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ABSTRACT: A Negative Group Delay (NGD) prototype filter design based on the reciprocal transfer function of a low-pass Butterworth
filter of a given order, is presented. The out-of-band gain of the prototype transfer function is capped at a finite constant value via multi-
plication by a transfer function of a low-pass Butterworth filter with 3 dB bandwidth that is wider than the reciprocal function bandwidth.
Such synthesized transfer function exhibits maximal magnitude characteristic flatness within the 3 dB bandwidth (Butterworth-like prop-
erty), while it also exhibits NGD and satisfies Kramers-Kronig relations (causal transfer function). The prototype design achieves an
NGD-bandwidth product that in the upper asymptotic limit as the design order increases, is a linear function of out-of-band gain in
decibels. This is an improvement compared with previously reported cascaded first-order and second-order designs, which have NGD-
bandwidth functional dependency of out-of-band gain in decibels to the power of 1/2 and 3/4, respectively. It is shown that the transfer
function of the corresponding design transformed to a non-zero center frequency can be exactly implemented with a Sallen-Key topology
employing parallel resonators, or approximately implemented with an all-passive ladder topology. An in-bandmagnitude/phase distortion
metric is applied to the prototype designs, evaluated for Gaussian and sinc pulse input waveforms, and compared with values obtained
for a well-known commonly used medium. It is also shown that when the specified bandwidth corresponds to the entire bandwidth over
which the group delay characteristic is negative, the magnitude characteristic variation approximately equals half the out-of-band gain
value in decibels. Therefore, for any NGD design with large out-of-band gain (typically higher than 6 dB), using the entire bandwidth
where group delay is negative can result in strong levels of distortion and should be checked for applied waveforms.

1. INTRODUCTION

Negative group delay (NGD) phenomenon is observed in
media exhibiting anomalous dispersion within a finite fre-

quency bandwidth, and it is manifested via pulse waveform
reshaping where certain features of the pulse (such as peak)
at the medium output are time-advanced (negatively delayed)
compared to their corresponding temporal location at the in-
put. This phenomenon does not violate causality, since the on-
set of the waveform, or “front”, is always positively delayed
by such medium and does not exceed luminal velocity, as dis-
cussed in [1–3]. In the frequency domain, NGD phenomenon
is represented by a positive slope of the phase characteristic
over a finite frequency band. In addition to NGD, other exam-
ples of abnormal wave propagation phenomena include super-
luminal [4], backward wave propagation (negative refractive
index) [5], and simultaneous negative phase and group veloc-
ity [6].
The work in [7] presents a proof showing that within a fre-

quency band of abnormal propagation (such as NGD prop-
agation), the magnitude response of a causal medium has a
minimum, i.e., has an out-of-band gain, or equivalently the
center frequency has maximum signal attenuation (SA) for
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gain-uncompensated designs. This is a direct consequence of
Kramers-Kronig relations, which define magnitude and phase
characteristic dependency in causal media. The out-of-band
gain causes undesired amplification of transients associated
with the propagation of pulses of finite duration, which have
defined “turn on/off” points in time [8–11]. Such a transient re-
sponse will follow any points of discontinuity in the waveform
or any of its derivatives, not just the “turn on/off” times [12].
The out-of-band gain is proportional to the medium’s transient
amplitude response, and therefore, it is an undesired trade-off
quantity accompanying the NGD phenomenon, as discussed
and quantified for selected media in [8–11]. For a distributed
medium composed of cascaded identical 1st-order circuits at
baseband frequencies, or equivalently cascaded identical 2nd-
order single-tuned resonators at an upshifted frequency band,
the upper asymptotic limit of the NGD-bandwidth product was
shown to be proportional to the square root of the out-of-band
gain given in decibels [8]. Similarly, for an engineered causal
medium with a chosen flat in-band NGD characteristic (lin-
ear phase characteristic with a positive slope) and its magni-
tude characteristic obtained from such phase characteristic via
Kramers-Kronig relations, the same square-root of the decibel
out-of-band gain is derived for the upper asymptotic limit of the
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NGD-bandwidth product [9], just with a higher proportional
factor compared to [8]. For cascaded identical second-order
circuits at baseband frequencies, the NGD-bandwidth product
was shown to be proportional to the out-of-band gain given in
decibels raised to the power of 3/4 [10].
In this paper, as an extension of the work in [8, 9] with cas-

caded 1st-order, and in [10] with cascaded 2nd-order rational
functions, an NGD filter characterized by an N th-order ratio-
nal transfer function at baseband frequencies is presented. The
proposed design is based on a reciprocal-Butterworth low-pass
transfer function, where its out-of-band gain is capped at a fi-
nite constant value by a cascaded low-pass Butterworth filter
transfer function with the same order and a wider bandwidth.
This capping of the out-of-band gain makes the design feasi-
ble. It is shown that the transfer function of the corresponding
design upshifted to a non-zero center frequency, i.e., a Band-
Stop Filter (BSF) design with finite attenuation, can be exactly
implemented with a Sallen-Key topology employing parallel
resonators, or approximately implemented with an all-passive
ladder topology with series and parallel resonators. The pro-
totype design achieves an NGD-bandwidth product that in the
upper asymptotic limit as the design order approaches infinity
is a linear function of out-of-band gain in decibels, which is
an improvement compared to the power of 1/2 relationship for
designs presented in [8, 9] and the power of 3/4 for designs pre-
sented in [10].
An in-band magnitude/phase distortion metric based on the

approach in [13, 14] and modified as in [10] is applied to the
proposed design and for selected time-domain input wave-
forms. It is shown that if the distortion metric is to be kept
below a prescribed acceptable value, the bandwidth used for
waveform propagation must be reduced below the 3 dB cutoff
in some cases. Many NGD designs in the literature report the
entire bandwidth where the group delay is negative (typically
larger than 3 dB bandwidth), and the usefulness of such band-
width should be qualified since it may result in strong levels
of distortion of propagated waveforms. Different NGD circuit
designs, such as those reported in [8, 15–31], are commonly
compared for their achieved NGD-bandwidth product and the
associated trade-off quantity out-of-band gain (signal attenua-
tion for gain-uncompensated designs). Additionally, it would
be beneficial to check and compare such NGD designs for the
in-band magnitude/phase distortion discussed in this paper.

2. PROTOTYPE NGD FILTER BASED ON CAPPED
RECIPROCAL LOW PASS BUTTERWORTH FILTER
TRANSFER FUNCTION

NGD designs reported in [8, 9] are based on a 1st-order ratio-
nal transfer function at baseband frequencies, which, when be-
ing upshifted to a higher center frequency, yields a 2nd-order
rational transfer function tuned at that center frequency. Sim-
ilarly, the design reported in [10] is based on a 2nd-order ra-
tional transfer function at baseband frequencies, with complex
poles and zeros, so it cannot be factorized into the type of 1st-
order functions reported in [8, 9]. When such 2nd-order base-
band transfer function is upshifted to a higher center frequency,

it yields a product of two 2nd-order rational transfer functions
(overall 4th-order) tuned at two different frequencies such that
the center frequency is a geometric mean of the two tuned fre-
quencies [10].
The extension of the above approach to baseband designs

composed of 3rd, 4th, or higher orders of rational transfer func-
tions, which cannot be factorized into identical 1st and/or 2nd-
order transfer functions, is not straightforward. A different ap-
proach to formulate such described NGD-exhibiting rational
transfer function of any order is proposed here, based on a ra-
tio of two low-pass Butterworth filter transfer functions of the
same order, but with different bandwidths, and given by:

H (jω) = Hreciprocal-LP (jω) ·Hcapping-LP (jω)

=
1

HNth-LP-Buttw

(
j ω
ωc1

)
·HNth-LP-Buttw

(
j
ω

ωc2

)
. (1)

For NGD to exist around the center frequency, the 3 dB cut-off
frequency of the capping function needs to be larger than that of
the reciprocal function, ωc2 > ωc1. The different bandwidths
of the reciprocal and capping functions also ensure that poles
and zeros of the overall transfer function are different. The
novel design process is detailed in a patent application [32]. A
magnitude plot of a transfer function (1) example is illustrated
in Fig. 1, showing a finite out-of-band gain, A. The example
shows a gain-compensated design, but it can also be scaled to
represent a passive design (magnitude below 0 dB) without af-
fecting the group delay characteristic.
The overall capped reciprocal-Butterworth low-pass transfer

function design shown in Fig. 1 satisfies the requirement that an
NGD transfer function magnitude has a minimumwithin the in-
band region around the center frequency [7]. A transfer func-
tion having similar attributes was described by Ravelo [33], ex-
hibiting both NGD and finite out-of-band gain, for the 1st-order
baseband and 2nd-order bandpass cases.
The core term of the proposed design, which produces the

NGD in (1), is a reciprocal function of a Butterworth low pass
filter transfer function,HNth−LP−Buttw(jω/ωc1), with a 3 dB
cut-off frequency ωc1 (which is also approximately the 3 dB
cut-off frequency of the overall transfer function). This recip-
rocal function term alone would result in an infinite out-of-band
gain, or in its gain-uncompensated scaled version with 0 dB
gain maximum at out-of-band frequencies, it would result in
an infinite attenuation at the center frequency. Therefore, to
make the design practical and feasible, a “capping” of the out-
of-band gain is also needed to limit it to a finite value. As
given in (1), this can be achieved by multiplying the recipro-
cal transfer function with a low-pass Butterworth transfer func-
tion,HNth−LP−Buttw(jω/ωc2), with a larger 3 dB bandwidth,
ωc2 > ωc1. The capping function in (1) emerges as the de-
nominator polynomial since it corresponds to the classical low-
pass Butterworth filter. Therefore, the overall transfer function
has poles in the s = jω complex Left Half-Plane (LHP) and
is inherently stable. The larger bandwidth of the multiplying
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FIGURE 1. Example 5th-order capped reciprocal-Butterworth NGD baseband design, A = 100 (AdB = 40 dB), N = 5, ωc1 = 1, ωc2 = A1/N =
2.512.

