain the center frequency and bandwidth of each

mode Uk(t), Hilbert transform is performed on each mode to
construct an analytical function to obtain the unilateral spec-
trum, and then the spectrum is shifted to the baseband of the
estimated large center frequency. The modal bandwidth is de-
termined by the calculated value obtained from the L2 norm.
The model is the following formula

min

{∑
k

∥∥∥∥dt [(δ (t)+ j

πt

)
∗Uk(t)

]
e−jωt

∥∥∥∥2
2

}

s.t.

k∑
k=1

Uk (t)=f(t) (2)

In formula (1), δ(t) is the unit impulse function; * is the con-
volution; dt is the derivation of function; s.t. is the constraint
condition.
In order to solve the constraint problem, the quadratic penalty

factor α and Lagrange multiplier λ are introduced to obtain the
augmented Lagrange equation, which is transformed into an
unconstrained problem. Among them, the value of α can en-
sure the reconstruction accuracy of the signal in the presence
of Gaussian noise, and the Lagrange multiplier makes the con-
straint conditions strict. The equation is solved using the alter-
nating direction multiplier method to achieve alternating opti-
misation for Uk, ωk, and λ.

Ûn+1
k (ω) =

f̂ (ω)−
∑
i ̸=k

Ûi (ω)+
λ̂(ω)
2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫∞
0

ω
∣∣∣Ûk(ω)

∣∣∣2 dω∫∞
0

∣∣∣Ûk(ω)
∣∣∣2 dω (4)

λ̂n+1 (ω) = λ̂n (ω)+τ

(
f̂ (ω)−

∑
k

ûn+1
k (ω)

)
(5)

According to the given solution accuracy ε, the iteration is
stopped by satisfying Equation (6).

∑
k

∥∥∥Ûn+1
k − Ûn

k

∥∥∥2
2∥∥∥Ûn

k

∥∥∥2
2

< ε (6)

The iterative solution is initialised with
{
Û1
k

}
,
{
ω̂1
k

}
,
{
λ1
}

with the maximum number of iterations. According to formu-
las (3), (4), and (5), Uk, ωk, λ are updated in turn. Once the
convergence accuracy is satisfied, or the maximum number of
iterations is reached, the iteration is stopped, and the final k
modal components and center frequencies are obtained.
The advantage of VMD is that it can deal with nonlinear and

non-stationary signals, and can adaptively select the number of
decomposed frequency bands. It is widely used in signal pro-
cessing, image processing, machine learning, and other fields.

2.2. Energy Entropy Characteristics
Energy entropy can reflect the energy change between the nor-
mal signal and fault signal of the bearing [14]. Different IMF
components can be obtained by VMD decomposition of mo-
tor bearing fault signals. Due to the different fault signals, the
energy is also different. The energy is distributed in each com-
ponent of the decomposition, which can be used as a feature
vector to reflect the fault signal. The expression for energy en-
tropy is:

Hi = −
n∑

r=1

pr ln pr (7)

pr denotes the share of the energy of the rth IMF component in
the total energy Esum · pr = Er/Esum, andHi denotes the ith
IMF energy entropy, i = (1, 2, . . . n).

2.3. ReliefF Feature Selection
ReliefF algorithm is a feature weighting algorithm that gives
different differentiated weights to the features according to the
degree of association between each feature and type. If the
weight is less than a certain set value, the feature values will
be removed, and the remaining will form a new feature subset
to complete the feature selection process, thereby improving the
accuracy of fault feature extraction. However, it cannot handle
more than two dimensional data well [15], so the ReliefF al-
gorithm is proposed. The steps of the ReliefF feature selection
algorithm to calculate the weight are as follows:

(1) A training set (R) is drawn from the overall data.

(2) Then from this training set, K similar sets are extracted,
and each feature set proposes k such sets.

(3) Finally, the weight value of the most feature set is iterated
again:
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FIGURE 1. Fault diagnosis flow chart.

