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ABSTRACT: To improve the beam collection efficiency (BCE) of the microwave wireless power transmission (MWPT) system while
reducing the peak sidelobe level outside the receiving area (CSL) and system cost, this paper proposes a new subarray partition technique
and a nonuniform sparsely distributed quadrant symmetric planar array (NSDQSPA) model. A particle swarm optimization algorithm
based on multiple-objective with nonlinear time-variant inertia and learning factor improved particle swarm optimization (MO-NTVILF-
IPSO) is also proposed. The one-step multi-objective subarray partition algorithm adopts dynamic weight and dynamic learning factor to
carry out one-step optimization on the array element arrangement of the transmitting array. The optimization algorithm simultaneously
optimizes two performance indicators: the∆BCE, which represents the optimization accuracy for the BCE, and the αref, which represents
the mean square error of the excitation amplitude before and after the subarray partition. Many simulation results show that the BCE
is 94.91%, and the CSL is −13.41 dB when the transmitting array with an aperture of 4.5λ × 4.5λ is divided into six subarrays. The
simulation results further demonstrate that the proposed subarray division method is appropriate for the MWPT system and that the
algorithm in this paper, when the array elements with the same excitation amplitude are divided for the planar transmitting array on the
array model, and can guarantee relatively high BCE and relatively low complexity of the system feed network.

1. INTRODUCTION

Microwave wireless power transmission (MWPT) technol-
ogy was initially demonstrated in Nikola Tesla’s coil

experiment and has undergone continuous development for
over a century. Compared with traditional power transmis-
sion technology, wireless power transmission is characterized
by not transmitting power through wired cables, reducing sys-
tem cost [1]. Recently, this technology has found extensive
use in various domains, including wireless charging in re-
mote mountainous regions, medical implants within the body,
drones, Internet of Things devices, and space solar power sta-
tions (SPSS) [2–6]. BeamCollection Efficiency (BCE) is a crit-
ical parameter for evaluating the performance of the transmit-
ting array of the MWPT system, which is defined as the pro-
portion of the power collected by the receiving array to the to-
tal power radiated by the transmitting array. The peak side-
lobe level outside the receiving area (CSL) is another critical
parameter, representing the utilization of the radiation surface
of the receiving array, and the lower the CSL is, the lower the
power loss and the impact on the performance of other system
components are [7]. Traditional transmitting arrays are often
designed to transmit a strong microwave beam into a specific
receiving area to achieve high BCE and minimize the CSL. The
array elements are arranged according to the excitation ampli-
tude, which is the curve of Gaussian distribution, with a higher
excitation amplitude in the middle of the transmitting array and
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a lower excitation amplitude around [8]. Although this arrange-
ment can achieve high BCE, the entire system requires many
feed network amplifiers with different powers to provide dif-
ferent excitation amplitudes. In practical engineering, this array
manufacturing is expensive and difficult to implement. There-
fore, it is urgent to design an optimization model to achieve
high BCE in the transmitting array and simplify the feed net-
work complexity in the overall system.
To guarantee the power transmission needs of the MWPT

system, it is essential to carefully evaluate both the transmit-
ting performance of the array and the feed cost. Previous stud-
ies have optimized the position and excitation amplitude of the
array elements and restricted the element spacing to prevent the
occurrence of gate lobes and gate zeros. An optimization algo-
rithm for uniformly excited nonuniform distributed planar ar-
rays simplifies the feeder network and further decreases manu-
facturing cost [9]. However, this model will cause higher CSL
and result in a loss of power transmission performance of the
transmitting array, and the result of BCE is 91.06%. The opti-
mization algorithm for nonuniform excitation nonuniform dis-
tributed planar arrays can achieve good power transmission per-
formance, and the result of BCE is 96.45%. Because the exci-
tation amplitude is different, many feed network amplifiers are
required, which increases the cost. Recent research has adopted
subarray partition technology. The array is grouped accord-
ing to the excitation amplitude [10, 11], and the complete one-
dimensional linear or two-dimensional planar array is divided
into several groups. After dividing the subarrays, the entire ar-
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ray element feed network and array structure are simplified, re-
ducing the cost and the algorithm complexity during the data
simulation [12]. The previous optimization method consists of
two steps: the first is the arrangement position of the subar-
rays, followed by the excitation amplitude of the elements in
the subarray [13–15]. This model has 64 array elements with
an aperture of 4.5λ× 4.5λ. The optimization method performs
better with more subarrays (number of subarrays greater than 8)
but worse with fewer subarrays (number of subarrays less than
4).
Based on the previous research, this paper proposes a one-