capping function ensures that the in-band part of the reciprocal
function is not affected due to a near-flat magnitude response
of a low-pass Butterworth filter transfer function for frequen-
cies that are sufficiently below its cut-off frequency, ωc2. Fur-
ther, the capping function provides near-ideal cancellation of
the positive out-of-band slope of the reciprocal function past
frequencyωc2, since both functions are of the same Butterworth
filter type with the same order.
The proposed design transfer function expressions of base-

band design orderN are provided in (2a) and (2b) for even and
odd values, respectively:

HN−even (jω) =

N/2∏
k=1

(
ω2 − jgkω − 1(

ω
A1/N

)2 − jgk
ω

A1/N − 1

)

= A

N/2∏
k=1

(
ω2 − jgkω − 1

ω2 − jgkA1/Nω −A2/N

)
, (2a)

HN−odd (jω) = A
ω − j

ω − jA1/N

·
(N−1)/2∏

k=1

(
ω2−jgkω−1

ω2−jgkA1/Nω−A2/N

)
, (2b)

where the factorized functions’ parameter gk is the same as in
N th-order Butterworth low-pass filter:

gk = 2· sin
(
2k − 1

2N
π

)
. (2c)

It is evident that expressions (2a) and (2b) are normalized to the
reciprocal function cut-off frequency, i.e., ωc1 = 1, and that the
capping function cut-off frequency is related to the out-of-band
gain as ωc2/ωc1 = A1/N .

The proposed capped reciprocal-Butterworth filter transfer
function design is different from the design reported in [25],
where a Butterworth-like filter transfer function response (flat
magnitude characteristic) is present in the out-of-band region,
but not in the in-band region around the center frequency where
NGD is exhibited. From expressions (2a)–(2c), transfer func-
tions for the first five orders of the proposed design, and for
given out-of-band gain A, are given by:

H1 (jω) = A

(
ω − j

ω − jA

)
, (3a)

H2 (jω) = A
ω2 − j

√
2ω − 1

ω2 − j
√
2
√
Aω −A

, (3b)

H3 (jω) = A

(
ω−j

ω−jA1/3

)
·
(

ω2−jω−1

ω2−jA1/3ω−A2/3

)
, (3c)

H4 (jω) = A

(
ω2 − j2 sin

(
π
8

)
ω − 1

ω2 − j2 sin
(
π
8

)
A1/4ω −A2/4

)

·

(
ω2 − j2 sin

(
3π
8

)
ω − 1

ω2 − j2 sin
(
3π
8

)
A1/4ω −A2/4

)
, (3d)

H5 (jω) = A

(
ω − j

ω − jA1/5

)

·

(
ω2 − j2 sin

(
π
10

)
ω − 1

ω2 − j2 sin
(

π
10

)
A1/5ω −A2/5

)

·

(
ω2 − j2 sin

(
3π
10

)
ω − 1

ω2 − j2 sin
(
3π
10

)
A1/5ω −A2/5

)
. (3e)

It can be noted that 1st-order design transfer function (3a) cor-
responds to the design reported in [8, 9], whereas (3b) corre-
sponds to the 2nd-order design reported in [10]. These previ-
ously reported 1st and 2nd-order designs were formulated via
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FIGURE 2. Proposed baseband transfer function NGD design with out-of-band gain A = 100 (40 dB) and N = 1, 2, 3, 4 order, (a) magnitude and
(b) group delay.
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FIGURE 3. Proposed baseband transfer function NGD design of N = 3rd-order and with out-of-band gains A = 10 dB, 20 dB, 30 dB, 40 dB, (a)
magnitude and (b) group delay plots.

approaches different from the one presented here but yielded
the same transfer functions. Further, the 2nd-order approach
reported in [10] would prove challenging to extend to higher
orders, whereas the approach presented here yields explicit ex-
pressions (2a)–(2c) that can be easily applied to any order.
Expressions (2a)–(2b) and correspondingly (3a)–(3e) can

also be divided by the out-of-band gain A, to represent
their scaled (−AdB offset on dB magnitude plot), gain-
uncompensated versions with center frequency magnitude
attenuation 1/A (−AdB), and their out-of-band magnitude
characteristic always less than 1 (below 0 dB). Magnitude plots
are shown in Fig. 2(a) for several different design orders, and
in Fig. 3(a) for several different out-of-band gains (relative to
center frequency attenuations). Corresponding group delay
plots are shown in Figs. 2(b) and 3(b), which are the same for
gain-uncompensated (center frequency attenuation 1/A) and

gain-compensated scaled versions (center frequency transfer
function magnitude of 1, or 0 dB) of the transfer functions.
From Fig. 2(b), for designs of order N > 1 it is noted that

as frequency increases from the center frequency, the group de-
lay characteristic has a negative slope at first before a slope re-
versal close to the 3 dB band edge. In contrast, the 1st-order
design group delay characteristic has a minimum at the cen-
ter frequency, and it monotonically increases to the 3 dB band
edge.
A general form of the 1st-order factorized rational functions

appearing in the proposed baseband design odd-order transfer
functions (2b), their corresponding phase and group delay char-
acteristics, and their center frequency NGD are, respectively,
given by:

H1st (jω)=
ω − j∆ω1

ω − j∆ω2
, (4a)
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φ1st (ω)= tan−1

(
−∆ω1

ω

)
− tan−1

(
−∆ω2

ω

)
, (4b)

τ1st (ω)=−dφ1st (ω)

dω
=− ∆ω1

ω2+∆ω2
1

+
∆ω2

ω2+∆ω2
2

, (4c)

τ1st (0)=− 1

∆ω1
+

1

∆ω2
= −

(
1− 1

A1/N

)
. (4d)

Similarly, a general form of the 2nd-order factorized rational
functions appearing in the proposed baseband design transfer
functions (2a) and (2b) for any order N ≥ 2, their correspond-
ing phase and group delay characteristics, and their center fre-
quency NGD are, respectively, given by:

H2nd (jω) =
ω2 − j∆ω1ω − ω2

01

ω2 − j∆ω2ω − ω2
02

, (5a)

φ2nd (ω) = tan−1

(
−∆ω1ω

ω2 − ω2
01

)
−tan−1

(
−∆ω2ω

ω2 − ω2
02

)
, (5b)

τ2nd (ω) = −dφ2nd (ω)

dω

=
−∆ω1

(
ω2 + ω2

01

)
(ω2 − ω2

01)
2
+∆ω2

1ω
2

+
∆ω2

(
ω2 + ω2

02

)
(ω2 − ω2

02)
2
+∆ω2

2ω
2
, (5c)

τ2nd (0) = −∆ω1

ω2
01

+
∆ω2

ω2
02

= −gk

(
1− 1

A1/N

)
(5d)

The numerators of the proposed design rational transfer func-
tions (2a)–(2b), and therefore numerators of the example func-
tions (3a)–(3e), correspond to the uncapped reciprocal low-pass
Butterworth filter transfer functions resulting in their 3 dB cut-
off frequency being exactly at the normalized base frequency,
ωc1 = 1. The denominators, however, which are needed for
magnitude characteristic capping, effectively increase the over-
all transfer function 3 dB cut-off frequency above the normal-
ized ωc1 = 1 frequency. To correct this cut-off frequency
drift, a frequency correction factor can be applied by replac-
ing ω by ω/Cω−3 dB, in allH(jω), ϕ(ω), and τ(ω) expressions
presented so far, with the correction factor given by:

Cω−3 dB =

(
1− 2

A2

) 1
2N

. (6)

For example, if A = 100 (40 dB) then the correction factor for
order N = 1 yields Cω−3 dB = 0.9999, and for higher orders
even closer to 1.0, which renders the correction factor negligi-
ble for this relatively high value of out-of-band gain. A lower
out-of-band gain of A = 3.1623 (10 dB) for example, yields
Cω−3 dB = 0.8944, 0.9457, 0.9635 for N = 1, 2, 3, respec-
tively, and it needs to be considered.
In addition to replacing ω by ω/Cω−3 dB, group delay τ

(ω) expressions need to be divided by Cω−3 dB as well, since
those are obtained as a derivative of the phase characteristic.

With this in mind and considering that the products of 1st and
2nd-order factorized functions in (2a) and (2b) translate into a
sum of group delay characteristics of those factorized functions
given by (4c) and (5c), the 3 dB bandwidth corrected center fre-
quency NGD values for even and odd orders are respectively
given by:

τeven (0)=− 1

Cω−3 dB

N/2∑
k=1

gk

[
1− 1

A1/N

]

=− 2

Cω−3 dB

(
1− 1

A1/N

)N/2∑
k=1

sin
(
2k−1

2N
π

)
, (7a)

τodd (0) = − 1

Cω−3 dB

(
1− 1

A1/N

)
1 + 2 ·

(N−1)/2∑
k=1

sin
(
2k − 1

2N
π

) . (7b)

In Fig. (2b) examples with A = 100 (40 dB), expressions
(7a) and (7b) yield center frequency NGD values, NGD =
−τ(0) = 0.9901 s, 1.2729 s, 1.5692 s, 1.7868 s for N = 1,
2, 3, 4, respectively. Keeping in mind that the 3 dB band-
width corrected cut-off frequency is ωc1 = 1, Fig. (2b) cen-
ter frequency values yield NGD-bandwidth product values of
NGD·∆f = NGD · ωc1/π = 0.3152, 0.4052, 0.4995, 0.5688
for N = 1, 2, 3, 4, respectively. Similarly, Fig. (3b) values
for 3rd-order designs yield center frequency NGD values of
0.6616s, 1.0753 s, 1.3680 s, 1.5692 s or NGD-bandwidth prod-
uct values of NGD·∆f = 0.2106, 0.3423, 0.4354, 0.4995, for
AdB = 10 dB, 20 dB, 30 dB, 40 dB, respectively.

