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ABSTRACT: The Stochastic Reduced-Order Models (SROMs) are a non-embedded uncertainty analysis method that has the advantages of
high computational efficiency, easy implementation, and no dimensional disasters. Recently, it has been widely used in the field of EMC
simulation. In the process of optimizing electromagnetic protection design, the worst-case estimation value is an extremely important
uncertainty quantification simulation result. However, the SROMs have a large error in providing this result, which limits its application
in the field of EMC simulation prediction. An improved SROM based on the Radial Basis Function (RBF) neural network algorithm
is proposed in this paper, which improves the fitness function in the genetic algorithm center clustering process and constructs an RBF
neural network model to obtain accurate worst-case estimation results. The accuracy improvement effect of the algorithm proposed in this
paper in worst-case estimation is quantitatively verified by using a parallel cable crosstalk prediction example from published literature.

1. INTRODUCTION

Uncertainty analysis is a hot research topic in the field of
Electromagnetic Compatibility (EMC) in recent years. It

treats the input parameters of simulation models as uncertain
variables, which can effectively improve the effectiveness of
EMC simulation models, explore the probability distribution of
the outputs being studied, and confirm the reliability of EMC
methods [1].
Uncertainty analysis methods can be divided into two cate-

gories based on whether the original solver needs to be mod-
ified: embedded and nonembedded. When solving complex
EMCproblems, it is often necessary to rely on commercial elec-
tromagnetic simulation software to simulate the actual electro-
magnetic environment [2]. However, the vast majority of com-
mercial electromagnetic simulation software companies have
not fully opened up the core program of the solver, which leads
to embedded uncertainty analysis methods being unable to be
used in many cases. The nonembedded uncertainty analysis
method does not modify the simulation software solver pro-
gram, and only a stable deterministic solver is needed to per-
form normal solving calculations. Compared to the embedded
uncertainty analysis method, it is more practical.
Typical nonembedded uncertainty analysis methods include

Monte Carlo Method (MCM) [3], Stochastic Collocation
Method (SCM) [4], Kriging surrogate model method [5],
Stochastic Reduced-Order Models (SROM) [6], etc. MCM
is based on the principle of weak law of large numbers and
utilizes a large number of discrete sampling points to describe
the uncertainty of model parameters. It has unique advantages
such as high computational accuracy and easy programming
implementation, and is commonly used as a standard result for
comparison with other methods [7]. However, the drawback of
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the MCM is obvious, that is, the principle of weak laws of large
numbers determines its extremely slow convergence speed.
When the single simulation time is long, the computational
resources required by the MCM are almost catastrophic, so
the MCM lacks competitiveness in practical engineering
applications.
As the generalized polynomial chaos theory gradually im-

proves in the field of computational fluid dynamics, the SCM
emerges, which has the dual advantages of high computational
accuracy and high computational efficiency. However, as the
number of random variables increases, the number of colloca-
tion points required by the SCM increases exponentially, and
the computational efficiency of the SCM also decreases expo-
nentially, leading to the curse of dimensionality [4, 8].
In order to effectively solve the curse of dimensionality,

SROM and Kriging method are widely applied in EMC sim-
ulation uncertainty analysis in recent years. SROM is able to
produce accurate output statistics by only using a small frac-
tion of the MC computational cost. The idea of the SROM
method is essentially different from other methods, but to ap-
proximate the statistics of random input variables by using a
very small number of selected samples assigned with probabil-
ities. Therefore, unlike MCM looking blindly and exhaustively
at all the possible cases, SROM method only needs to examine
these selected samples without sacrificing accuracy [9]. SROM
has the best applicability and high computational efficiency for
stochastic input mathematical models, but it can only provide
mean and variance predictions in uncertainty analysis results
[6]. The Kriging method uses a small amount of determinis-
tic simulation results as the training set to train the surrogate
model, and finally performs a large number of samplings on
the input randomness of the model to obtain uncertainty anal-

51doi:10.2528/PIERL24012503 Published by THE ELECTROMAGNETIC ACADEMY

https://doi.org/10.2528/PIERL24012503


Hu et al.

ysis results. However, its disadvantage is that the accuracy is
poor when EMC simulation has large nonlinearity [5].
In the theoretical research of nonembedded uncertainty anal-

ysis methods mentioned above, the results are often presented
in the form of probability density curves, which focus on the
overall accuracy of the proposed or improved algorithms. How-
ever, in practical engineering applications, the uncertainty anal-
ysis results under the worst-case estimation form have greater
significance, that is, the worst protected situation. SROM can-
not directly obtain accurate worst-case estimates during uncer-
tainty analysis, which greatly reduces its practicality. In re-
sponse to this problem, this paper utilizes the RBF neural net-
work model in the field of machine learning to improve the tra-
ditional SROM, enabling it to obtain accurate EMC worst-case
estimation results and enhancing the competitiveness of the
SROM in practical applications. The determination of extreme
values is sometimes performed with stratification method, and
the controlled stratification method aims at reducing the vari-
ance of estimation of extreme quantile, based on a correlated
simple model [10, 11], the algorithm proposed in this paper can
also provide this simple model for it.
The structure of this paper is as follows. Section 2 intro-

duces the basic principles of the traditional SROM. Section 3
provides a detailed introduction to the implementation process
of the improved SROM based on RBF neural network. Sec-
tion 4 compares the worst-case estimation performance using
parallel cable crosstalk examples. Section 5 provides prospects
for future research work. Section 6 summarizes the entire text.