W (A) =

W (A)−

K∑
j=1

diff (A,R,Hj)

mk

+
∑

C ̸=clsss(R)


p (C)

k∑
j=1

diff (A,R,Mj (C))

1− p (Class (R))

/(mk) (8)

In the above formula, W (A) is the weight value, and sample
R1 and sample R2 are subtracted above feature A to find the
difference that is diff(AR1R2). Mj(C) is the jth similarity
set in class C.

diff (A,R1, R2) =
0, A is discrete and R1 [A] = R2[A]

1, A is discrete and R1 [A] ̸= R2[A]

|R1 [A]−R2[A]|
max (A)−min(A)

, A is continuous

(9)

3. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN) belongs to a feed-forward
neural network, which is a common deep learning network
model. CNN can automatically extract features. Compared
with traditional feature methods, it can greatly improve the ac-
curacy of recognition [16]. CNN consists of an input layer, a
convolutional layer, a pooling layer, a fully connected layer,
and an output layer.
The main role of the convolutional layer is to convolve the

convolutional kernel with part of the receptive domain of the
input signal, to extract the features into part of the receptive
domain of the input signal, and to use the result of the convolu-
tion of multiple input features under the activation function as
the output feature quantity.

al+1
i = f(yl+1

i (j)) (10)
yl+1
i (j) = Kl

i ∗ xl (j) + bli (11)

In the above formula, al+1
i is the final output of the jth neuron

in the ith feature plane of the lth layer; yl+1
i (j) is the result

of convolution operation; xl (j) is the jth part of the layer l
receptive field; Kl

i is the weight vector of the ith convolution
kernel in the lth layer; bli is the bias of the ith convolution kernel
in the lth layer; f() is the activation function.
The gradient saturation effect is not avoided. The ReLU

piecewise function is applied in the deep convolutional net-
work, and its expression is as follows:

al+1
i (j) = f

(
yl+1
i (j)

)
= max

{
0, yl+1

i (j)
}

=

yl+1
i (j) , yl+1

i (j) ≥ 0

0, yl+1
i (j) < 0

(12)

The pooling layer is to reduce the dimension of the feature
map and filter out the residual parameters in the data, which can
prevent feature degeneration and over-fitting of the network.
The general pooling methods are mean pooling and maximum
pooling. In this paper, the maximum pooling layer is used to
output the maximum value of the receptive field of each fea-
ture surface, ignoring the secondary factors and extracting the
important features, and its expression is as follows:

pl+1
i (j) = max(j−1)w+1≤t≤jw qli(t) (13)

where pl+1
i (j) is the pooling result for neurons in the (l+1)th

layer; w is the width of the pooling area; qli(t) is the value of
the tth neuron inside the ith feature in the lth layer.
When the input signal is processed by the convolution layer

and pooling layer, it will be transformed into high-level infor-
mation features, and one ormore fully connected layers are con-
nected to classify the information features.

4. FAULT DIAGNOSIS PROCESS
Firstly, the vibration signals of the transverse, radial and axial
dimensions of the bearing fault are collected and decomposed
by the VMD method. Each dimension is decomposed into K
IMFs. Then, K energy entropy features are extracted from K
IMF components respectively, and then the ReliefF algorithm
is used to select the features with large weight values to form
a sensitive feature set. Finally, it is input into the CNN fault
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FIGURE 2. Transverse decomposition diagram of inner ring wear.
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FIGURE 3. Radial decomposition diagram of inner ring wear.
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FIGURE 4. Decomposition diagram of wear axial of inner ring.
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FIGURE 5. Transverse decomposition diagram of outer ring wear.

diagnosis model for testing. The flowchart of bearing fault di-
agnosis is shown in Figure 1.

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1. Experimental Data
Bearing faults are divided into three types: inner ring wear,
outer ring wear, and cage fracture. Then, each fault is subdi-
vided into 0 load, 25% load, and 50% load, a total of 9 bearing
fault states. For each fault, 50 samples are taken, and the train-
ing set and test set are divided according to 70%, that is, 35
training samples and 15 test samples. Before entering CNN for
fault diagnosis, each fault condition is labeled for easy output.
For example, the case where the inner ring wear load is 0 is
marked as 1, and so on. The bearing fault table is shown in
Table 1.

TABLE 1. Bearing fault table.

Type of fault Loadinglevel Label
Inner ring wear 0 1
Inner ring wear 25% 2
Inner ring wear 50% 3
Outer ring wear 0 4
Outer ring wear 25% 5
Outer ring wear 50% 6
Cage fracture 0 7
Cage fracture 25% 8
Cage fracture 50% 9
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FIGURE 6. Radial decomposition diagram of outer ring wear.
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FIGURE 7. Decomposition diagram of wear axial of outer ring.
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FIGURE 8. Transverse decomposition diagram of cage fracture.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-1
0
1

Radial vibration signals

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-0.2

0

0.2

IM
F

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-0.2

0

0.2

IM
F

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

-0.1
0

0.1
0.2

IM
F

3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-0.2

0

0.2

IM
F

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-0.2

0

0.2

IM
F

5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

time t/s

-0.5

0

0.5

IM
F

6

FIGURE 9. Radial decomposition diagram of cage fracture.

