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ABSTRACT: Model predictive control (MPC), as a frequently adopted control strategy for permanent magnet synchronous motors
(PMSMs), exhibits favorable dynamic response capabilities. However, it necessitates an accurate mathematical model of the controlled
object, and any parameter mismatch can lead to a decline in control performance. This paper proposes a model predictive current control
(MPCC) method based on parameter identification, which can be extended to the parameter identification of plug-in permanent magnet
synchronous motors (IPMSMs). A wide-adaptability variable step-size algorithm is designed in response to the varying effects of single
variable step-size functions on parameter convergence speed and ripple when the motor experiences different parameter disturbances.
This method classifies and fits various variable step-size functions based on the maximum value of the absolute value of different instan-
taneous errors. This allows different variable step-size functions to adapt to different parameter disturbances, resulting in rapid waveform
convergence and consistent ripple size in the identification process. Additionally, a new variable step-size function type was designed
with simple parameter settings and easy debugging. Finally, the effectiveness of the proposed method was verified through experiments,
and the results showed that the method can achieve fast and accurate identification of multiple parameters under different parameter
perturbations, ensuring stable current control.

1. INTRODUCTION

PMSMs are widely used in industrial automation, electric ve-
hicles, aerospace, and other fields due to their high power

density, high efficiency, precise control, and long life. PMSM
system is a complex control system with nonlinear and strong
coupling characteristics, making it challenging to achieve sat-
isfactory control performance with linear current control meth-
ods such as PI. Currently, there are some relatively mature con-
trol strategies, such as sliding mode control, fuzzy control, and
MPC [1–6].
MPC has good dynamic response performance and can

quickly track command signals without overshoot, but the
current prediction process is affected by various factors, such
as motor parameter mismatch, digital control system delay,
and inverter nonlinearity [7–10]. In order to optimize the MPC
control algorithm and reduce the current prediction error, that
is, the difference between the predicted value and the actual
measured value, it is necessary to consider better operating
conditions and perform necessary error compensation. In
response to the problem of prediction error, many experts and
scholars have proposed solutions and improvements, such as
designing disturbance observer methods, direct compensation
methods for prediction errors, model-free predictive current
control, and parameter identification methods [11–14]. Among
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them, the parameter identification method can fundamentally
reduce the impact of parameter mismatch on the system by
identifying the stator resistance, dq-axis inductance, and
permanent magnet flux linkage of the permanent magnet
synchronous motor.
According to whether the PMSM is in online operation, pa-

rameter identification methods can be divided into offline iden-
tification and online identification. Offline identification can-
not track the changes in motor parameters in real time and
can only obtain the identification results of motor parameters
through steady-state calculations based on collected informa-
tion such as motor voltage, current, and speed. In order to
obtain the parameters of the motor in real time, online iden-
tification strategy can be adopted. Common PMSM identifica-
tion algorithms include least squares method, extended Kalman
filter algorithm, model reference adaptive system (MRAS) al-
gorithm, and neural network algorithm. Ref. [15] uses the
method of fixing the magnetic flux parameters in the MRAS
adjustable model to identify the resistance and inductance pa-
rameters. However, if there is a deviation between the mag-
netic flux values in the model and actual magnetic flux val-
ues, it will lead to identification errors in the resistance and in-
ductance. To overcome the problem of low rank, [16] obtains
the high-frequency characteristics of the motor by injecting
high-frequency voltage to increase the state equation, thereby
achieving multi-parameter identification. Ref. [17] uses cur-
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rent injection to construct a new motor state equation during
steady-state operation of the motor, solving the problem of low
rank in multi-parameter identification. However, the current
injection method may have an impact on the operating state of
the motor. Ref. [18] proposes the concept of quasi-steady state,
which achieves simultaneous multi-parameter identification of
the motor by constructing a steady-state equation for the motor
under different speed conditions. However, the identification
process requires continuous adjustment of the operating state of
the motor, and the control process is complex. In recent years,
neural network algorithms have been used for parameter iden-
tification of PMSM and have achieved good results. Ref. [19]
introduces a single-layer neural network with gradient descent
into motor parameter identification. Although the identifica-
tion speed converges quickly, the reliability of the identifica-
tion results is low. Ref. [20] proposes a parameter identification
method based on adaptive linear element neural network. This
method utilizes d-axis current injection to construct a new state
equation for the motor when it is stationary. It not only solves
the rank-deficient problem in multi-parameter identification of
motors, but also considers the impact of nonlinear factors cor-
responding to the inverter on the system. Although this method
has low computational complexity and high identification accu-
racy, the multi-parameter identification process cannot be per-
formed simultaneously. A variable step size Adaline neural net-
work parameter identification method is proposed in [21]. This
method constrains the step size by establishing a functional re-
lationship between instantaneous error and step size, effectively
reducing the steady-state error of motor parameter identifica-
tion while improving the convergence rate of the identification
results. However, when the instantaneous error is very small,
there is a problem of too fast step-size change, which will af-
fect the stability of the identification process. In response to
this problem, [22] proposes a new variable step-size function
that improves the stability of the identification process when
the instantaneous error is very small. Moreover, this function
introduces a speed factor to ensure the performance of the iden-
tification algorithm at different speeds. However, when there
are varying degrees of parameter mismatch in the motor, this
algorithm cannot guarantee consistency between identification
speed and identification accuracy.
To address the above issues, this paper replaces the simpli-