step multi-objective subarray partition algorithm based on non-
linear time variant-inertia and learning factor particle swarm
optimization algorithm with nonuniform quadrant symmet-
ric distribution, which is a multi-objective nonlinear particle
swarm subarray partition algorithm for optimizing sparse pla-
nar arrays. This paper discusses the problem of subarray par-
tition for sparsely distributed transmitting arrays. The main
contributions are as follows: Firstly, unlike the multi-step opti-
mization algorithm in [16], the algorithm used in this paper is a
one-step optimization algorithm while optimizing the accuracy
of BCE and the mean square error of excitation amplitude be-
fore and after partition. A large number of empirical evidences
demonstrate that the outcomes of this optimization technique
surpass those of alternative optimization techniques. Secondly,
the proposed method improves the algorithm in [17], and the
improved PSO algorithm suggested in this paper can achieve
multi-objective synchronous optimization while learning mul-
tiple performance indicators. Meanwhile, in [18], Sun et al.
proposed a multi-wave power conversion model that improved
the BCE, but the result was only 92.82%, and a large number
of array elements were required. In [19], Guo et al. used the
invasive weed optimization (IWO) algorithm to optimize the
array and made progress in reducing the CSL, but the enhance-
ment of BCE was not obvious, and the result was only 92.60%.
Finally, the superiority of the nonuniform sparsely distributed
quadrant symmetric planar array (NSDQSPA)model over other
array models was demonstrated. In this paper, the effectiveness
of the algorithm is evaluated using the transmitting array per-
formance parameters, including the BCE, CSL,∆BCE and αref.
In a MWPT system, the BCE is an indicator of the performance
of the transmitting array, and the higher the BCE is, the bet-
ter the performance of the transmitting array is. At the same
time, for the improved PSO algorithm proposed in this paper,
the optimization objective ∆BCE is the optimization accuracy
of the BCE after each iteration. The∆BCE, which can react to
the optimization accuracy of the algorithm, and the higher the
∆BCE is, the better the performance of the algorithm is.

2. MATHEMATICAL DERIVATION OF EMISSION AR-
RAY AND SUBARRAY PARTITION

2.1. Mathematical Formula for Sparse Quadrant Symmetric
Planar Array
Figure 1 displays the NSDQSPA model of the MWPT system.
The transmitting arraymodel suggested in this paper is based on
a quadrant symmetric configuration, where the array elements

FIGURE 1. The NSDQSPA transmitting array model of the MWPT.

are spread symmetrically throughout the quadrants. The pic-
ture only displays the arrangement of the array elements in the
first quadrant. The next three quadrants can be constructed by
mapping the positions of the array elements in the first quadrant
using symmetry.
The transmitting array concept suggested in this paper con-

sists ofN = 4×Nx×Ny array elements, with an aperture size
ofLx×Ly; the coordinate of the n-th array element is (xn, yn);
and the corresponding excitation amplitude is αn. As the trans-
mitting model proposed in this paper is distributed symmetri-
cally in quadrants, the research object is the first quadrant array
element in the planar transmitting array. Therefore, the array
factor formula for the transmitting array is:

F (u, v) =

N∑
n=1

αne
ik(uxn+vyn) (1)

where k = 2π/λ is the wave number; λ is the wavelength;
u = sin θ cosφ and v = sin θ sinφ are angular coordinates.
Define the receiving power area as:

Ψ = {(u, v) : −u0 ≤ u ≤ u0, −v0 ≤ v ≤ v0} (2)

The entire visible area is:

Ω =
{
(u, v) : u2 + v2 ≤ 1

}
(3)

the BCE can be defined as the ratio of the radiation power of
the receiving power area to the total power of the transmitting
array, from Eq. (1), which can be written as:

BCE ≜ PΨ

PΩ
=

∫
Ψ

|F (u, v)|2 dudv∫
Ω

|F (u, v)|2 dudv
(4)

where F (u, v) = aHv(u, v), according to [10], the BCE in
Eq. (4) can also be expressed as:

BCE ≜ PΨ

PΩ
=

∫
Ψ
aHv(u, v)vH(u, v)adudv∫

Ω
aHv(u, v)vH(u, v)adudv

(5)
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where a = [α1, α2, ..., αN ]H , v(u, v) = [eik(ux1+vy1), ...,
eik(uxN+vyN )]H , and the maximum BCE is written as:

BCEmax =
(amax)H SΨ (amax)
(amax)H SΩ (amax)

(6)

where SΨ represents the receiving area, SΩ the entire visible
area, and amax the optimal excitation amplitude for the trans-
mitting array with subarray partition technology to obtain the
maximum BCE. SΨ and SΩ can be written as:{

SΨ ≜
∫
Ψ
v(u, v)vH(u, v)dudv

SΩ ≜
∫
Ω
v(u, v)vH(u, v)dudv

(7)

In addition, the CSL represents the maximum utilization of the
receiving area. It can also be used to evaluate the performance
of the transmitting array, and a lower CSL indicates superior
performance of the transmitting array. The CSL is defined as
follows:

CSL (dB) = 10 lg
maxθ,φ/∈Ψ |F (θ, φ)|2

maxθ,φ∈Ω |F (θ, φ)|2
(8)

2.2. Mathematical Formula for Subarray Partition Model of
Transmitting Array
This paper adopts array elements with nonuniform excitation
amplitude with different excitation amplitudes for each sub-
array after dividing subarray. Assuming that the N = 4 ×
Nx × Ny elements in the arrays are divided into M subarrays
(M < N ),Cnm is the weight matrix with a number of elements
N ×M , where elements are 0 or 1.