3. BASEBAND NGD FILTER TRANSLATION TO BAND-
STOP-FILTER (BSF)
To shift an NGD-exhibiting baseband transfer function to its
BSF equivalent (with a finite band-stop attenuation), centered
at a non-zero center frequency ω0, the same frequency transfor-
mation that transforms a low-pass filter to its bandpass equiva-
lent is applied [10]:

ω → 1

2

(
ω − ω2

0

ω

)
, (8)

where both ω and ω0 are normalized to the baseband 3 dB cut-
off frequency ωc1. For the 2nd-order baseband transfer func-
tion form that is a part of any odd or even N th-order (given
N > 1) reciprocal-Butterworth transfer function presented in
this paper, given by expressions (2a), (2b), application of the
frequency transformation given by expression (8) yields the fol-
lowing baseband/BSF pair of transfer functions:

HBB2 (jω)=
ω2 − j∆ω1ω − ω2

01

ω2 − j∆ω2ω − ω2
02

, (9a)

HBSF2(jω)=

(
ω2−j∆ω1pω−ω2

01p

ω2−j∆ω2pω−ω2
02p

)
·
(
ω2−j∆ω3pω−ω2

03p

ω2−j∆ω4pω−ω2
04p

)
. (9b)
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FIGURE 4. Example 3rd-order proposed baseband transfer function (a) magnitude and (b) group delay responses translated to ω0 = 10ωc = 10
center frequency and compared with corresponding translated ideal baseband responses.

The eight frequency parameters in expression (9b) can be calcu-
lated from the four baseband parameters appearing in (9a), via
explicit expressions reported in [10]. For referencing purposes
in subsequent sections in this paper, a few selected relationships
between parameters in (9b) are [10]:

ω03p =
ω2
0

ω01p
, ∆ω3p =

ω2
0

ω2
01p

∆ω1p =
ω03p

ω01p
∆ω1p. (10)

From expressions (10) it is noted that the upshifted design cen-
ter frequency ω0 is a geometric mean of the two 2nd-order ra-
tional transfer functions numerator’s tuned frequencies, ω01p

and ω03p. Further, the quality factors, or the tuned frequency
to bandwidth ratios, are the same for the two functions numera-
tors, ω01p/∆ω1p = ω03p/∆ω3p. A variation of expressions (10)
applies to the corresponding denominator parameters, where in-
dices 1 and 3 are replaced by 2 and 4, respectively.
For a 1st-order NGD baseband transfer function that is a

part of any oddN th-order reciprocal-Butterworth transfer func-
tion presented in this paper, application of the frequency trans-
formation given by expression (8) yields the following base-
band/BSF pair of transfer functions:

HBB1 (jω) =
ω − j∆ω5

ω − j∆ω6
, (11)

HBSF1 (jω) =
ω2 − j∆ω5pω − ω2

0

ω2 − j∆ω6pω − ω2
0

, (12)

where ∆ω5p = 2∆ω5 and ∆ω6p = 2∆ω6. The transfer func-
tion given by (12) is of the same form reported in [8, 9]; how-
ever, in this paper it is only a part of the overall transfer func-
tion.
As an example, consider a 3rd-order reciprocal-Butterworth

baseband transfer function exhibiting NGD given by (3c), with
out-of-band gain A = 100, or 40 dB (ω and all parameters
are normalized to ωc = 1, with the 3 dB correction factor

Cω−3 dB = (1− 2/1002)1/6 ≈ 1.0 in this case):

HBB3 (jω) =
ω−j

ω−j1001/3

(
ω2−jω − 1

ω2−j1001/3ω−1002/3

)
. (13)

Employing expression (8), after factorization the frequency up-
shift to ω0 = 10ωc = 10 chosen in this example, yields:

HBSF3 (jω) =
ω2 − j2ω − 102

ω2 − j9.2832ω − 102

·
(
ω2 − j1.0864ω − 10.90642

ω2 − j6.4081ω − 14.92942

)

·
(
ω2 − j0.9136ω − 9.17042

ω2 − j2.875ω − 6.69822

)
. (14)

The plot in Fig. 4 depicts magnitude and group delay character-
istics of the transfer function (14), with overall out-of-band gain
A = 40 dB and normalized bandwidth∆ω = 2ωc = 2. A close
in-band match is observed compared with the translated ideal
baseband responses (expression (13) with ω → ω − ω0). This
transfer function achieves a center frequency NGD of 1.5692 s,
or an NGD-bandwidth product of NGD ·∆f = NGD ·ωc/π =
0.4995 (the same as baseband one, as in Fig. 2(b).
Note that the factorized 2nd-order baseband rational transfer

function term from expression (13) yields two 2nd-order terms
when being translated to its non-zero center frequency equiv-
alent (14). These have numerators with resonant frequencies
(10.9064 and 9.1704) which differ from the corresponding de-
nominators resonant frequencies (14.9294 and 6.6982). It is
only the products of the resonant frequencies in the numerator
and the denominator that are the same (10.9064 × 9.1704 =
14.9294 × 6.6982 = ω2

0 = 100), as noted from the geometric
mean property in (10), and required in order to yieldH(0) = 1
(out-of-band gain H(ω → ∞)/H(ω0) = H(0)/H(ω0) =
1/(1/A) = A). This difference in numerators’ and denomi-
nators’ resonant frequency values is the reason that the transfer
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function (14) cannot be realized exactly via buffered passive
resonators. However, a particular version of the Sallen-Key
topology, presented next, has been found as able to achieve
such a transfer function.

4. EXACT IMPLEMENTATION WITH SALLEN-KEY
TOPOLOGY
A Sallen-Key topology with a cascaded resonator at the out-
put, as depicted in Fig. 5 schematic, can achieve the 3rd-order
reciprocal-Butterworth baseband transfer function translated to
higher center frequency ω0, such as one given by expression
(14). This design is similar to the well-known low-pass Sallen-
Key design that has capacitors in place of RF and RG resis-
tors in Fig. 5, and resistors in place of Z1 and Z2, and with
no additional resonator after the output of the op-amp. Cas-
caded versions of the topology in Fig. 5 can achieve higher or-
der reciprocal-Butterworth designs. The corresponding trans-
fer function of the topology in Fig. 5 (Vin is assumed to be an
ideal/buffered source, and Vout is assumed to be terminated in
system impedance Z0), and its input impedance (disregarding
the optional input impedance matching resistor,Rm, which can
be used with a non-ideal/non-buffered source) are given by, re-
spectively:

H (jω)=
Vout

Vin

=
RG ·RF

RG ·RF +Z1 ·Z2+RF ·(Z1 + Z2)
· Z0

Z0+Z3
, (15)

Zin =
RG ·RF + Z1 · Z2 +RF · (Z1 + Z2)

RF + Z2
. (16)

FIGURE 5. Sallen-Key topology that can be used to achieve an ex-
act 3rd-order capped reciprocal-Butterworth baseband NGD transfer
function translated to a higher center frequency ω0 (BSF).

Expression (14), associated with translating a 3rd-order
reciprocal-Butterworth baseband function with out-of-band
gainA = 100 (40 dB) and 3 dB cut-off frequency ωc to a higher
center frequency ω0 = 10ωc, is used as an implementation
example for the topology in Fig. 5. Parameters of transfer
function (14) are summarized as:

ω01p = 10.9046ωc, ∆ω1p = 1.0864ωc,

ω03p = 9.1704ωc, ∆ω3p = 0.9136ωc, (17a)
ω02p = 14.9294ωc, ∆ω2p = 6.4081ωc,

ω04p = 6.6982ωc, ∆ω4p = 2.875ωc, (17b)

ω0=10ωc, ∆ω5p=2ωc, ∆ω6p=2A1/3ωc = 9.2832ωc. (17c)

The component values of the design in Fig. 5 are obtained by
equating the Sallen-Key transfer function (15), with the BSF
transfer function (14) and its parameters given by (17a)–(17c).
The design component values calculation is demonstrated for a
chosen center frequency design at f0 = 10fc = 500MHz, thus
yielding a bandwidth of ∆f = 2fc = 100MHz (20%) in this
example. First, a desired input impedance at center frequency is
chosen, in this example Zin ≈ 10Z0 = 500Ω, such that load-
ing effects are relatively small when a non-buffered source is
used (or, if a shunt resistorRm from Fig. 5 is used to match the
design closer to a non-buffered source impedanceZ0 within the
bandwidth). HavingZin ≫ Z0 ensures that the desired transfer
function will not be affected considerably. Circuit component
values are then calculated as:

R1 ≈ Zin = 500Ω, C1 =
1

∆ω1pR1
= 5.86 pF,

L1 =
1

ω2
01pC1

= 14.541 nH, (18a)

R2 = R1 = 500Ω, C2 =
1

∆ω3pR2
= 6.968 pF,

L2 =
1

ω2
03pC2

= 17.29 nH, (18b)

RG =
1/C1 + 1/C2

∆ω2p +∆ω4p −∆ω1p −∆ω3p
= 137.3Ω, (18c)

RF =

1(
ω2
02p+ω

2
04p+∆ω2p∆ω4p−ω2

01p−ω2
03p−∆ω1p∆ω3p

)
RGC1C2− 2

R2
1

= 24.11Ω, (18d)

R3 = Z0

(
A

1
3 − 1

)
= 182.08Ω,

C3 =
1

∆ω5pR3
= 8.741 pF,

L3 =
1

ω2
0C3

= 11.592 nH. (18e)

Sallen-Key topology component value calculations given by
expressions (18a)–(18d) are associated with the 2nd-order term
of the overall 3rd-order baseband function given by (13), as it
translates to the corresponding two terms in the design around
center frequency f0 = 500MHz, as given by (14). Expres-
sions (18a)–(18d) are discussed in more detail in [10]. Tuned
frequencies of the two resonators at the op-amp input of the
topology in Fig. 5, in this case, are f01p = 10.9046fc =
545.23MHz, and f03p = 9.1704fc = 458.52MHz, as given
by (17a). The remaining 1st-order term in (13), and its corre-
sponding term in the design around the higher center frequency
given by (14), is implemented with a resonator at the op-amp
output in Fig. 5. This resonator is tuned at the overall design
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FIGURE 6. Transmission coefficient (a) and group delay (b) of the ideal source (buffered) driven Sallen-Key design, and of the shunt resistor matched
design driven by a 50Ω source.