fied motor mathematical model based on traditional neural net-
work parameter identification algorithm with a current predic-
tion error model, making the proposed algorithm applicable to
parameter identification of IPMSM. In addition, based on the
relationship between motor parameter mismatch and the maxi-
mum absolute value of instantaneous error, this paper maps dif-
ferent larger values of instantaneous error to different variable
step functions. This enables the motor to correspond to differ-
ent variable step functions under different degrees of parameter
mismatch, ensuring consistency in the recognition speed and
recognition accuracy of the algorithm. Finally, this paper pro-
poses a new variable step-size function, which is simpler to tune
and easier to debug than traditional variable step-size functions.

2. MPCC THEORY AND CURRENT PREDICTION ER-
ROR MODEL

2.1. MPCC Theory
The stator current equation of the permanent magnet syn-
chronous motor in the synchronous rotating coordinate system
(d-q) is as follows:{

Ld
did
dt = −Rid + ωLqiq + ud

Lq
diq
dt = −Riq − ωLdid + uq − ωψf

(1)

where Ld is the stator d-axis inductance; Lq is the stator q-axis
inductance; R is the stator resistance; ω is the rotor electrical
angular velocity;ψf is the rotor permanentmagnet flux linkage;
id is the stator current d-axis current component; iq is the stator
current q-axis current component; ud is the stator voltage d-
axis voltage component; uq is the stator voltage q-axis voltage
component.
The discrete dq-axis current prediction equation for the next

sampling moment can be approximated by the Euler discretiza-
tion method:

id(k + 1) =
(
1− TsR

Ld

)
id(k) +

TsLq

Ld
ω(k)iq(k)

+ Ts

Ld
ud(k)

iq(k + 1) =
(
1− TsR

Lq

)
iq(k)− TsLd

Lq
ω(k)id(k)

+ Ts

Lq
uq(k)− Tsψf

Lq
ω(k)

(2)

where Ts is the control period.
Use (2) to calculate the predicted values of the d-axis and q-

axis currents corresponding to the eight basic voltage vectors,
and then substitute them into the value function (3). The volt-
age vector that minimizes the value function is selected as the
optimal voltage vector and is output by the inverter.

gi = [i∗d − id(k + 1)]
2
+

[
i∗q − iq(k + 1)

]2 (3)

where i∗d and i∗q are the d-axis and q-axis current commands,
respectively.