Cnm =

{
0 Then-th element /∈ them-th subarray
1 Then-th element ∈ them-th subarray

(m = 1, 2, ...,M ; n = 1, 2, ..., N) (9)

The weight matrix of the subarray partition can be expressed
as:

Cnm =


C11 C12 ... C1M

C21 C22 · · · C2M

...
...

. . .
...

CN1 CN2 · · · CNM


N×M

(10)

This matrix represents a division from of subarray, where:

M∑
m=1

Cnm = 1 (n = 1, 2, ..., N) (11)

This formula represents a subarray partition matrix where only
one element in each row is 1, ensuring that each element is only
divided into one subarray.
Assume that the excitation amplitude of each array element

is:
a = [α1, α2, ..., αN ]

H (12)

The excitation amplitude of each subarray after dividing the
subarray is:

asubm = [αsub1, αsub2, ..., αsubM ]
H (13)

whereM subarrays haveM + 1 boundaries, and these bound-
aries can be written as:

arange =
[
αrange0 , αrange1 , ..., αrangeM

]H (14)

The boundary processing condition is:

αrangem = αmin +m× αmax − αmin

M
(m = 0, 1, ...,M) (15)

where αmax is the maximum initial excitation, and αmin is the
minimum initial excitation.
The excitation amplitude of the subarray can be calculated

according to the following formula:

αsubm =

N∑
n=1

αn × Cnm

N∑
n=1

Cnm

(16)

The total excitation amplitude can be expressed as:

asub = Cnm × asubm (17)

2.3. The Formula of Optimization Variable
The purpose of subarray partition is tomaintain a relatively high
BCE, while reducing the feed network complexity, thereby re-
ducing manufacturing and maintenance cost. The optimization
variable in this paper is the mean square error of the excitation
amplitude of the elements before and after the subarray partition
αref, and the other optimization variable is BCE optimization
accuracy∆BCE. Therefore, this paper optimizes these two in-
dicators to improve the feasibility of the algorithm. One is αref,
which can be written as:

αref =
1

n

N∑
i=1

(αsub(i)− α(i))2 (18)

where αsub(i) represents the excitation amplitude of individ-
ual element after dividing the subarray, and α(i) represents the
excitation amplitude before dividing the subarray.
The other is ∆BCE, which can be written as:

∆BCE = BCE− BCEinitial (19)

where the BCE can be calculated by Eq. (6), and BCEinitial rep-
resents the initialized BCE without subarray partition under
nonuniform excitation amplitude of uniformly distributed array
elements.

3. MO-NTVILF-IPSO OPTIMIZATION ALGORITHM
MODEL AND ITS APPLICATION IN NSDQSPA

3.1. The NSDQSPA Synthesis Model
From Figure 1, to ensure high BCE and low CSL, the
NSQDSPA model is a quadrant symmetric model. The
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calculation cost is reduced since the optimization process
only needs to be performed once. Additionally, the remaining
three quadrants can be symmetrically obtained, which reduces
production and maintenance cost in engineering technology.
On the other hand, in order to prevent array coupling and

gate lobe phenomenon caused by the small spacing of array el-
ements, the constraint dmin between two random array elements
during array placement is expressed as follows:√

(xi − xj)2 + (yi − yj)2 ≥ dmin

i, j ∈ {1, 2, ..., N}, i ̸= j (20)
Therefore, the horizontal and vertical coordinates of Nx ×Ny

array elements in the first quadrant are preprocessed while sat-
isfying the minimum spacing dmin between the array elements,
and the preprocessing matrix of the horizontal coordinates of
the positions of each array element can be expressed as:
X =

x1 x2 · · · xNx

xNx+1 xNx+2 · · · x2×Nx

...
...

. . .
...

x(Ny−1)×Nx+1 x(Ny−1)×Nx+2 ... xNy×Nx


Ny×Nx

=


dx1 dx2 · · · dxNx

dxNx+1 dxNx+2 · · · dx2×Nx

...
...

. . .
...

dx(Ny−1)×Nx+1 dx(Ny−1)×Nx+2 · · · dxNy×Nx


Ny×Nx

+


0 dmin · · · (Nx − 1)× dmin

0 dmin · · · (Nx − 1)× dmin

...
...

. . .
...

0 dmin ... (Nx − 1)× dmin


Ny×Nx

= DX + DXmin (21)

The preprocessing matrix of the vertical coordinates of each
array element position can be expressed as:
Y =

y1 y2 · · · yNx

yNx+1 yNx+2 · · · y2×Nx

...
...

. . .
...

y(Ny−1)×Nx+1 y(Ny−1)×Nx+2 ... yNy×Nx


Ny×Nx

=


dy1 dx2 · · · dyNx

dyNx+1 dyNx+2 · · · dy2×Nx

...
...