center frequency f0 = 500MHz, and the component values are
calculated by (18e).
Transfer function magnitude and group delay responses of

the topology depicted in Fig. 5 are shown in Fig. 6, for a de-
sign driven by an ideal/buffered source, as well as the 50Ω-
source driven design with a shunt matching resistor Rm. Due
to the relatively high values of the Z1 and Z2 resonator’s re-
sistors chosen (10Z0 = 500Ω), resistive match via a shunt
resistor (Rm = 55.56Ω used in this example matches R1

to Z0, where R1 approximates the input impedance at ω01p,
where it is purely real) yields an in-band match close to the
ideal source circuit, as expected and shown in Fig. 6. For the
buffered and resistor-matched designs, the 3 dB bandwidths are
552.5 − 452.5 = 100MHz and 552.4 − 451.2 = 101.2MHz,
and the center frequency NGD values are 4.99 ns and 4.73 ns.
The resultingNGD-bandwidth products are 0.4995 (the same as
in Fig. 4(b)) and 0.4787, respectively. This 5% drop in NGD (or
a smaller, 4% drop in NGD-bandwidth product due to increased
bandwidth) is attributed to a smaller out-of-band gain of the
resistor-matched design due to its transfer function magnitude
of roughly−1 dB at the out-of-band extremes as compared with
0 dB of the buffered design. Further, maximum group delay
variations over the 3 dB bandwidth relative to center frequency
NGD are 60.44% and 63.65%, for the buffered and resistor-
matched designs, respectively. As a comparison, a 1st-order
low pass Butterworth filter has a 50% group delay variation
within 3 dB bandwidth, relative to its center frequency positive
group delay. A combined in-band amplitude/phase distortion
metric is discussed in more detail in Section 9 and applied to
selected time-domain waveforms propagation through the pro-
posed design.
Sensitivity analysis for a 1% change in the component val-

ues of the circuit in Fig. 5 was conducted, yielding the worst-
case deviation of 2.6% in the center frequency, 4.5% in the
maximum attenuation, and 14% in the center frequency NGD.
Additionally, it should be noted that as design frequency is

decreased, both the inductor and capacitor values increase in-
versely proportional with frequency and may become challeng-
ing for implementation below a certain design frequency. A de-
sign at the same 500MHz center frequency and 100MHz band-
width, involving an op-amp and a single resonator (compared to
3 resonators in Fig. 5) was fabricated [8]. The design presented
here is mostly intended as a proof-of-concept implementation
of the proposed transfer function.

4.1. Sallen-Key Implementation of the 5th-Order Baseband De-
sign Translated to Higher Center Frequency

A 5th-order reciprocal-Butterworth baseband design given by
expression (3e) and scaled by 1/A, after it is translated to a
higher center frequency design by applying (8) can be imple-
mented by a cascaded Sallen-Key topology shown in Fig. 7.
Similar transfer function factorization as the one given by (14)
for the 3rd-order baseband design upshifted to a higher center
frequency can be conducted for the upshifted 5th-order base-
band design analyzed here, resulting in two additional 2nd-
order rational factors. The numerators of the two additional
factors are tuned at frequencies ω05p and ω07p around the cen-
ter frequency ω0 and need an additional Sallen-Key stage com-
pared to the upshifted 3rd-order design, as labeled in Fig. 7.
Applying expressions (18a)–(18d) yields the following com-

ponent values for the first Sallen-Key circuit in Fig. 7: R1 =
500Ω, C1 = 9.409 pF, L1 = 8.905 nH, R2 = 500Ω,
C2 = 11.379 pF, L2 = 10.767 nH, RG1 = 330.7Ω, RF1 =
14.24Ω. Similarly, applying expressions equivalent to (18a)–
(18d), where ω01p and ω03p are replaced by ω05p and ω07p,
respectively, and so on, yields the following component val-
ues for the second Sallen-Key circuit in Fig. 7: R3 = 500Ω,
C3 = 3.716 pF, L3 = 24.236 nH,R4 = 500Ω, C4 = 4.181 pF,
L4 = 27.264 nH, RG2 = 330.7Ω, RF2 = 147.7Ω. Fi-
nally, applying expressions equivalent to (18e) yields the fol-
lowing component values for the output resonator in Fig. 7:
R5 = 75.59Ω, C5 = 21.054 pF, L5 = 4.813 nH.
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FIGURE 7. Sallen-Key cascaded topology that can be used to achieve an exact 5th-order capped reciprocal-Butterworth baseband NGD transfer
function translated to a higher center frequency ω0 (BSF).
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FIGURE 8. Transmission coefficient (a) and group delay (b) of the ideal source (buffered) driven Sallen-Key design, and of the shunt resistor matched
design driven by a 50Ω source.

Transfer function magnitude and group delay responses of
the topology depicted in Fig. 7 are shown in Fig. 8, for a design
driven by an ideal/buffered source as well as the 50Ω-source
driven design with a shunt matching resistor Rm. The cen-
ter frequency NGD values shown in Fig. 8(b) for the 5th-order
buffered and 50Ω-source driven design are 6.2 ns and 5.82 ns,
respectively (an improvement from the 3rd-order design values
of 4.99 ns and 4.73 ns, respectively, shown in Fig. 6(b) for the
same out-of-band gain and bandwidth).

5. APPROXIMATE IMPLEMENTATIONWITH PASSIVE
LADDER CIRCUIT TOPOLOGY

As discussed in the previous section, a Sallen-Key topology can
achieve the exact upshifted frequency design transfer function,
such as the one given by expression (14). An attempt to pro-
vide gain-compensation via the same op-amps in Figs. 5 and
7 (by adding two resistors of a certain ratio at the negative in-
put terminal, one to the ground and one to the output terminal
replacing the shorted connection) would result in a consider-
able distortion of the original transfer function. Therefore, the
presented Sallen-Key designs have an attenuation at the center
frequency just like a purely passive network would have.

FIGURE 9. Three-resonator π-circuit ladder topology that can achieve
an approximate 3rd-order baseband capped reciprocal-Butterworth
NGD transfer function translated to a higher center frequency ω0

(BSF).

Alternatively, all-passive topologies involving resonators
(parallel resonators connected in series, and/or series res-
onators connected in shunt) can potentially achieve relatively
good match to the exact transfer function, such as the one given
by (14). Fig. 9 illustrates a three-resonator π-circuit, which can
achieve an approximate implementation of the transfer func-
tion given by (14). This circuit can also be transformed into
its T-circuit equivalent, such that series resonators connected
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in shunt would be replaced by parallel resonators connected
in series, and vice versa. The relationship between equivalent
series and parallel resonators components can be derived as:
Rp = Z2

0/Rs, Lp = Z2
0 · Cs, and Cp = Ls/Z

2
0 , which also

yields Zp(ω) = Z2
0/Zs(ω).

The transfer function of the design shown in Fig. 9, assuming
that it is driven by a Z0-impedance source and terminated in a
Z0-impedance load, is given by:

H (jω) =
Vout

Vin

=
2

(1+Z2/Z0+Z2/Z3) · (1+Z0/Z1)+(1+Z0/Z3)
. (19)

After expanding transfer function (19) impedances into their
frequency dependent components, it can be shown that it
becomes a 6th-order rational transfer function of frequency.
When (19) is factorized into three 2nd-order product terms, it
becomes clear that the numerator can be matched exactly to
the transfer function (14), by selecting the three resonators’
center frequencies to match the corresponding ones in (14), as
labeled in Fig. 9. Further, for the numerators of expressions
(14) and (19) to match, the three resonators’ bandwidths also
need to be matched to the corresponding ones in (14), as:
∆ω1p = R1/L1, ∆ω5p = 1/(R2C2), and ∆ω3p = R3/L3.
The matched numerator parameter values between (14) and
(19) are:

ω01p = ω01π = 10.9046ωc,

∆ω1p = ∆ω1π = 1.0864ωc,

ω03p = ω03π = 9.1704ωc,

∆ω3p = ∆ω3π = 0.9136ωc,

ω05p = ω05π = ω0 = 10ωc,

ω5p = ∆ω5π = 2ωc.

(20)

With the transfer function numerator matching of (14) and (19)
in mind, the remaining degrees of freedom in Fig. 9 topology
are the three resonators resistor values. Further, it can be shown
that to satisfy the transfer function value requirement at the cen-
ter frequency H(jω0) = 1/A, a purely real number, shunt
impedancesZ1 and Z3 need to have their imaginary parts equal
in magnitude and opposite in sign, at ω0. This is only possible
if R3 = R1, as shown below by employing expressions (10),
and as labeled accordingly in Fig. 9:

X1 = −Im {Z1 (ω0)} =
1

ω0C1
− ω0L1

=

(
ω2
01p

ω0
− ω0

)
R1

∆ω1p
, (21a)

X3 = Im {Z3 (ω0)} =

(
ω0 −

ω2
03p

ω0

)
R3

∆ω3p

= =

(
ω0 −

ω3
0

ω2
01p

)
ω2
01p

ω2
0

R1

∆ω1p
= X1. (21b)

Further, for the transfer function attenuation at the center fre-
quency to be exactly H(jω0) = 1/A, it can be derived that
the middle resonator resistance is not independent, and instead
given by:

R2 = 2
(A− 1)

(
R2

1 +X2
1

)
− Z0R1

(R2
1 +X2

1 )
/
Z0 − 2R1 + Z0

(22)

From (22), the only degree of freedom is the shunt resonators’
resistance valueR1, given the match of the numerator of (19) to
the numerator of the capped reciprocal-ButterworthNGD trans-
fer function (14), and given required center frequency attenua-
tion of 1/A.
As depicted in Fig. 10, varying the only degree of freedom

value, R1, does not result in a single value that yields an ex-
act simultaneous match of all denominator parameters of the
π-circuit transfer function (19) to those of the exact transfer
function (14).