2.2. Current Prediction Error Model
According to the prediction model (2), when there is a parame-
ter mismatch in the motor, the current prediction model can be
expressed as follows:

i′d(k+1)=
[
1− Ts(R+∆R)

Ld+∆Ld

]
id(k)

+
Ts(Lq+∆Lq)
Ld+∆Ld

ω(k)iq(k)+
Ts

Ld+∆Ld
ud(k)

i′q(k+1)=
[
1− Ts(R+∆R)

Lq+∆Lq

]
iq(k)

−Ts(Ld+∆Ld)
Lq+∆Lq

ω(k)id(k)+
Ts

Lq+∆Lq
uq(k)

−Ts(ψf+∆ψf )
Lq+∆Lq

ω(k)

(4)

where ∆R, ∆Ld, ∆Lq , and ∆ψf are the differences between
the actual values and reference values of resistance, d-axis in-
ductance, q-axis inductance, and permanent magnet flux link-
age, respectively. Subtracting (4) from (2) yields the current
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prediction error model as follows:

Ed = i′d(k + 1)− id(k + 1)

= TsR∆Ld−Ts∆RLd

Ld(Ld+∆Ld)
id(k)− Ts∆Ld

Ld(Ld+∆Ld)
ud(k)

+
Ts∆LqLd−TsLq∆Ld

Ld(Ld+∆Ld)
ω(k)iq(k)

Eq = i′q(k + 1)− iq(k + 1)

=
TsR∆Lq−Ts∆RLq

Lq(Lq+∆Lq)
iq(k)− Ts∆Lq

Lq(Lq+∆Lq)
uq(k)

+
Ts∆LqLd−TsLq∆Ld

Lq(Lq+∆Lq)
ω(k)id(k)

+
Ts∆Lqψf−TsLq∆ψf

Lq(Lq+∆Lq)
ω(k)

(5)

From (5), it can be seen that any change in one parameter
can cause current prediction errors. The relationship between
current prediction errors and parameter mismatches is reflected
in [23], from which it can be seen that parameter mismatches
in inductance and permanent magnet flux linkage are the main
factors that cause current prediction errors, while the impact of
resistance mismatches is quite small and can be almost ignored.
Based on the above conclusion, the simplified model is ob-

tained by substituting∆R = 0 into (5):
Ed = Ad

Ts[Rid(k)−ud(k)]
Ld

+Aq
TsLqω(k)iq(k)

Ld

Eq = Bq
Ts[Riq(k)−uq(k)]

Lq
+Bd

TsLdω(k)id(k)
Lq

+Cψf

Tsω(k)ψf

Lq

(6)



Ad =
∆Ld

Ld+∆Ld

Aq =
∆LqLd−Lq∆Ld

Lq(Ld+∆Ld)

Bq =
∆Lq

Lq+∆Lq

Bd =
∆LqLd−Lq∆Ld

Ld(Lq+∆Lq)

Cψf
=

∆Lqψf−Lq∆ψf

ψf (Lq+∆Lq)

(7)

3. TRADITIONAL ADALINE NEURAL NETWORK THE-
ORY AND PARAMETER IDENTIFICATION ALGORITHM
DESIGN

3.1. Adaline Neural Network Theory
The Adaline neural network is a linear neural network that can
output any value. The function of the Adaline neural network
is to compare its expected output with the actual simulated out-
put, obtain an error signal that is also a simulated quantity, and

FIGURE 1. Basic structure of Adaline neural network.

continuously adjust the weight vector online based on the error
signal to ensure that the expected output and actual simulated
output remain equal at all times, thereby converting a set of
input simulated signals into any desired waveform. Currently,
this algorithm can be used for some dynamic systemswith com-
plex coupling relationships to identify system parameters. The
basic structure of the Adaline neural network is shown in Fig-
ure 1.
The input and output relationship of the neural network is as

follows:
O(Wi, Xi) =WX =

∑
WiXi (8)

The convergence expression of its weight value is as follows:{
W (k + 1) =W (k) + 2ηX(k)ε(k)

ε(k) = d(k)−O(k)
(9)