. . .
...

dy(Ny−1)×Nx+1 dy(Ny−1)×Nx+2 · · · dyNy×Nx


Ny×Nx

+


0 0 · · · 0

dmin dmin · · · dmin

...
...

. . .
...

(Ny − 1)dmin (Ny − 1)dmin ... (Ny − 1)× dmin


Ny×Nx

= DY + DYmin (22)

Perform preprocessing on the location coordinates of the array
elements by simplifying the horizontal and vertical coordinate
matrices X and Y of the optimized array elements to the sum
of DX , DXmin and DY , DYmin . These methods reduce the search
space from X and Y to DX and DY , only optimizing DX and
DY , reducing the amount of data processing, and accelerating
the convergence speed of the optimization process.
Therefore, according to Eq. (20), Eq. (21), and Eq. (22), the

process of a one-step optimization algorithm can be described
as:



findDX , DY , asubm
maximize∆BCE = max(DX , DY )

minimizeαref = min(asubm)

subject to
(a)

√
(xi − xj)2 + (yi − yj)2 ≥ dmin

(b) dmin/2 ≤ xn ≤ Lx/2

(c) dmin/2 ≤ yn ≤ Ly/2

(d) (xn, yn) =
(
−xn−N/4, yn−N/4

)
, n =

{
N
4
+ 1, ..., N

2

}
(e) (xn, yn) =

(
−xn−N/2,−yn−N/2

)
, n =

{
N
2
+ 1, ..., 3N

4

}
(f) (xn, yn) =

(
xn−3N/4,−yn−3N/4

)
, n =

{
3N
4

+ 1, ..., N
}

(g)
(
xNx×Ny , yNx×Ny

)
= (Lx/2, Ly/2)

(h) α1 ≤ αsub1 < αsub2 < ... < αsubM ≤ αN

(i, j ∈ {1, 2, ..., N}, i ̸= j)

(23)
The algorithm optimizes the variables DX , DY and asubm,
and the optimization objectives are to maximize the∆BCE and
minimize the αref.
Limitation (a) guarantees the minimum distance between the

elements in the array. Limitations (b) and (c) define the scope
of the particle search. Limitations (d), (e), and (f) represent the
coordinates of the array elements in other quadrants, obtained
through symmetric mapping in the first quadrant. Limitation
(g) specifies the coordinates of the boundary array elements,
which determine the array aperture. Lastly, limitation (h) can be
utilized to determine the excitation amplitude of each subarray.

3.2. Description of the MO-NTVILF-IPSO Optimization Algo-
rithm
The MO-NTVILF-IPSO optimization algorithm is a one-step
multi-objective optimization algorithm applied in the process of
subarray partition for the transmitting array, and it can achieve
good array performance with the same array aperture size and
fewer array elements [20].
The optimization algorithm steps are as follows:
Step 1: Define parameters related to the transmitting array,

including initial element position (xn, yn); minimum element
spacing is dmin; number of elements isN = 4×Nx×Ny; array
aperture is Lx × Ly; number of subarrays isM ; and receiving
area is Ψ.
Step 2: Set the parameters in the optimization algorithm:

the number of particles NP, the number of algorithm iterations
Epoch, time-variant inertia weight upper limit wmax and lower
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(a) (b)

FIGURE 2. The parameters in MO-NTVILF-IPSO. (a) Time variant inertia. (b) Dynamic learning factor.

limit wmin, dynamic learning factor upper limit cmax and lower
limit cmin, and particle position update speed v.
Step 3: Calculate the relevant parameters, including

BCEinitial, asubm, and BCE.
Step 4: Calculate optimization parameters from Eq. (18) and

Eq. (19); iterative updates are used to calculate the ∆BCE and
wref; then select the personal optimal fitness values pbest(1) and
pbest(2), global optimal fitness values gbest(1) and gbest(2).
Step 5: Utilizing the update formula inside the MO-

NTVILF-IPSO algorithm, proceed to modify and save the
velocity and location of the optimized particles. The updated
formula is as follows:

vt = w × vt−1 + c1 × rand (pbest(1)xt−1 − xt−1

+pbest(2)xt−1 − xt−1) + c2 × rand (gbest(1)xt−1

−xt−1 + gbest(2)xt−1 − xt−1) (24)
xt = xt−1 + vt (25)

Step 6: As the number of iterations increases, the variant
inertia weight w, learning factors c1 and c2, and local optimal
fitness values of the particles in the next generation are updated.
Step 7: Check whether the maximum number of iterations

has been achieved. If it has, display the highest global optimum
fitness value gbest(1) and the lowest global ideal fitness value
gbest(2). If the condition is not met, go back to Step 5 in order
to resume the execution process.