FIGURE 10. Ratios of π-circuit transfer function denominator param-
eters to the ratios to corresponding parameters of an exact capped
reciprocal-Butterworth transfer function, as a function of resistor value
R1.

Since the exact transfer function match is not possible with
this topology, an additional optimization criterion is needed to
ensure a good in-band transfer function match. Since a charac-
teristic of Butterworth filters has magnitude response flatness
within a frequency band of interest, that feature is selected here
to determine the optimal valueR1. Thus, by selecting the mag-
nitude response curvature, or 2nd derivative, closest to zero
at the center frequency, an optimal value R1 = 5.2468Ω is
obtained in this example, as also labeled by a vertical line in
Fig. 10 (a reasonable initial guess value for R1 corresponds to
a single shunt resonator design which would have a center fre-
quency attenuation of 1/A1/3, i.e.,R1−initial = Z0/(2(A

1/3−
1)) = 6.865Ω). The center-frequency-flatness optimized π-
circuit transfer function yields the following denominator pa-
rameters of transfer function (19), as compared to the exact ones
in (14):

ω02π = 14.3763ωc, ∆ω2π = 6.7119ωc,

ω04π = 6.9559ωc, ∆ω4π = 3.2475ωc, (23a)
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FIGURE 11. Transmission coefficient (a) and group delay (b) of the exact capped reciprocal-Butterworth 3rd-order design upshifted to a higher center
frequency, and of the π-circuit all-passive design.

ω02p = 14.9294ωc, ∆ω2p = 6.4081ωc,

ω04p = 6.6982ωc, ∆ω4p = 2.875ωc, (23b)
∆ω6π = 10.408ωc, ∆ω6p = 9.2832ωc,

ω06π = ω06p = ω0 = 10ωc. (23c)

Substituting the optimized R1 = 5.2468Ω value into ex-
pressions (21a) and (22) yields X1 = 9.133Ω and R2 =
341.8909Ω, respectively. All component values, correspond-
ing to the design in Fig. 9 in this example with A = 100,
f0 = 500MHz, fc = 50MHz, are:

R1 = 5.2468Ω, L1 =
1

∆ω1pR1
= 15.373 nH,

C1 =
1

ω2
01pL1

= 5.5428 pF, (24a)

R3 = 5.2468Ω, L3 =
1

∆ω3pR3
= 18.281 nH,

C3 =
1

ω2
03pL3

= 6.5908 pF, (24b)

R2 = 341.8909Ω, C2 =
1

2ωcR2
= 4.6551 pF,

L2 =
1

ω2
0C2

= 21.765 nH. (24c)

Transfer function magnitude and group delay responses of
the topology depicted in Fig. 9 are shown in Fig. 11. The center
frequency NGD values shown in Fig. 11(b) for the 3rd-order
exact and π-circuit designs are 4.99 ns and 4.93 ns, respectively.
Therefore, the three-resonator π-circuit shows an even better
match to the exact transfer function, compared to a non-ideal
source driven Sallen-Key topology (which has center frequency
NGD of 4.73 ns, as per Fig. 6(b)). Sensitivity for a 1% change
in the component values of the all-passive circuit in Fig. 9 is

very similar to that of the Sallen-Key design in Fig. 5 (worst-
case deviation of 14.4% in the center frequency NGD). As a
comparison, a classical Butterworth bandpass ladder design of
the same order, center frequency, and bandwidth would have
a worst-case 2.4% deviation of the center frequency (positive)
group delay.

5.1. Ladder Implementation of the 5th-Order Baseband Design
Translated to a Higher Center Frequency

A 5th-order capped reciprocal-Butterworth baseband design
translated to a higher center frequency can be approximately
implemented by an all-passive five-resonator ladder topology
shown in Fig. 12. Following similar derivations to those as-
sociated with the three-resonator π-circuit design, it can be
shown that to match the numerator of the exact 5th-order trans-
fer function upshifted to higher center frequency, the resonators
in Fig. 12 need to have their center frequencies and bandwidths
matched to those detailed in Subsection 4.1 for the Sallen-Key
design. Further, for the center frequency attenuation to be ex-
actly 1/A, it can be shown via derivations similar to (21a)–(21b)
thatR5 = R1 andR4 = R2 conditions need to bemet, which in
turn yield center frequency complex conjugate impedance val-
ues of corresponding resonators, as labeled in Fig. 12. There-
fore, the two degrees of freedom are resistorsR1 andR2, which
after applying the optimization for the maximummagnitude re-
sponse flatness at the center frequency, yield optimized values
R1 = R5 = 6.69Ω and R2 = R4 = 162.92Ω (reasonable ini-
tial guess values forR1 andR2 correspond to a single resonator
shunt and series design, respectively, each having a center fre-
quency attenuation of 1/A1/5, i.e.,R1−initial = Z0/(2(A

1/5−
1)) = 16.54Ω andR2−initial = Z0 ·2(A1/5−1) = 151.19Ω).

Further, for the transfer function attenuation at the center
frequency to be exactly H(jω0) = 1/A, it can be shown
that the middle resonator resistance can be calculated from the
other resonators’ parameters, yielding R3 = 16.72Ω. With
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FIGURE 12. Five-resonator ladder topology that can be used to achieve an approximate 5th-order baseband capped reciprocal-Butterworth NGD
transfer function translated to a higher center frequency ω0 (BSF).
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FIGURE 13. Transmission coefficient (a) and group delay (b) of the exact capped reciprocal-Butterworth 5th-order design upshifted to a higher center
frequency, and of the all-passive five-resonator ladder design.

all five resonators’ resistances determined, expressions similar
to (24a)–(24c) can be used to calculate the remaining compo-
nents values from Fig. 12: C1 = 2.662 pF, L1 = 31.473 nH,
C2 = 11.404 pF, L2 = 7.897 nH, C3 = 3.808 pF, L3 =
26.611 nH, C4 = 12.83 pF, L4 = 8.885 nH, C5 = 3.219 pF,
L5 = 38.061 nH.
Transfer function magnitude and group delay responses of

the topology depicted in Fig. 12 and those of the exact capped
reciprocal-Butterworth 5th-order design upshifted to a higher
center frequency are shown in Fig. 13. The center frequency
NGD values shown in Fig. 13(b) for the 5th-order exact
reciprocal-Butterworth transfer function and the five-resonator
design from Fig. 12 are 6.2 ns and 5.69 ns, respectively.

6. NGD-BANDWIDTH PRODUCT ASYMPTOTIC LIMIT
OF AN Nth-ORDER RECIPROCAL-BUTTERWORTH DE-
SIGN

Similar to the design with cascaded 1st-order stages [8, 9],
or 2nd-order stages [10], it is useful to express the NGD-

bandwidth product of the N th-order capped reciprocal-
Butterworth design presented here as a function of the
out-of-band gain trade-off quantity. As discussed in [8–10],
in addition to causing a center frequency attenuation for a
passive design, the out-of-band gain in the frequency domain is
directly proportional to the magnitude of undesired transients
in the time domain, when waveforms/pulses with defined
turn-on/off instances (associated with signal modulation
during information transmission) are propagated.
Due to symmetry in the sine function around π/2, center fre-

quency NGD expressions (7a) and (7b) for even or odd orders
of the baseband capped reciprocal-Butterworth design, respec-
tively, can be expressed via a single expression for any order
N , as:

NGD ·∆f = −τ (0) · 2ωc

2π
=

1

π

1

Cω−3 dB

(
1− 1

A1/N

) N∑
k=1

sin
(
2k − 1

2N
π

)
, (25)
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gain.

where the 3 dB bandwidth correction factorCω−3 dB is given by
(6). The NGD-bandwidth product for several N th-order base-
band capped reciprocal-Butterworth designs, as a function of
out-of-band gain, is plotted in Fig. 14 based on expression (25).
For each finite order N , NGD-bandwidth product has an up-
per limit as out-of-band gain approaches infinity (as A → ∞,
Cω−3 dB and 1 − 1/A1/N both approach 1.0, and (25) yields
upper limits of 1/π ≈ 0.3183,

√
2/π ≈ 0.4502, 2/π ≈ 0.6366,

for N = 1, 2, 3, respectively, and so on).
Alternatively, for high values of order N , it is beneficial to

rewrite the sum in expression (25) in this form:

S (N) =

N∑
k=1

sin
(
2k − 1

2N
π

)

=
N

π

N∑
k=1

sin
(
2k − 1

2N
π

)
π

N

=
N

π

N∑
k=1

sin (xk)∆x, (26a)

where xk = (2k − 1)π/(2N), and ∆x = xk+1 − xk = π/N .
As order N increases, discrete variable xk in (26a) tends to
a continuous variable x with lower/upper bounds (0, π); the
difference between consecutive xk values tends to become in-
finitesimal ∆x → dx; therefore, the discrete sum in (26a) be-
comes an integral, evaluated as:

lim
N→∞

S (N) =
N

π

π∫
0

sin (x) dx =
2N

π
. (26b)

By substituting (26b) into (25), the NGD-bandwidth product as
the order N approaches infinity, as a function of finite out-of-

band gain, becomes (as N → ∞, Cω−3 dB approaches 1.0):

lim
N→∞

(NGD ·∆f)= lim
N→∞

((
1− 1

A1/N

)
· 2N
π2

)

=
2

π2
lim

N→∞

((
eln(A)/N − 1

)
·N
)

=
2 ln (A)

π2
, (27)

or, as a function of the out-of-band gain given in decibels,
AdB = 20 · log(A), NGD-bandwidth becomes a linear asymp-
totic function, as also depicted in Fig. 14:

lim
N→∞

(NGD ·∆f) =
2

π2

10 log (A)