In (9), W (k), X(k), O(k), and d(k) represent the weight
value, input, output, and target output of the network at time
kTs. In this algorithm, the actual value of each step-size is re-
placed by an estimated value of the gradient, eliminating the
need for complex matrix solving. The iterative calculation re-
quires only a small number of simple operations. Compared to
model reference adaptive algorithms and extended Kalman fil-
ter algorithms, Adaline algorithm has significantly lower com-
putational cost while ensuring convergence speed.
In order to ensure the convergence of the algorithm, the step-

size η needs to satisfy the following conditions:

0 < 2η|X(k)|2 < 1 (10)

3.2. Design of Parameters Identifier for Traditional Adaline
Neural Network Algorithm
In the permanent magnet synchronous motor control system,
the control method of Id = 0 is usually adopted. When the
motor is operating steadily, the differential terms of the d-axis
and q-axis in (1) and the d-axis current can be approximately
equal to 0, so the steady-state voltage equation can be expressed
as: {

ud = −Lqωiq
uq = Riq + ωψf

(11)

From (11), it can be seen that Lq is not coupled with other
parameters and can be identified independently, while R and
ψf are coupled and cannot be identified directly. Usually, the
method of injecting current into the d-axis is used to increase
the number of motor state equations and achieve online param-
eter identification. Additionally, use (11) to add the motor state
equation by subtracting the values at two different time points,
and then identify R based on the added motor state equation.
These two methods cannot identify both R and ψf at the same
time, requiring the identification of R before the identifica-
tion of ψf , which greatly affects the identification speed of ψf .
Considering that the change in resistance has a small impact on
current prediction error, this article will not identify resistance.
The average value of both sides of the two equations in (11)
can reduce the influence of nonlinear factors in the inverter on
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FIGURE 2. Basic structure diagram of MPCC based on Adaline neural
network parameter identification.

FIGURE 3. Block diagram of the structure of the wide adaptation vari-
able step-size strategy.

parameter identification. Therefore, the final identification al-
gorithm design is as follows:

1) q-axis inductance identifier
According to the first equation in formula (11), the identifi-

cation algorithm for q-axis inductance is designed as follows:
XLq (k) = −ω̄(k)̄iq(k)
OLq (k) = Lq(k)XLq (k)

dLq
(k) = ūd(k)

Lq(k + 1) = Lq(k) + 2η(k)XLq
(k)ε(k)

(12)

2) Rotor permanent magnet flux identifier
According to the second equation in formula (11), the identi-

fication algorithm for the rotor permanent magnet flux linkage
is designed as follows:

Xψf
(k) = ω̄(k)

Oψf
(k) = ψf (k)Xψf

(k)

dψf
(k) = ūq(k)−Rīq

ψf (k + 1) = ψf (k) + 2η(k)Xψf
(k)ε(k)

(13)

The above Adaline neural network algorithm proposes a
strategy of taking the average of the input and target output of
the identification algorithm. Although this improves the sta-
bility of the identification, the resulting convergence speed of
the identification is also slowed down, and there is a certain
lag in the identification process, which makes the identifica-
tion time longer. For applications that require simultaneous
identification of d-axis inductance and q-axis inductance, due to
the limitations of its mathematical model, the traditional Ada-
line neural network algorithm can only identify the q-axis in-
ductance. Based on the above problems, this paper proposes
an Adaline neural network parameter identification algorithm
based on current prediction error model. This algorithm does
not require taking the average of any part, and compared to the
above traditional algorithm, it has faster identification speed,

higher identification accuracy, and is more suitable for multi-
parameter identification.