3.3. Nonlinear Time Variant Inertia and Learning Factor
In the optimization technique presented in this work, epoch
refers to the current iteration number, while Epoch represents
the maximum iteration number.
The formula for updating time variant inertia weight is:

w = wmin + (wmax − wmin)×
(
Epoch− epoch

Epoch

)2

(26)

The formula for updating the learning factor is:

c1 = cmin + (cmax − cmin)×

[
1−

(
epoch
Epoch

)2
]

c2 = cmax + (cmin − cmax)×

[
1−

(
epoch
Epoch

)2
] (27)

As shown in Figure 2, as the number of iterations grows, the
weight w in PSO is nonlinear and time-varying, where wmax
is the highest inertia weight, and wmin is the lowest inertia
weight. The learning factors in PSO are also nonlinear and
time-varying, with the maximum learning factor cmax and the
minimum learning factor cmin. For the inertia weight w, the
range of particle optimization can be determined, since parti-
cles are required to search within the entire search range at the
beginning, and the inertia weight is relatively large. The iner-
tia weight can gradually decrease as the iteration progresses,
achieving a good convergence effect. Therefore, this paper
adopts nonlinear decreasing inertia weight. For the learning
factors c1 and c2, they can determine the method of particle op-
timization. When c1 > c2, there is faster global search ability
but slower convergence, when c1 < c2, it is more conducive
to local search. Therefore, dynamic adjustment can make c1
in the iteration process continuously decrease and c2 increase,
ensuring the initial stages particle search capability while pre-
venting convergence to local optima in the subsequent phase,
which is beneficial for improving the optimization results. The
inertia weights used in this paper are: wmax = 0.9, wmin = 0.4,
and the learning factor: cmax = 2.5, cmin = 1.5.

4. RESULTS AND DISCUSSION OF NUMERICAL SIM-
ULATIONS
This section discusses and validates the superiority of the pro-
posed NADQSPA model and MO-NTVILF-IPSO algorithm.
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TABLE 1. Comparison of results of different array synthesis models.

Parameter NSQDSPA Method in [16] Method in [10] Method in [12] Method in [18] Method in [19]

N 64 100 100 64 316 79

M 6 1 100 6 4 10

BCE 94.92% 91.06% 96.45% 91.09% 92.82% 92.60%

CSL (dB) −13.41 −16.01 −12.27 −14.48 −20.62 −11.97

γe 64% 100% 100% 64% 79% 79%

γa 12.5% 1% 100% 12.5% 1.2% 12.66%

Numerical simulation and result analysis are divided into five
parts. The first part compares the proposed synthesis model
with the other three planar array subarray partition models us-
ing some performance parameters. In the second part, the pro-
posed algorithm and performance indicators are used to opti-
mize the composite model under different numbers of subar-
rays, and the optimization results are obtained and compared.
The third part compares the positions of the elements before and
after the optimization algorithm and the excitation amplitude
intensity of the subarrays. The fourth part validates the ratio-
nality of the proposed element spacing in this article. The final
part compares the performance of theMO-NTVILF-IPSO algo-
rithm with other PSO algorithms. The device used in this sim-
ulation is a PC processor with Intel Core i5-8300H 2.30GHz,
RAM of 16GB, and the simulation and analysis software is
MATLAB R2022b.
This paper uses ∆BCE, αref, BCE, and CSL as the perfor-

mance indicators, and two sparse parameters are introduced as
the evaluation indicators of the system cost since the studied
array model is a sparse array. The sparsity of the array ex-
citation amplitude amplifier γa ≜ M

N expresses the propor-
tion of the number of array amplifiers to the number of ar-
rays, and the sparsity of the number of array elements γe ≜ N

Nfull
represents the proportion of the number of sparsely distributed
array elements to the number of full array elements with the
same aperture. The receiving area is a rectangular area Ψ,
and the rectangular power receiving area is defined as: Ψ ≜
{(u, v) : −u0 ≤ u ≤ u0, −v0 ≤ v ≤ v0}, where u0 = v0 =
0.2.
All the simulation experiments in this section use: the num-

ber N = 4 × Nx × Ny = 64 and the aperture 4.5λ × 4.5λ
of the transmitting array. Meanwhile, to minimize the number
of data computations, before the simulation, the wavelength λ
of the transmitting array is normalized. As the object of this
paper is a sparse array, the number of transmitting array ele-
ments should be sparsely processed to meet the requirements
dmin ≥ 0.5λ of the spacing of the array elements. Therefore,
the spacing of the array elements in this simulation is taken si-
multaneously to achieve better optimization results, and the it-
erations of the algorithm number is set to Epoch = 200 and the
optimized particles number set to NP = 50.