2. BASIC PRINCIPLES OF THE TRADITIONAL SROM
When dealing with uncertainty analysis problems, random
variables are usually used to model random events, assum-
ing that N random variables ξ = {ξ1, ξ2, . . . , ξN} are in-
put during EMC simulation. Assuming that Hξ large num-
ber of discrete sampling points need to be utilized by the
MCM to describe the uncertainty of model parameters, de-
terministic EMC simulation is performed on each sampling
point Wi = {W i

ξ1
,W i

ξ2
, . . . ,W i

ξN} after sampling to obtain
Yi = yEM (Wi). Finally, after conducting mathematical statis-
tical calculations on Yi, the EMC uncertainty analysis results
and EMC worst-case estimation results can be obtained. When
a single EMC simulation takes a long time, the high number of
simulations required by this method can lead to low computa-
tional efficiency.
When dealing with uncertainty analysis problems, SROM is

similar to MCM in that it first uses a large number of discrete
sampling points to describe the uncertainty of the model, and
the difference is that this method applies genetic algorithm to
cluster these discrete sampling points, selects the most repre-
sentative point as the representative sampling point, and cal-
culates its weight. After deterministic EMC simulation at the
representative sampling points is conducted, the mean and vari-
ance results can be calculated according to formulas (1) and (2),
which are used as the results of EMC uncertainty analysis.

E(y) =

tξ∑
i=1

[
yEM (PRep

i )× ωRep
i

]
(1)

σ(y) =

tξ∑
i=1

{[
yEM (PRep

i )− E(y)
]2

× ωRep
i

}
(2)

Among them, tξ is the number of representative sampling
points, PRep

i the representative sampling points, ωRep
i the

weight of the representative sampling points, and yEM the de-
terministic EMC simulation result of the sampling points.
SROM has the characteristics of high computational effi-

ciency and easy implementation, but it cannot directly provide
worst-case estimation results. Based on the properties of Gaus-
sian distribution, the worst-case estimation can be replaced by
the form of “mean ±3 times standard deviation”, which is the
99.73% confidence interval boundary point. However, studies
have shown that this form introduces significant errors and has
poor accuracy in practical applications [12]. The inability to
provide accurate worst-case estimates can seriously affect the
applicability of SROM in practical applications.

3. IMPROVED SROM BASED ON RBF NEURAL NET-
WORK MODEL
RBF (Radial Basis Function) neural network is a high-
performance three-layer feedforward neural network with
good global approximation ability, compact topology, and
fast convergence speed [13–15]. RBF neural network model
can approximate nonlinear functions arbitrarily and has good
generalization ability under the condition of simple network
structure. Recently, it is applied in many fields. Its basic idea
is to use RBF as the “base” of the hidden unit to form the
hidden layer space, and the low-dimensional input vector is
transformed into a high-dimensional space through projection,
making the originally linearly inseparable problem linearly
separable [14]. Figure 1 is a schematic diagram of the basic
structure of the RBF neural network.

FIGURE 1. Basic structure of RBF neural networks.

An RBF neural network consists of three layers. The first
layer is the input layer, which is composed of signal source
nodes and only plays a role in transmitting data information
without any transformation of input information. The second
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FIGURE 2. The framework of improved SROM based on RBF neural network model.

layer is the hidden layer, which can directly map the input vec-
tor to the hidden space without the need for weight connections.
Therefore, the connection weight between the input layer and
hidden layer is 1, and the number of hidden layer nodes can be
determined as needed. The third layer is the output layer, which
responds to the input mode. The activation function of the out-
put layer neurons is a linear function. The information output
by the hidden layer neurons is linearly weighted and output as
the final output result of the entire neural network.
RBF is a real valued function whose value depends only on

the distance from the fixed-point c. Any function φ that satis-
fies the characteristic of φ(x, c) = φ(∥x− c∥) is a radial basis
function, and in simplified cases, it can also be the distance to
the origin, which can be expressed as φ(x) = φ(∥x∥). Usually,
Gaussian kernel function is used as the basis function of RBF
neural network, and the output of the hidden unit of RBF neural
network is:

φi(x, ci) = G(∥x− ci∥) = exp
(
− 1

2σ2
i

∥x− ci∥2
)

(3)

Among them, φ is the radial basis function, x the sample, ci the
i-th center point of the kernel function, and σi the width of the
i-th center point of the function.