3.3. Design of Adaline Neural Network Algorithm Parameter
Identifier Based on Current Prediction Error Model
From the above analysis, it can be seen that the traditional Ada-
line neural network algorithm parameter identification model
based on the model is not applicable to the environment of
IPMSM parameter identification. To solve this problem, with-
out considering the influence of resistance changes, the current
prediction error model (6) can be used as a new Adaline neural
network parameter identification model. This model contains
the disturbance information of parameters Ld, Lq , and ψf , and
can indirectly identify parametersLd,Lq , andψf by identifying
weights Ad, Aq , Bd, Bq , and Cψf

. To make the identification
process more concise and understandable, (7) is simplified to:

Ad =
α

1+α

Aq =
β−α
1+α

Bq =
β

1+β

Bd =
β−α
1+β

Cψf
= β−γ

1+β

(14)

In (14), α, β, and γ represent the change multipliers of param-
eters Ld, Lq , and ψf , respectively.
In (6), the second term of the two equations is usually much

smaller than the other terms, which means that small perturba-
tions in the other terms can cause large fluctuations in the iden-
tification of the weight value in the second term, making it im-
possible for the weight value to stabilize at the target value and
making it impossible to accurately identify the parameter repre-
sented by this term. To address this issue, under the premise of
ensuring smaller identification errors, Adaline neural network
IPMSM parameter identification algorithm is designed by tak-
ing Ad, Bq , and Cψf

as the identification conditions for α, β,
and γ, and finally obtaining the current parameters Ld, Lq , and
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ψf represented byα, β, and γ, respectively. Based on the above
analysis, the Adaline neural network IPMSM parameter iden-
tification algorithm based on current prediction error model is
designed as follows:

1) d-axis inductance identifier
According to (6), (7), and (14), the identification algorithm

for the d-axis inductance is designed as follows:

XA1(k) =
Ts[Rid(k)−ud(k)]

Ld

XA2(k) =
TsLqω(k)iq(k)

Ld

OLd
(k) = Ad(k)XA1(k) +Aq(k)XA2(k)

dLd
(k) = imd (k + 1)− iPd (k + 1)

Ad(k + 1) = Ad(k) + 2η(k)XA1(k)εLd
(k)

Aq(k + 1) = Aq(k) + 2η(k)XA2(k)εLd
(k)

α(k + 1) = Ad(k+1)
1−Ad(k+1)

Ld(k + 1) = [1 + α(k + 1)]Ld

(15)

In (15), imd (k + 1) and ipd(k + 1) represent the measured
and predicted values of the d-axis current at time (k + 1)Ts,
respectively.

2) d-axis identifier and rotor permanent magnet flux linkage
identifier
According to (6), (7), and (14), the identification algorithm

for the q-axis inductance and rotor permanent magnet flux link-
age is designed as follows:

XB1(k) =
Ts[Riq(k)−uq(k)]

Lq

XB2(k) =
TsLdω(k)id(k)

Lq

XC1(k) =
Tsω(k)ψf

Lq

OLq+ψf
(k) = Bq(k)XB1(k) +Bd(k)XB2(k)

+Cψf
XC1(k)

dLq+ψf
(k) = imq (k + 1)− iPq (k + 1)

Bq(k + 1) = Bq(k) + 2η(k)XB1(k)εLq+ψf
(k)

Bd(k + 1) = Bd(k) + 2η(k)XB2(k)εLq+ψf
(k)

Cψf
(k + 1) = Cψf

(k) + 2η(k)XC1(k)εLq+ψf
(k)

(16)



β(k + 1) =
Bq(k+1)

1−Bq(k+1)

γ(k + 1) = [1− Cψf
(k + 1)]β(k + 1)

−Cψf
(k + 1)

Lq(k + 1) = [1 + β(k + 1)]Lq

ψf (k + 1) = [1 + γ(k + 1)]ψ

(17)

In (16), imq (k + 1) and ipq(k + 1) represent the measured
and predicted values of the q-axis current at time (k + 1)Ts,
respectively.
Due to the small difference in the values of network inputs

XB1 andXC1 corresponding to weightsBq andCψf
, the target

value can be stably reached even if the weightsBq and Cψf
are

not decoupled. However, the values of network inputsXA2 and
XB2 corresponding toweightsAq andBd are smaller than other

network inputs in various forms, so the coupling effects of the
two polynomials corresponding to weights Aq and Bd on other
terms are quite small, while the coupling effects of other terms
on these two polynomials are quite large. Therefore, weights
Aq and Bd are not suitable as identification conditions for Lq
and Ld. Considering the problem of identification error, this
article does not ignore the two polynomials corresponding to
weights Aq and Bd. Figure 2 is the control diagram of the pro-
posed method in this article.