4.1. Comparison of Performance and System Cost between the
NSDQSPA Synthesis Model and Other Array Models

This part conducts a comparative analysis between the pro-
posed NSDQSPA model and three alternative optimization
models for transmitting array synthesis. The aim was to eval-
uate and validate the effectiveness of the NSDQSPA model in
improving both the performances of the transmitting array and
the overall system cost.
Table 1 demonstrates the configuration of a sparsely dis-

tributed transmitting array. The array has the same aperture
and receiving area, and is divided into six subarrays. In con-
trast to the synthetic model presented in [16], which uses a ho-
mogeneous excitation amplitude, not only the synthesis model
proposed in this paper has higher BCE (BCE = 94.92% >
BCE = 91.06%), but also the sparsity parameter of the com-
posite model is lower than the sparsity parameter of the refer-
ence model (γe = 64% < γe = 100%). Reducing sparsity
in practical engineering design can decrease the quantity of in-
correct components in array layout and result in a decrease in
system cost. Compared with the nonuniform excitation ampli-
tude synthetic model proposed in [10], although the BCE of this
synthesis model is lower (BCE = 94.92% < BCE = 96.45%),
it has significant advantages in the sparsity parameters of the
array element excitation amplifier and the number of array ele-
ments (γe = 64% < γe = 100%, γa = 12.5% < γa = 100%).
The NSDQSPA model offers the advantage of minimizing the
quantity of feed network amplifiers and array elements in the
transmitting array, resulting in cost reduction in actual engi-
neering applications. Additionally, it achieves a harmonious
equilibrium between efficiency and cost. In contrast to the
model presented in [12], the synthetic model described in this
paper greatly enhances BCE of the sparse transmitting array us-
ing the subarray partition model (BCE = 94.92% > BCE =
91.09%). Unlike the model proposed in [18], the model pro-
posed in this paper uses a small number of array elements,
achieving higher BCE (BCE = 94.92% > BCE = 92.82%)
and lower CSL (CSL = −20.62 dB < CSL = −13.41 dB).
At the same time, the reduction in the number of arrays re-
duces the cost of the system. Compared to [19], the model
proposed in this paper has a better transmitting performance
(BCE = 94.92% > BCE = 92.60%) and also has an advan-
tage in the sparsity of the array (γe = 64% < γe = 79%).
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M BCE CSL (dB) αref ∆BCE
2 89.06% −12.03 0.0156 −0.0537

3 93.09% −11.03 0.0103 −0.0134

4 94.21% −11.84 0.0020 −0.0022

5 94.59% −13.29 3.30× 10−4 0.0016
6 94.92% −13.40 2.38× 10−6 0.0049
7 95.13% −12.65 1.41× 10−31 0.0070
8 95.16% −12.76 7.73× 10−34 0.0073
9 95.17% −13.14 0.0000 0.0074
10 95.27% −12.68 0.0000 0.0084

TABLE 2. The MO-NTVILF-IPSO partition results with different
numbers of subarrays on NSDQSPA model.

FIGURE 3. The BCE and CSL results of the MO-NTVILF-IPSO algo-
rithm optimization model.

TABLE 3. The maximum excitation amplitude with different numbers of subarrays.

M 2 3 4 5 6 7 8 9 10
αmax 0.83 0.87 0.90 0.91 0.92 0.93 0.96 1.00 1.00

To summarize, compared to other synthetic models with sparse
transmitting arrays, the NSDQSPA model greatly enhances the
BCE of the transmitting arrays. Furthermore, the NSDQSPA
model exhibits a reduced BCE compared to the full array, due
to the quadrant symmetric arrangement of its parts. Neverthe-
less, the model decreases the expense of manufacturing and the
intricacy of the feed network in real world engineering applica-
tions, ultimately resulting in a reduction in the overall system
cost. Hence, this model is better suited for synthesizing trans-
mitting arrays in the MWPT system.

4.2. Performance of MO-NTVILF-IPSO Algorithm in NSDQSPA
Synthesis Model with Different Number of Subarrays
The simulation experiment in this section uses the MO-
NTVILF-IPSO algorithm to optimize the NSDQSPA synthesis
model with nonuniform excitation amplitude. The sparsity of
the element excitation amplifier is γa = 12.5%, whereas the
sparsity of the number of array elements is γe = 64%. The
performance indicators suggested in this paper αref and ∆BCE
are utilized for evaluation, and the results of the numerical
simulation are displayed in Table 2.
As shown in Table 2, for the BCE, the excitation amplitude

of the elements in the middle area of the transmitting array
gradually increases. In contrast, the excitation amplitude of
the elements in the surrounding area decreases. Therefore, the
BCE increases when the number of subarrays is 6 (M = 6,
BCE = 94.92%), but the increase in BCE is not significant
when M > 6. For the CSL, when the number of subar-
rays is 2, the CSL outside the receiving area is low (M = 2,
CSL = −12.03 dB); when the number of subarrays exceeds
6, the CSL gradually decreases (M = 7, CSL = −12.65 dB),
(M = 8, CSL = −12.76 dB), (M = 9, CSL = −13.14 dB),
(M = 10, CSL = −12.68 dB). The optimization results of this

algorithm on the BCE and CSL are shown in Figure 3. There-
fore, it can be concluded that atM = 6, the overall performance
of the array is good (BCE is higher, and CSL is lower), and this
partition method is suitable for use in the MWPT system.
Meanwhile, as shown in Table 3, Figure 4, and Figure 5, after