10 log (e)
=

ln (10)
10π2

AdB

≈ 0.0233 ·AdB. (28)

7. NGD-BANDWIDTH PRODUCT ASYMPTOTIC
LIMIT OF CASCADED LOWER-ORDER RECIPROCAL-
BUTTERWORTH STAGES
For a given overall order of a rational transfer function based on
the proposed capped reciprocal-Butterworth design, it is worth-
while comparing a single transfer function design of that same
order, against a cascaded lower order transfer function design
(for example, two cascaded transfer functions each with a half
of the overall order, given that the overall order is an even num-
ber). In general, for n cascaded capped reciprocal-Butterworth
transfer functions of N th-order, with the overall out-of-band
gain A (each of the n stages has an individual out-of-band gain
of A1/n), the 3 dB bandwidth correction factor from expres-
sion (6) can be augmented to be (substituting n = 1 yields the
original expression for a single N th-order transfer function):

Cω−3 dB =

(
1−

(
2
A2

)1/n
21/n − 1

) 1
2N

. (29)

The NGD-bandwidth product for this cascaded design becomes
a modified version of (25), with each of the n stages having an
individual out-of-band gain of A1/n, and the observed center
frequency NGD becomes a multiple of n individual stage NGD
values:

NGD·∆f=
n

π

1

Cω−3 dB

(
− 1

A1/(n·N)

) N∑
k=1

sin
(
2k−1

2N
π

)
. (30)

NGD-bandwidth product for variations of a 6th-order baseband
reciprocal-Butterworth design (n × N th = 1 × 6th, 2 × 3rd,
3 × 2nd, 6 × 1st), as a function of out-of-band gain is plotted
in Fig. 15 based on expression (30), with the 3 dB correction
factor given by (29). It is clear from Fig. 15 that a single stage
of higher order capped reciprocal-Butterworth design exhibits a
higher NGD-bandwidth product than any cascaded versionwith
lower order designs that yield the same overall order. However,
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3× 2nd, and 6× 1st), as a function of overall out-of-band gain.

cascaded designs can have a smaller phase and group delay dis-
tortion associated with them, as evident from Fig. 2(b). Further,
the periodic nature of cascaded identical stages enables a char-
acteristic impedance of the design to be defined, which makes
it suitable for studies involving distributed medium analysis.
When the number of stages becomes large, the transfer func-
tion becomes an exponential function which is a characteristic
of physical media, as analyzed in [8, 9] for 1st-order, and in [10]
for 2nd-order cascaded designs.
For distributed (n → ∞) cascaded N th-order reciprocal-

Butterworth transfer functions, the limit of the 3 dB bandwidth
correction factor (29) becomes:

Cω−3 dB−inf = lim
n→∞

(Cω−3 dB) =

(
2 ln (A)

ln 2
− 1

) 1
2N

, (31)

and theNGD-bandwidth product from expression (30) becomes
(the final approximated result assumes that the overall out-of-
band gain is much larger than the 3 dB gain at bandwidth edges,
i.e., A ≫ 21/2, or 2 ln(A) ≫ ln 2):

lim
n→∞

(NGD ·∆f) =
1

π

(
ln 2

2 ln (A)− ln 2

) 1
2N

·
N∑

k=1

sin
(
2k − 1

2N
π

)
· lim
n→∞

(
n
A1/(n·N) − 1

A1/(n·N)

)

≈ 1

πN

(
ln 2
2

) 1
2N
(
ln 10
20

)(1− 1
2N ) N∑

k=1

sin
(
2k−1

2N
π

)
A
(1− 1

2N)
dB . (32)

The NGD-bandwidth product asymptotic limit for several dis-
tributed designs with cascaded stages of certain order can be
computed from (32), yielding:

(NGD ·∆f)distr−1st ≈
1

π

√(
ln 2
2

)(
ln 10
20

)√
AdB

≈ 0.0636 ·
√
AdB, (33a)

(NGD ·∆f)distr−2nd ≈
1

π

1√
2

(
ln 2
2

)1/4( ln 10
20

)3/4

A
3/4
dB

≈ 0.0341 ·A3/4
dB , (33b)

(NGD ·∆f)distr−3rd ≈ 2

3π

(
ln 2
2

)1/6( ln 10
20

)5/6

A
5/6
dB

≈ 0.0294 ·A5/6
dB , (33c)

(NGD ·∆f)distr−4th ≈ 0.0275 ·A7/8
dB , (33d)

(NGD ·∆f)distr−5th ≈ 0.0265 ·A9/10
dB , (33e)

lim
N→∞

(
(NGD ·∆f)distr−Nth

)
≈ ln (10)

10π2
AdB ≈ 0.0233 ·AdB. (33f)

Derived asymptotic expressions (33a)–(33f) for distributed
(n → ∞) designs are plotted in Fig. 16, along with their ex-
act expression (30) counterparts, evaluated for a large number
of cascaded stages (n = 30 in this example), showing good
agreement. Expression (33a) is identical to the one derived
in [8, 9], since reciprocal-Butterworth design proposed in this
paper, for 1st-order case, is identical to the transfer functions in
the previous work. Similarly, expression (33b) is identical to
the one in [10] since 2nd-order cascaded functions are identical
as well. Third-order expression (33c) and higher order expres-
sions of the distributed designs show the extension of the trend
of the previous work, with the overall power of (1 − 1/(2N))
relationship between the NGD-bandwidth product and the deci-
bel value of out-of-band gain. Eventually, as the order of dis-
tributed cascaded stages approaches infinity, the relationship
tends to a linear one given by (33f), which is also identical to
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expression (28) of a single stage of reciprocal-Butterworth de-
sign of an order approaching infinity (cascading a design of an
infinite order is not possible, and it reduces to a single stage of
that infinite order).

8. RELATIONSHIP BETWEEN TIME DOMAIN AND
FREQUENCY DOMAIN NGD METRICS
A main trade-off quantity associated with NGD designs is the
frequency domain out-of-band gain, manifested in the magni-
tude response outside the NGD bandwidth being higher than
that within it. This results in signal attenuation (SA) for gain-
uncompensated designs. Further, there is a proportional re-
lationship between the out-of-band gain and the amplitude of
transients in the time domain, when information carrying sig-
nals such as pulses with finite turn-on/off times propagate in an
NGDmedium [8, 9]. More generally, any nonanalytic disconti-
nuities in the propagated pulse or its derivatives are essentially
information carriers and will generate a transient response by
the medium [12]. The transient’s magnitude amplification phe-
nomenon is demonstrated for the example of a Gaussian pulse
with finite turn-on/off times, which is propagated through se-
lected variations of the capped reciprocal-ButterworthNGDde-
signs. A qualitative explanation of the transient amplification
phenomenon first considers that truncating a continuous wave-
form in time will result in a larger portion of the pulse spectral
power being contained outside the NGD bandwidth, as com-
pared to the corresponding continuous waveform alone. The
extended power spectrum of the time-truncated waveform will
then be amplified by the out-of-band gain of an NGD medium,
resulting in increased transient amplitude.
For NGD designs exhibiting the same out-of-band gain, the

same amplitude of transients is expected. This is shown in
Fig. 17(b) for 1 × 6th, 3 × 2nd, and 6 × 1st-order capped
reciprocal-Butterworth baseband designs. All three exam-
ple designs are chosen to have an out-of-band gain of 40 dB
(A = 100), with center frequency magnitude response fully

gain-compensated (0 dB). The input signal chosen to evalu-
ate the NGD designs shown in Fig. 17 is a Gaussian pulse
with its frequency spectrum standard deviation corresponding
to 1/3 of the NGD designs’ 3 dB bandwidth cut-off frequency
(σω = ωc/3 = 1/3), and the turn-on/off times chosen at 3.5σt

(σt = 1/σω). The input pulse value at the selected turn-on/off
times is exp(−3.52/2) ≈ 0.0022 of the peak value. Subse-
quently, the transient amplitude is expected to be amplified by
A = 100, which is 0.22 of the peak value, as corroborated
in Fig. 17(b). Therefore, referring to Fig. 15 which shows the
NGD-bandwidth product for different designs, we can conclude
that for the same out-of-band-gain and thus the same transient
amplitude, a 1 × 6th-order design can achieve a larger pulse
peak advancement than a 3 × 2nd-order design and an even
larger advancement than a 6 × 1st-order design. The transient
settling time, however, is the longest for the 1×6th-order design
and progressively decreases for the 3× 2nd-order and 6× 1st-
order designs, as observed after the turn-off time in Fig. 17(b).
The longer transient settling time and higher successive ampli-
tudes of the decaying oscillation are a result of the steeper mag-
nitude characteristic transition from in-band to out-of-band.
The center frequency NGD value in the frequency domain is

expected to be relatively close to the pulse-peak time advance-
ment in the time domain, with the difference proportional to
transfer function magnitude and group delay variations within
the bandwidth where most of the applied pulse frequency spec-
trum power is contained. For example, from Fig. 15, at 40 dB
out-of-band gain, 1 × 6th, 3 × 2nd, and 6 × 1st-order designs
have NGD-bandwidth product values of NGD·∆f = 0.659,
0.5245, and 0.4113, respectively, which for a bandwidth of
∆f = ωc/π = 1/π yield center frequency NGD values
of 2.07 s, 1.648 s, and 1.292 s, respectively. The correspond-
ing time domain Gaussian pulse-peak advancement values in
Fig. 17(b) are 2.254 s, 1.774 s, and 1.257 s, respectively, which
are only 2.7%–8.9% of the frequency domain NGD values. The
largest relative difference between observed NGD center fre-
quency values and pulse-peak advancements in time is for the

31 www.jpier.org



Kandic and Bridges

10 20 30 40 50 60 70 80

A [dB]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
G

D
f

NGD f vs out-of-band gain, reciprocal-Butterworth 1x6th design

NGD=NGD
freq

=- (0)

NGD=NGD
time-Gauss

NGD=NGD
time-sinc

FIGURE 18. NGD-bandwidth product as a function of out-of-band gain for a 1 × 6th-order capped reciprocal-Butterworth design with frequency
domain, and corresponding time domain NGD for applied Gaussian and sinc pulses.