4. IMPROVEMENT OF VARIABLE STEP-SIZE FOR
ADALINE NEURAL NETWORK PARAMETER IDENTIFI-
CATION METHOD

4.1. Variable Step-Size Design for Traditional Adaline Neural
Network Parameter Identification
According to the sigmoid function, the functional relationship
between the step-size η and the instantaneous error ε can be
constructed. By adjusting the step-size η based on the instanta-
neous error ε, the internal algorithm can achieve rapid conver-
gence. The sigmoid function prototype is as follows:

f(x) =
1

1 + e−x
(18)

The traditional variable step-size algorithm adjusts the sig-
moid function by simply shifting and flipping it, and adding
parameters a, b, and c. Finally, it can obtain a function of the
step-size η(k) and the absolute value of the instantaneous error
|ε(k)|, as shown below:

η(k) =
1− e−a|ε(k)|

c

b+ e−|ε(k)|c (19)

Parameter a controls the rate of change of the function; pa-
rameter b controls the maximum value of the function; and pa-
rameter c controls the convergence range of the function.

4.2. Design of Variable Step-Size for Improved Adaline Neural
Network Parameter Identification
When there is a parameter mismatch in the motor, the absolute
value of the instantaneous error ε and the identification param-
eter fluctuation will be relatively large during the initial stage
of the Adaline neural network parameter identification algo-
rithm. However, after the algorithm has stabilized, there will
be a small steady-state error between the instantaneous error ε
and the identification parameter. The traditional Adaline neu-
ral network parameter identification variable step-size function
input is often based on the above range of instantaneous error
ε fluctuation and steady-state error range, allowing the step-
size η to gradually decrease from a larger step-size or maximum
step-size to a smaller step-size or 0 as the instantaneous error ε
fluctuates before and after the identification is stable. Since an
increase or decrease in the actual parameters of the motor can
affect the fluctuation range of the instantaneous error ε, a sin-
gle variable step-size function with instantaneous error ε as the
input will output different step-size ranges for different motor
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(a) (b)

FIGURE 4. Current prediction error of d-axis and q-axis. (a) The motor parameters are 0.5 times the nominal value. (b) The motor parameters are
1.5 times the nominal value.

actual parameters, resulting in inconsistent parameter conver-
gence speed and steady-state fluctuation range.
For the influence of different motor actual parameters on the

instantaneous error ε, this paper proposes a variable step-size
improvement of the Adaline neural network parameter identifi-
cation method. This method takes the maximum absolute value
of the instantaneous error produced by the maximum step-size
input before the identification stabilizes as the classification cri-
terion, and classifies the above maximum absolute value range
with different variable step-size functions, where different vari-
able step-size functions represent the actual parameters of the
adapted motor. Specifically, at the beginning of identification,
a fixed maximum step-size is first input, and based on the cur-
rent maximum absolute value of the output instantaneous error
ε, a variable step-size function corresponding to the classifica-
tion is selected. Therefore, under different motor actual param-
eters, the identification waveform can achieve rapid conver-
gence and small steady-state ripple. Figure 3 shows the block
diagram of the structure of the wide adaptation variable step-
size strategy proposed in this paper.
The following is the variable step-size function proposed in

this article.
η(k) = −M1[1−eV (|ε(k)|−ε0)]

1+eV (|ε(k)|−ε0) +M2

M1 = ηmax−ηmin
2

M2 = ηmax+ηmin
2

(20)

In (20), parameter V controls the rate of change of the function;
parameter ε0 controls the midpoint position of the convergence
segment; parameter ηmax represents themaximum step-size; pa-
rameter ηmin represents the minimum step-size. Compared to
traditional variable step-size functions, the variable step-size
function proposed in this paper considers the control of themin-
imum step-size and the midpoint position in the convergence
section. When setting parameters, ηmax and ηmin can be eas-
ily obtained by (10), just based on the instantaneous error ε.