normalizing the maximum excitation amplitude of the subar-
ray increases gradually with the number of partition subarrays
(M = 10, αmax = 1.00) > (M = 2, αmax = 0.83), further
proving that subarray partition of the transmitting array can im-
prove array performance.
In order to further demonstrate the effectiveness of the com-

posite model in dividing sparse transmitting arrays into sub-
arrays, the evaluation indicators proposed in Eq. (18) and
Eq. (19), namely αref and ∆BCE are used to evaluate the syn-
thesis model. From Figure 6, it can be seen that as the num-
ber of subarray partitions increases, the optimization accuracy
of the algorithm proposed in this paper for the BCE continu-
ously improves. At the same time, the mean square error of
the excitation amplitude before and after the subarray partition
is reduced. The following conclusion can be reached that the
algorithm is applicable in the subarray partition model of the
transmitting array, and when the divided subarrays are greater
than 5 (M = 5 : ∆BCE = 0.0016, αref = 3.30 × 10−4), the
optimization accuracy of the algorithm continues to improve.
However, the improvement speed is slow; the mean square er-
ror is small; and good results can be achieved when dividing the
number of subarrays into 6 (M = 6 : ∆BCE = 0.0049, αref =
2.38 × 10−6). Therefore, dividing the transmitting array into
six subarrays can effectively improve the performance of the
transmitting array, and the model only uses six excitation am-
plitude amplifiers, reducing system cost.
Meanwhile, due to the nonuniform excitation amplitude of

the arrays in the synthesis model, in order to verify the effec-
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(a) (b)

FIGURE 4. The simulation results of the NSDQSPA model with MO-NTVILF-IPSO algorithm, (a) excitation amplitude distribution, (b) normalized
power pattern. (M = 2, BCE = 89.06%, CSL = −12.03 dB).

(a) (b)

FIGURE 5. The simulation results of the NSDQSPA model with MO-NTVILF-IPSO algorithm, (a) excitation amplitude distribution, (b) normalized
power pattern. (M = 10, BCE = 95.27%, CSL = −12.68 dB).

FIGURE 6. The ∆BCE and αref results of the MO-NTVILF-IPSO al-
gorithm optimization model.

tiveness of the algorithm in optimizing the nonuniform exci-
tation amplitude transmitting array with the same number of
arrays, a comparison was made between the array excitation
amplitude distribution and normalized power pattern not opti-

mized by the algorithm, as shown in Figure 7. The array exci-
tation amplitude distribution and normalized power pattern are
optimized by the algorithm, as shown in Figure 8.
From the excitation amplitude distribution and normalized

power pattern, it can be seen that when the number of sub-
arrays is divided into 6, optimizing the subarray partition al-
gorithm can concentrate the transmitting beams mainly in the
central collection area, effectively reducing the impact of CSL
out of the receiving area on the transmitting array (CSL =
−12.24 dB < CSL = −11.21 dB). Moreover, the BCE is
higher than that of the nonuniform excitation amplitude trans-
mitting array optimized by the algorithm (BCE = 94.92% >
BCE = 94.43%). The conclusion can be drawn that optimiz-
ing the quadrant symmetric model through this algorithm effec-
tively improves the performance of the transmitting array.

4.3. Optimization of Element Position in MO-NTVILF-IPSO Al-
gorithm

As shown in Figure 9, the algorithm can divide the array into
subarrays according to the excitation amplitude while optimiz-
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(a) (b)

FIGURE 7. The simulation results of the NSDQSPA model without MO-NTVILF-IPSO algorithm, (a) excitation amplitude distribution, (b) normal-
ized power pattern. (M = 6, BCE = 94.43%, CSL = −11.21 dB).

(a) (b)

FIGURE 8. The simulation results of the NSDQSPA model without MO-NTVILF-IPSO algorithm, (a) excitation amplitude distribution, (b) normal-
ized power pattern. (M = 6, BCE = 94.92%, CSL = −12.24 dB).

ing the position of the array elements. With one-step multi-
objective optimization, the performance of the optimized trans-
mitting array is improved. Since the model is a quadrant sym-
metric model, the algorithm only optimizes the variables in
the first quadrant when optimizing the model, and the rest
of the quadrants can be mapped synchronously, which saves
the expenditure of computational data of the system and im-
proves the performance of the transmitter array model. Divid-
ing the number of subarrays into 6 may significantly enhance
the performance of the transmitting array using the technique
(BCE = 94.92% > BCE = 76.10%), (CSL = −13.40 dB <
CSL = −12.30 dB).
The excitation amplitudes of the subarrays have been nor-

malized to values of 0.17, 0.31, 0.54, 0.63, 0.76, and 0.92. The
distribution of these amplitudes may be seen in Figure 10.