-10 -5 0 5 10

time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

in
p

u
t:
 f

(t
),

 o
u

tp
u

t:
 y

(t
)

1x12th order recip-Butw response to a Gaussian pulse

f(t): Gaussian, 
t
=3s

y(t): response

t
pk

=-2.694s

t
pk

-10 -5 0 5 10

time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f(
t)

, 
y(

t+
t p

k
)/

y
m

a
x

1x12th order recip-Butw response to a Gaussian pulse

f(t): Gaussian, 
t
=3s

aligned/scaled response:

y(t- t
pk

)/y
max

(a) (b)

FIGURE 19. (a) Input Gaussian pulse with a frequency spectrum cut-off at ωc = 1, and the corresponding output waveform for a 1 × 12th-order
gain-compensated design. (b) The same comparison but with the output waveform shifted by∆tpk and normalized by |y(t)|max.

1× 6th design in this example, since as evident from Fig. 2(b)
higher order designs have a larger group delay variation. Con-
versely, higher order designs have less variation in their in-
band frequency magnitude response (flatter response), as ev-
ident from Fig. 2(a) and Fig. 17(a), which then results in the
amplitude of the time domain peak being closer to the input
pulse amplitude, as evident from Fig. 17(b).
The group delay variation of higher order capped reciprocal-

Butterworth designs is high around the band edges, as evident
from Fig. 2(b), while the frequency spectrum power density of a
Gaussian pulse is small close to band edges. Therefore, as seen
in Fig. 18 when a Gaussian pulse is applied, the effects of in-
band group delay variation are reduced, and the time domain
observed peak advancement stays relatively close to the fre-
quency domain NGD value at center frequency. As a contrast-
ing example a sinc pulse, sin(ωct)/(ωct), has its power spec-

trum density constant within the entire bandwidth (−ωc, ωc),
and it is expected that it will exhibit a more prominent sensitiv-
ity to the group delay variation around the band edges. This is
demonstrated in Fig. 18 where there is a larger difference be-
tween time and frequency NGD values for the sinc pulse.
Due to the inverse relationship between bandwidth and pulse

duration, the NGD-bandwidth product metric in the frequency
domain is proportional to the ratio of the pulse-peak advance-
ment to any quantity representative of the pulse duration in the
time domain. In the Gaussian pulse example, choosing its fre-
quency spectrum standard deviation to be 1/6 of the 3 dB band-
width of the medium, σω = ∆ω/6, the Gaussian pulse stan-
dard deviation in the time domain is σt = 1/σω = 3/(π∆f).
This yields a proportional relationship between the pulse-peak
advancement to pulse standard deviation ratio in the time do-
main and theNGD-bandwidth product in the frequency domain,
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NGD/σt = (π/3) · NGD · ∆f . In the sinc pulse example,
the duration between pulse peak and the first zero crossing is
t0 = π/ωc, yielding a proportional relationship between the
pulse-peak advancement to duration t0 ratio in the time do-
main and theNGD-bandwidth product in the frequency domain,
NGD/t0 = NGD ·∆f .

9. IN-BAND COMBINED MAGNITUDE/PHASE RE-
SPONSE DISTORTION METRIC
The trade-off between the NGD-bandwidth product and the
undesired out-of-band gain can be captured by a Figure of
Merit (FOM), defined as the ratio of the two trade-off quan-
tities [10]:

FOM =
NGD · BW

AdB
. (34)

The out-of-band gain is proportional to the magnitude of time-
domain transients when information carrying signals propagate

through an NGD medium [8, 9]. Another NGD trade-off is dis-
tortion of the part of the signal which follows the settling of
transients (“steady-state” part of the waveform). As discussed
in Section 8, the transient response is associated with the out-
of-band portion of the medium’s frequency response, and con-
versely the “steady-state” part of the propagated waveform is
associated with medium’s in-band frequency response. Dis-
tortion of the “steady-state” part is due to in-band phase non-
linearity (non-constant group delay), as well as non-constant
magnitude response within the specified (typically 3 dB) band-
width. This in-band distortion is also applicable to continuous
waveforms, which have no associated transients. Further, for
applications where transients are not a concern, an alternative
formulation of (34) can be applied where 1/AdB is replaced by
the center frequency magnitude response, |H(jω0)|.
For a general time-domain input waveform f(t), with

its frequency spectrum given by F (jω), an in-band com-
bined magnitude/phase distortion metric for a baseband
transfer function H(jω) can be evaluated in a similar
manner as that proposed in [13, 14], and as given in [10]:

Din-band =

√√√√√√√
ωc∫
0

∣∣F (jω)− e−jω∆tpk · F (jω) ·H (jω) · |f(t)|max
/
|y(t)|max

∣∣2 dω
ωc∫
0

|F (jω)|2 dω
. (35)

Here ∆tpk is the resulting time-domain advancement of the
waveform peak, and ωc is the 3 dB cut-off, while |f(t)|max and
|y(t)|max are the respective magnitudes of the input and out-
put peaks. For NGD bandwidths and waveforms that are cen-
tered around a non-zero frequency, the baseband expression
(35) is modified such that limits of both integrals span over
the 3 dB bandwidth around the center frequency. Since lin-
ear scaling and time shift of a waveform do not contribute to
distortion, the output spectrum in the numerator of expression
(35), F (jω) · H(jω), is scaled and shifted to match the mag-
nitude and position of the input waveform peak. In the distor-
tion metric (35), the output spectrum scaling and shifting used
is based on the exact observed time-domain output pulse peak
magnitude and time-shift as done in [10], which are in gen-
eral different from corresponding frequency domain parame-
ters, as demonstrated in Figs. 17(b) and 18. In [13, 14], the
output spectrum scaling and shifting are approximated by the
center frequency magnitude and group delay response values,
i.e., |f(t)|max/|y(t)|max ≈ 1/H(0) and∆tpk ≈ −τ(0), respec-
tively. The distortion metric in expression (35) is more easily
evaluated in the frequency domain since it involves finite inte-
gral bounds over the bandwidth. An equivalent evaluation in
the time domain (yielding the same result) would involve infi-
nite integrals of the input and output waveforms.
As an example, the distortion metric is examined for a Gaus-

sian pulse input waveform with a frequency spectrum standard
deviation equal to 1/6th of the NGD 3 dB-bandwidth. This
waveform is applied as an input to a 1 × 12th-order design
with a chosen ωc =1 and A = 40 dB. Input and output wave-

forms are depicted in Fig. 19, and from expression (35) the dis-
tortion metric is Din-band-Gaussian = 0.0424. As a comparison,
for a well-known 1st-order low-pass filter baseband design,
Dlow-pass-Gaussian = 0.0411. The center frequency NGD of this
design is −τ(0) = 2.442 s with an NGD-bandwidth product of
0.7772, as evaluated in Fig. 14. This is somewhat lower than
the time domain advancement of the Gaussian pulse shown in
Fig. 19, where∆tpk = 2.694 s (congruent with Fig. 18 showing
that the time-domain NGD is higher than the frequency domain
one).
As a second example, a sinc function is applied as input to the

same 1× 12th-order design with out-of-band gain A = 40 dB.
The input and output waveforms depicted in Fig. 20(a) show
a pulse-peak advancement of ∆tpk = 3.094 s (higher than
the Gaussian peak advancement of 2.694 s, which is also con-
gruent with Fig. 18). The distortion evaluated from (35) is
Din-band-sinc = 0.2498. Compared to the 1st-order low-pass fil-
ter design value of Dlow-pass-sinc = 0.1093, it suggests a signif-
icantly higher level of distortion for a sinc pulse applied to the
1 × 12th-order NGD design than Gaussian pulse (Fig. 20(b)
compared with Fig. 19(b)).
To keep the distortion metric given by (35) below a desired

limit (for example below the 1st-order low-pass filter distortion
metric for the same applied waveform), an alternative approach
would be to reduce the effective bandwidth of the input below
the medium’s 3 dB cut-off ωc (i.e., a wider time domain pulse
is applied that corresponds to the reduced bandwidth). Fig-
ure 21 shows the NGD-bandwidth product (using time domain
NGD) as a function of out-of-band gain for the 1× 12th-order
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sinc inputs, respectively).

design, for a 3 dB bandwidth (solid curves) and for a reduced
bandwidth needed to keep the distortion metric below that of
a 1st-order low-pass filter (D = 0.0411 for a Gaussian pulse,
dashed curve, and D = 0.1093 for a sinc pulse, dotted curve).
It can be noted from Fig. 21 that the NGD-bandwidth product
is higher for the sinc input than the Gaussian input when distor-
tion is ignored, i.e., input bandwidth kept at medium’s 3 dB cut-
off in both cases (solid curves). However, with the two inputs’
respective bandwidths reduced to yield the distortion metric be-
low that of a 1st-order low-pass filter, NGD-bandwidth product
for the Gaussian input (dashed curve) eventually surpasses the
sinc input one (dotted curve), as the out-of-band gain increases.
As discussed in Section 8, NGD-bandwidth product is propor-
tional to an NGD to pulse-width ratio, where different options
for representing a pulse-width (inversely proportional to band-

width) yield different proportional factors. Further, it can be
shown that a 1 × 12th-order design achieves a higher NGD-
bandwidth product (NGD taken as the time domain pulse-peak
advancement) than a 2 × 6th-order design for both waveform
types, and both the 3 dB and distortion-considering reduced
bandwidths. This is congruent with Fig. 15 trend with fre-
quency domain NGD values (there, 1 × 6th-order design out-
performs 2× 3rd, 3× 2nd, and 6× 1st).
A complementary metric to the distortion metric (35) is

a cross-correlation of input and output waveforms, as done
in [28, 31]. It can be shown that it roughly relates to (35) as
a square root of 1 − D2. Caution should be exercised, how-
ever, when interpreting seemingly high cross-correlation met-
ric numbers (for example, a seemingly high cross-correlation
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metric of 0.95 corresponds to a quite severe distortion metric
of about 0.31).
It can be noted that imposing an in-band distortion limit on

anNGD design assumes that one of the objectives is to maintain
reasonable output waveform fidelity to the applied input wave-
form. However, in NGD design applications targeting group
delay (and/or magnitude) response equalization of a preceding
communication channel stage (for example, to mitigate posi-
tive group delay narrow-band spikes), the presented distortion
limit can be either dropped or imposed on the overall design
including the preceding stage(s) and the equalizing NGD de-
sign. For example, the use of an NGD circuit for equalizing
both the magnitude and a group delay of a resonant system was
demonstrated by Ravelo et al. [34, 35].