Set parameters for the fluctuation range of ε0, and then adjust
the parameter V appropriately. However, when applying tra-
ditional variable step-size function, parameters a and c cannot
be calculated through any virtual feedback, and continuous ad-
justment of parameters a and c is necessary. It is obvious that
the improved variable step-size function proposed in this arti-
cle has amore flexible and versatile control of step-size, a wider
range of applications, and more convenient parameter settings
and adjustments.

5. SIMULATION AND EXPERIMENTAL RESULTS
Due to the difficulty in simulating the parameter variations of
physical motors, this article conducts simulation in the MAT-
LAB/Simulink environment and implements hardware in the
loop simulation experiments of permanent magnet synchronous
motors on the RT-LAB experimental platform. The sampling
frequency of simulation and experiment is 10 kHz. The simu-
lation and experiment in this article both adopt the MPCC strat-
egy, and the main parameters of the used motor are shown in
Table 1.

TABLE 1. Motor parameters.

Parameter Description Value
Udc (V) DC-bus voltage 310
Pn Number of pole pairs 4

Rs (Ω) Stator resistance 0.958
Ld (mH) D-axis inductance 5.25
Lq (mH) Q-axis inductance 12
Ψf (Wb) Permanent magnet flux 0.1827
J (kg·m2) Moment of Inertia 0.003
B (N·m·s) Damping coefficient 0.008
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FIGURE 5. RT-LAB experimental platform. FIGURE 6. RT-LAB hardware in the loop system configuration.

(a) (b)

FIGURE 7. Identification results of three identification algorithms for q-axis inductance and permanent magnet flux linkage. (a) The motor parameters
are 0.5 times the nominal value. (b) The motor parameters are 1.5 times the nominal value.

The simulation results of the d-axis and q-axis current pre-
diction errors are shown in Figure 4. When the actual motor
parameters are 0.5 times and 1.5 times the nominal values, the
load torque jump and parameter compensation occur at 0.3 s
and 0.6 s, respectively. As can be seen from the figure be-
low, when the motor has a parameter mismatch, regardless of
whether the motor is loaded or not, there is a high d-axis and
q-axis current prediction error in the system. This has a signif-
icant adverse impact on the high-precision control of the sys-
tem. Therefore, after introducing the identified parameters to

the controller at 0.6 s, the d-axis and q-axis current prediction
errors significantly decreased, which effectively improved the
control accuracy of the system.
The experimental platform consists of a simulation machine

OP5600, a DSP controller TMS320F2812, upper computer
monitoring equipment, and an oscilloscope in conjunction with
relevant software, as shown in Figure 5. The RT-LAB hardware
in the loop configuration is shown in Figure 6, and the inverter
and PMSM system are constructed using RT-LAB (OP5600).
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(a) (b)

FIGURE 8. Identification results of IVACEM for d-axis inductance. (a) The motor parameters are 0.5 times the nominal value. (b) The motor
parameters are 1.5 times the nominal value.

(a) (b)

FIGURE 9. d-axis and q-axis current waves before and after parameter compensation. (a) TVA. (b) IVACEM.