5.2. VMD Energy Entropy

VMD can effectively separate the similar components in the
signal, and has good robustness, which can effectively solve
the interference problem at the end of the signal. The two main
parameters of the penalty factor α and the number of modes
K in the VMD are set to 2500 and 6, respectively, and the re-
maining parameters are set to default values. Due to the space
relationship, only the decomposition graph with the load of 0 is
displayed. The transverse, radial and axial decomposition dia-
grams of the wear of the inner ring are shown in Figures 2, 3,
4, respectively; the transverse, radial and axial decomposition
diagrams of the wear of the outer ring are shown in Figures 5,
6, 7, respectively; the transverse, radial and axial decomposi-
tion diagrams of the cage fracture are shown in Figures 8, 9, 10,
respectively.

Comparing the above 9 decomposition diagrams, the energy
of different frequency bands in each dimension of each bearing
fault is different. In feature extraction, VMD is used for de-
composition processing, and energy entropy is used as feature
vector to distinguish bearing fault types in turn. The fault fea-
ture vector of energy entropy is shown in Figures 11, 12, and
13.

5.3. Feature Selection

Six energy entropies decomposed from the three dimensions of
each bearing fault state are extracted, with a total of 18 fea-
tures. The ReliefF algorithm is used to calculate the feature
weight, and the proportion of feature weight is shown in Fig-
ure 14. From theweight ratio, it can be seen that theweight ratio
of each IMF component is different. The lower the weight ra-
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FIGURE 10. Decomposition diagram of wear axial of cage fracture.

  

FIGURE 11. Comparison diagram of transverse energy entropy.

FIGURE 12. Comparison diagram of radial energy entropy. FIGURE 13. Comparison diagram of axial energy entropy.
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FIGURE 14. The weight proportion diagram of each IMF component.
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FIGURE 15. Training set classification results.
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FIGURE 16. Test set classification results.
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FIGURE 17. Classification results of transverse signals.
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FIGURE 18. Classification results of three dimensional signals.

tio is, the less sensitive it is. The top 50% of the weight ratio is
selected as the sensitive fault feature set. Finally, the sensitive
fault feature set is input into CNN for fault diagnosis.

5.4. Fault Recognition
The fault set composed of sensitive fault feature vectors se-
lected by ReliefF feature selection is input into the built CNN
model for training and disrupted for testing. 50 samples were
selected for each fault type, and a total of 450 samples were
tested. The motor bearing fault test results are shown in Fig-
ures 15 and 16, respectively. In order to show the accuracy
of this method, the accuracy of fault identification for collect-
ing transverse vibration signals in a single dimension is shown
in Figure 17. The fault recognition accuracy of the three-
dimensional vibration signal is shown in Figure 18.
According to the previous training set and test set, it can be

seen that the 315 samples of the training set are all accurate, and

the 135 samples of the test set have only one prediction error,
with an accuracy rate of 99%. The fault recognition accuracy of
only collecting single dimension transverse signal is only 89%,
and the fault recognition rate of three dimension signals is only
92%. After comparison, the fault recognition rate of themethod
of collecting three-dimensional vibration signals and selecting
sensitive fault feature vectors by ReliefF algorithm is higher
than that of the first two methods.

6. CONCLUSION
Aiming at the common faults of motor bearing: inner ring wear,
outer ring wear, and cage fracture, this paper proposes a fault
diagnosis method of motor bearing based on ReliefF feature se-
lection. Firstly, the vibration signals of transverse, radial and
axial dimensions are collected, and the collected vibration sig-
nals are decomposed by VMD, and the energy entropy of each
decomposed IMF is calculated as the feature vector. In order to
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improve the fault diagnosis rate, the ReliefF algorithm is used
to calculate the feature weight of the feature vector, eliminate
the feature vector with lower weight, and select the sensitive
feature vector. Finally, it is input into the built CNN model for
fault diagnosis output. In order to show the superiority of this
method, the three-dimensional vibration signals of only collect-
ing transverse vibration signals and not using ReliefF to screen
out sensitive feature vectors are classified for fault diagnosis.
The experimental results show that the correct rate of the test
set of the transverse vibration signal is only 89%, and the cor-
rect rate of the test set of the three-dimensional vibration signal
is slightly improved to 91%, while the correct rate of the sen-
sitive feature vector of the three-dimensional vibration signal
screened by ReliefF is greatly improved to 99%. This method
not only retains the important feature vector, but also eliminates
the influence of the irrelevant feature vector on the diagnosis re-
sult, which ensures the accuracy and shows the superiority of
this method.
In the subsequent research, it will limited to not only the type

of fault and the degree of load, but also the degree of fault di-
agnosis.
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