10. IMPLICATIONS OF USING THE ENTIRE BAND-
WIDTH WHERE GROUP DELAY IS NEGATIVE
In majority of the NGD circuit designs and applications pre-
sented in the literature, the NGD bandwidth that is reported
is the entire frequency range where the group delay response
is negative, τ(ω) < 0. Typically, this can be considerably
wider than the 3 dB bandwidth, which is the criteria used in
this paper (or lower, when distortion metric is above a pre-
scribed level). It should be kept in mind that a τ(ω) < 0
defined bandwidth is likely to result in a high distortion met-
ric for waveforms corresponding to that bandwidth. Group
delay response zero-crossings of an N th-order baseband de-
sign can be determined by equating to zero the sum of group
delay expressions given by (4c) and/or 5(c), corresponding to
all the 1st and 2nd-order factorized transfer functions, respec-
tively, which comprise the overall N th-order design. For a
capped reciprocal-Butterworth design, while keeping in mind
parameter relationships evident from (2a) and (2b) it can be
shown that the group delay zero-crossings considered individu-
ally for all 1st and 2nd-order factorized functions are the same,

ωτ=0 = A1/(2N) (and multiplied by the 3 dB bandwidth cor-
rection factor given by (6), Cω−3 dB). Therefore, the overall
N th-order design will also have the same group delay zero-
crossings, ωτ=0 = A1/(2N) ·Cω−3 dB, since it is a sum of indi-
vidual terms that all have the same zero-crossings. Further, for
the general capped reciprocal-Butterworth design proposed in
this paper consisting of n cascaded stages ofN th-order and the
overall out-of-band gain AdB, the ratio of τ(ω) < 0 and 3 dB
bandwidths, and the corresponding in-band magnitude varia-
tion within τ(ω) < 0 bandwidth, can be derived as:

BWτ<0

BW3 dB
= A1/(2nN)

(
1−

(
2
A2

)1/n
21/n − 1

) 1
2N

,

∆AdB,in−band,τ<0 =
AdB

2
. (36)

For example, applying (36) for a 1 × 3rd-order design with
40 dB out-of-band gain (n = 1, N = 3, A = 100) yields a
τ(ω) < 0 to 3 dB bandwidth ratio of 2.1544 (as corroborated
in Fig. 2(b)). This yields a distortion metric from expression
(35) of 0.3008 for a Gaussian waveform (7.319 times higher
than distortion metric of a 1st-order low-pass filter distortion,
used a reference). Additionally, the in-band magnitude vari-
ation for τ(ω) < 0 is AdB/2 = 20 dB, as corroborated in
Fig. 2(a). This leads to an unacceptable level of pulse distortion
as demonstrated in Fig. 22(b). As another example, a 3 × 1st-
order design (compared to 1 × 3rd-order design) has an even
higher τ(ω) < 0 to 3 dB bandwidth ratio of 4.1004 accord-
ing to (36), yielding a Gaussian waveform distortion metric of
0.4654 (11.324 times higher than 1st-order low-pass filter ref-
erence). As evident from Fig. 2(b), lower order designs have a
larger τ(ω) < 0 bandwidth, and therefore higher corresponding
distortion.
Due to τ(ω) < 0 bandwidth having anAdB/2 relationship to

the out-of-band gain, any designwith an out-of-band gain larger
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TABLE 1. NGD performance metrics for selected n×N th-order baseband topologies, with 3 dB bandwidth.

Number of

stages/topology

Out-of-band gain,

A [dB]

NGD-BW product,

−τ(0) ·∆f3dB
FOM [1/dB]

∆tpk ·∆f3dB

(Gaussian)

Distortion: Din-band

(Gaussian)

1× 1st-order 40 0.3152 0.0079 0.2880 0.0432 (1.05×D1st-LP-filter)

1× 2nd-order 40 0.4052 0.0101 0.4368 0.0217 (0.53×D1st-LP-filter)

2× 1st-order 40 0.3714 0.0093 0.3544 0.0383 (0.93×D1st-LP-filter)

1× 3rd-order 40 0.4995 0.0125 0.5416 0.0227 (0.55×D1st-LP-filter)

3× 1st-order 40 0.3936 0.0100 0.3800 0.0369 (0.90×D1st-LP-filter)

1× 12th-order 40 0.7772 0.0194 0.8576 0.0424 (1.03×D1st-LP-filter)

2× 6th-order 40 0.7293 0.0182 0.8008 0.0377 (0.92×D1st-LP-filter)

TABLE 2. NGD performance metrics for selected n×N th-order baseband topologies, with τ(ω) < 0 bandwidth.

Number of

stages/topology

Out-of-band gain,

A [dB]

NGD-BW product,

−τ(0) ·∆fτ<0

BWτ<0/BW3dB
∆tpk ·∆fτ<0

(Gaussian)

Distortion: Din-band

(Gaussian)

1× 1st-order 40 3.1513 9.999 0.8104 0.6288 (15.3×D1st-LP-filter)

1× 2nd-order 40 1.2812 3.162 1.0688 0.4640 (11.3×D1st-LP-filter)

2× 1st-order 40 1.8119 4.879 0.9760 0.5183 (12.6×D1st-LP-filter)

1× 3rd-order 40 1.0761 2.154 1.1592 0.3008 (7.32×D1st-LP-filter)

3× 1st-order 40 1.6141 4.100 1.0168 0.4654 (11.3×D1st-LP-filter)

1× 12th-order 40 0.9416 1.212 1.1720 0.1439 (3.50×D1st-LP-filter)

2× 6th-order 40 0.9498 1.302 1.1952 0.1520 (3.70×D1st-LP-filter)

than 6 dB will have in-band variation of more than 3 dB, and
potentially cause high levels of distortion. For NGD designs
different from ones presented in this paper, the exact relation-
ship may be different from AdB/2, but the in-band magnitude
variation value should be noted for the τ(ω) < 0 bandwidth,
and if larger than 3 dB the entire τ(ω) < 0 bandwidth may
not be practically useful when distortion is considered. Fur-
ther, even the 3 dB bandwidth may be too large if a specified
level of distortion is exceeded. As demonstrated in this paper,
an NGD design should be checked for distortion for the time
domain waveforms of interest.

11. CONCLUSION
In this paper, an NGD filter prototype baseband design based on
capped reciprocalN th-order Butterworth low-pass filter trans-
fer function is introduced. The baseband design can be trans-
lated to an NGD band-stop filter with finite attenuation at a de-
sired center frequency. It is shown that the upshifted center fre-
quency design can be exactly implemented with a Sallen-Key
topology. Further, a ladder network of series RLC resonators
connected in shunt, and parallel resonators connected in series,
is shown to be able to approximately model the upshifted de-
sign, without the use of op-amps. The process of calculating
the component values of both Sallen-Key and all-passive lad-
der designs is outlined in detail.

The prototype design achieves an NGD-bandwidth product
that in the upper asymptotic limit as the design order approaches
infinity is a linear function of out-of-band gain in decibels.
Further, for a cascadedN th-order design, the NGD-bandwidth
product upper asymptotic limit (distributed design, number of
stages approaches infinity, but the overall out-of-band gain
stays the same) is a function of out-of-band gain in decibels
raised to the power 1− 1/(2N). Out-of-band gain, a trade-off
quantity accompanying NGD designs, was shown to be propor-
tional to transient magnitudes of the proposed design for infor-
mation carrying signals with finite turn-on/off instants in time,
as it was for previously reported designs [8–10].
An in-band distortion metric based on the approach

in [13, 14] and modified as in [10] is applied to the proposed
design and given time-domain input waveforms. Different
waveforms result in different distortion metrics. A sinc input
function for example is shown to yield a higher distortion
metric than a Gaussian pulse, since it has a constant frequency
spectrum over the entire bandwidth and therefore has equal
contributions in magnitude and phase distortion across the
bandwidth. Table 1 shows a performance comparison of
selected proposed NGD designs with a given order and number
of cascaded stages, in terms of their achieved NGD in the
frequency domain as well as in the time domain for a Gaussian
input waveform. The associated Figure-of-Merit (FOM) and
distortion metric is also shown.
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It was demonstrated that selecting a bandwidth which spans
over the entire frequency range where the group delay response
is negative, τ(ω) < 0, results in an in-band magnitude response
variation of half that of the out-of-band decibel value, AdB/2,
and is likely to result in an unacceptably high distortion. Ta-
ble 2 summarizes metrics for the same examples from Table 1,
when a larger, τ(ω) < 0 bandwidth is used instead of the 3 dB
bandwidth. A 1st-order low-pass filter is used as a reference for
comparing the distortion performance. It is prudent to check
the in-band magnitude response variation for a specified band-
width of an NGD design and be cautious of any in-band vari-
ations over 3 dB. In addition to the out-of-band gain, a com-
monly stated trade-off for NGD designs, an in-band combined
magnitude-phase distortion metric over a specified bandwidth
should also be considered to ensure an acceptable level of wave-
form distortion.
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