When the working speed of IPMSM is 1000 r/min, the load
torque is 10Nm, and the d-axis inductance, q-axis inductance,
and permanent magnet flux are both 0.5 times of the nomi-
nal value and 1.5 times of the nominal value. The traditional
variable step-size Adaline neural network parameter identifi-
cation algorithm (TVA), the improved variable step-size Ada-
line neural network parameter identification algorithm based on
the traditional model (IVACM), and the improved variable step-
size Adaline neural network parameter identification algorithm
based on the current prediction error model (IVACEM) are used
to identify the current q-axis inductance and permanent magnet
flux. The identification results are shown in Figure 7.
Overall, regardless of whether the actual motor parameters

are 0.5 times of the nominal value or 1.5 times of the nomi-
nal value, the parameter identification time of IVACEM is less
than 2ms. Compared with TVA and IVACM, the identification

speed of IVACEM is faster and more stable. After the identifi-
cation is stable, it can be seen from the comparison of local en-
larged images that the q-axis inductance and permanent magnet
flux identification stability of IVACEM are better than those of
TVA and IVACM. This fully demonstrates that under different
motor parameter disturbances, IVACEM has faster identifica-
tion speed and stronger identification stability than TVA and
IVACM.
From a detailed perspective, when the actual parameters of

the motor are 0.5 times of the nominal value or 1.5 times of
the nominal value, the q-axis inductance and permanent mag-
net flux identification time of TVA and IVACM remain con-
sistent. This indicates that these two methods have no ad-
vantages or disadvantages in identifying speed under differ-
ent motor parameter disturbances. After the identification is
stable, it can be seen from the comparison of local enlarged
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images that when the actual parameters of the motor are 0.5
times of the nominal value, the q-axis inductance and perma-
nent magnet flux identification stability of TVA and IVACM
are basically the same. When the actual parameters of the mo-
tor are 1.5 times of the nominal value, IVACM has better per-
formance in parameter identification stability than TVA. This
fully demonstrates that under different motor parameter distur-
bances, IVACM can maintain identification speed comparable
to TVA and has stronger identification stability.
When the working speed of IPMSM is 1000 r/min, the load

torque is 10Nm, and the d-axis inductance is 0.5 times of the
nominal value and 1.5 times of the nominal value. The identifi-
cation results of IVACEM for the current d-axis inductance are
shown in Figure 8. This figure reflects the identification ability
of IVACEM for d-axis inductance, which has fast identification
speed and stable identification results.
When the q-axis inductance, d-axis inductance, and perma-

nent magnet flux are all 1.5 times of the nominal value, the
parameters identified by TVA and IVACEM are respectively
compensated to the control system at 0.25 seconds. Figure 9
reflects the impact of the above twomethods on the dq-axis cur-
rent when IPMSM operates at a speed of 1000 r/min and a load
torque of 10Nm. After parameter compensation, IVACEM
has smaller d-axis and q-axis current ripple, and can basically
follow the q-axis current command and d-axis current com-
mand. The experimental results indicate that compared to TVA,
IVACEM has stronger steady-state performance.

6. CONCLUSION

In order to solve the problem of increased MPCC prediction
error caused by IPMSM parameter mismatch, which leads to
performance degradation of PMSM control system, this paper
proposes an MPC strategy for online parameter identification.
The conclusion is as follows:
1) The parameter identification strategy proposed in this ar-

ticle combines the derived and reconstructed current prediction
error model with the Adaline neural network parameter identi-
fication algorithm. By identifying the mismatch multiple of the
motor parameters, the motor parameters themselves are identi-
fied. Compared to the traditional Adaline neural network pa-
rameter identification algorithm, the strategy proposed in this
paper can be applied to IPMSM, with faster identification speed
and higher identification accuracy.
2) The paper proposes a variable step-size algorithm that

adapts the absolute value of the instantaneous error for differ-
ent ranges to the variable step-size functionwith different actual
parameters of themotor. This enables different actual motor pa-
rameters to correspond to different variable step-size functions,
resulting in more stable identification accuracy. This greatly
improves the algorithm’s adaptability to different motor pa-
rameter disturbance ranges. In addition, a novel variable step-
size function is proposed, which has simpler parameter tuning
and easier debugging than traditional variable step-size func-
tions. Finally, it has been demonstrated through experiments
that compared to the traditional variable step-size Adaline neu-
ral network parameter identification algorithm, the parameter

identification algorithm described in this paper has significant
advantages in real-time compensation of multiple parameters.
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