4.4. Performance of the MO-NTVILF-IPSO Algorithm with Dif-
ferent Array Spacing

To further validate the superiority and rationality of the sug-
gested spacing between array elements in this research, while
also meeting the criteria for array sparsity [21], the perfor-

mances of the array element spacing at 0.5λ, 0.55λ, and 0.6λ
are compared using the evaluation metrics∆BCE and αref.
From Figure 11, it can be seen that for different array ele-

ment spacings, as the number of subarrays increases,∆BCE in-
creases, and αref decreases, which further proves that the subar-
ray division method can improve the performance of the trans-
mitting array. In the case of 6 subarrays, for the performance
indicators of the array: the ∆BCE(0.6λ > 0.55λ > 0.5λ),
αref(0.6λ < 0.55λ < 0.5λ), it can be concluded that for both
∆BCE and αref, the performance of the transmitting array is
best for an array element spacing of 0.6λ, when the spacing
of the array elements is chosen to be 0.65λ or 0.7λ, for the
transmitting array with the same aperture, the number of array
elements will be reduced, and at the same time the array per-
formance will be reduced; therefore the array element spacing
of 0.6λ is chosen.

4.5. Performance Comparison of MO-NTVILF-IPSO Algorithm
with Other PSO Algorithms

To showcase the efficiency and superiority of the MO-
NTVILF-IPSO algorithm suggested in this study, the algorithm
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FIGURE 9. Distribution of transmitting array element positions before
and after algorithm optimization.

FIGURE 10. The excitation amplitude distribution of the optimization
model.

(a) (b)

FIGURE 11. Performance comparison for different array spacing, (a) beam collection efficiency optimization accuracy∆BCE, (b) excitation ampli-
tude mean square error αref.

FIGURE 12. Comparison of BCE simulation results between MO-
NTVILF-IPSO algorithm and other PSO algorithms.

FIGURE 13. Comparison of αref simulation results between MO-
NTVILF-IPSO algorithm and other PSO algorithms.

was implemented alongside three other PSO algorithms on the
NSDQSPA model, using a transmitting array divided into six
subarrays as the experimental setup.

As shown in Figures 12 and 13, the following conclusions
can be drawn from the simulation experiment of 200 epochs of
simulation experiments, the optimal BCE and αref obtained by
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the proposed MO-NTVILF-IPSO algorithm is better than those
of the multiple-objective basic particle swarm optimization al-
gorithm (MO-BPSO) [22], multiple-objective standard particle
swarm optimization algorithm (MO-SPSO) [23], and multiple-
objective compression factor particle swarm optimization al-
gorithm (MO-CFPSO) [24]. MO-CFPSO does not take into
account the connection among global and local optima. Com-
pared to the MO-BPSO algorithm, the results obtained by
MO-NTVILF-IPSO algorithm can avoid local optima. Com-
pared to MO-SPSO algorithm, which only changes the inertia
weight linearly, MO-NTVILF-IPSO algorithm adopts dynam-
ically adjusted learning factors and variable inertia weights to
obtain better results. Compared toMO-CFPSO algorithm,MO-
CFPSO algorithm has a slow convergence speed and is prone
to fall into local optimality. Nevertheless, the proposed MO-
NTVILF-IPSO algorithm conducts a global search at the initial
stage of each iteration and a local search at a later stage. This
approach enhances both the speed of convergence and the guar-
antee of achieving a convergence result.

5. CONCLUSION

In this paper, an NSDQSPA model is proposed to optimize the
performance of a transmitting array. The model is divided into
subarrays based on the excitation amplitude of each subarray,
andMO-NTVILF-IPSO algorithm is proposed as a one-step op-
timization algorithm that simultaneously optimizes ∆BCE of
the transmitting array and the αref before and after dividing the
subarrays. According to the proposed array optimization model
and algorithm, good results have been achieved in terms of im-
proving the performance of the transmitting array and reducing
system cost.
The effectiveness of the models and algorithms proposed in

this paper can be tested by analyzing a large number of data
simulations. By comparing the proposed array model with sev-
eral known models, the superiority of the proposed model is
confirmed through several performance evaluation indicators,
such as the sparsity parameter, BCE, and CSL. The simulation
results obtained in this article on the NSDQSPA transmitting
model with the transmitting aperture of 4.5λ × 4.5λ and the
receiving area of u0 = v0 = 0.2 are as follows: The opti-
mal element spacing is 0.6λ, and when the overall transmit-
ting array is divided into 6 subarrays, the sparsity parameters
of the model are: γa = 12.5%, γe = 64%; simultaneously the
transmitting array performance parameters: BCE = 94.92%,
CSL = −13.4 dB. Compared to arrays with the same elements
that are not under a subarray partition, the optimization accu-
racy is ∆BCE = 0.0049 and αref = 2.38 × 10−6. The op-
timization technique presented in this paper may significantly
enhance the performance of the transmitting array in theMWPT
system. The method enhances the BCE and reduces the refer-
ence error compared to arrays that have nonuniform excitation
amplitude. Additionally, the model adopts quadrant symmet-
ric distribution, which saves system cost and is suitable for the
MWPT system.
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