The output of RBF neural network is:

yj =

h∑
i=1

ωij exp
(
− 1

2σ2
i

∥xp − ci∥2
)
, j = 1, 2, ···, n (4)

Among them, yj represents the output of the RBF neural net-
work, xp the p-th input sample, ci the i-th center point, σi the
width of the i-th center point of the function, ωij the connection
weight coefficient between the hidden layer neuron i and out-
put layer neuron j, h the number of nodes in the hidden layer,
and n the number of output samples or classifications.
As introduced in Section 2, the traditional SROM can only

obtain mean and variance prediction results when uncertainty
analysis is conducted and cannot directly provide accurate
worst-case estimation results. Using “mean ±3 times standard
deviation” instead of worst-case estimation results will intro-
duce significant errors. RBF neural network model can approx-
imate nonlinear functions arbitrarily, and the introduction of the
hidden layer kernel function concept greatly accelerates its con-
vergence speed and avoids the problem of local extremum [16].
Therefore, using RBF neural networks to improve traditional
SROM can solve the problem of its inability to directly provide
EMC worst-case estimation results, and the accuracy is guar-
anteed.
The framework of improved SROM based on RBF neu-

ral network model is shown in Figure 2. In order to clearly
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illustrate the process and details of the algorithm, the two-
dimensional random variable input is used in all the examples
in this paper, assuming that it is ξ = {ξ1, ξ2}. The specific
steps are as follows:

3.1. Selection of Representative Sampling Points
This paper improves the fitness function when using genetic al-
gorithm for clustering in SROM, so that the weightωRep

i of rep-
resentative sampling points is close to 1

tξ
, and the small num-

ber of representative sampling points PRep
i selected through

clustering can represent a large number of samples Wi =
{W i

ξ1
,W i

ξ2
} in the MCM sampling space. The specific steps

for selecting representative sampling points are as follows:
Firstly, a large number of samples are taken from the two-

dimensional random variable ξ = {ξ1, ξ2}, with a single sam-
pling point in the form of Wi = {W i

ξ1
,W i

ξ2
}. Among the

Hξ sampling points, tξ representative sampling points are ran-
domly selected, and their numbers

{
P1, P2, . . . , Ptξ

}
are chro-

mosomes in the genetic algorithm. The Euclidean distance
L(Wi,Wj) between two chromosomes is shown in formula (5),
and L(Wi,Wj) is used to describe the similarity;

L(Wi,Wj) =
√
(W i

ξ1
−W j

ξ1
)2 + (W i

ξ2
−W j

ξ2
)2 (5)

Secondly, the Euclidean distances between each remaining
point in the sampling space and these tξ representative sampling
points are calculated, and their minimum value is defined as
Lmin(Wi). The calculation formula is shown in formula (6):

Lmin(Wi)=min{L(Wi,WP1
), L(Wi,WP2

), . . . , L(Wi,WPtξ
)}

(6)
The minimum Euclidean distance is used as the standard to cal-
culate the weight

{
ω1, ω2, . . . , ωtξ

}
of tξ representative sam-

pling points in the sampling space. The fitness function of chro-
mosome

{
P1, P2, . . . , Ptξ

}
is:

Fin (P, ω) =

Hξ∑
i=1

Lmin(Wi) + kweight ×
tξ∑
j=1

∣∣∣∣ωj −
1

tξ

∣∣∣∣ (7)

Among them,
Hξ∑
i=1

Lmin(Wi) represents the minimum Euclidean

distance of all points, and the smaller the value of
tξ∑
j=1

∣∣∣ωj − 1
tξ

∣∣∣
is, the more average the weights of the selected representative
sampling points are. kweight is the proportional coefficient, and
the steps to determine kweight are as follows:

1. Let kweight = 0 and run the genetic algorithm. At this

point, Fin′ =
Hξ∑
i=1

Lmin(Wi) and the value of fitness func-

tion Fin′ is calculated.

2. The value of parameter Q can be determined by the num-
ber of representative sampling points. The range of Q is
0.02 ∼ 0.1. When there are more representative sampling
points (more than 100), Q is taken as 0.1. When there are
fewer sampling points (less than 10), Q is taken as 0.02.
The value of Q is taken proportionally.

3. After obtaining the values of Fin′ andQ, the amplitude of
kweight can be calculated using kweight =

Fin′

Q .
4. After the value of kweight is determined, it is substituted

into formula (7) to calculate the final fitness function Fin.

Thirdly, through the conventional selection, crossover, and
mutation operations of genetic algorithms, the optimal solution{
PRep
1 , PRep

2 , . . . , PRep
tξ

}
for representative sampling points

number
{
P1, P2, . . . , Ptξ

}
can be obtained, then the final rep-

resentative sampling point PRep =
{
PRep
1 , PRep

2 , . . . , PRep
tξ

}
and its weight ωRep =

{
ωRep
1 , ωRep

2 , . . . , ωRep
tξ

}
is obtained.

3.2. Acquisition of EMC Uncertainty Analysis Results
This part is the same as the traditional SROM processing
method. After selecting the representative sampling points

PRep =
{
PRep
1 , PRep

2 , . . . , PRep
tξ

}
and its weight ωRep ={

ωRep
1 , ωRep

2 , . . . , ωRep
tξ

}
using genetic algorithm, determinis-

tic EMC simulation is performed at the representative sampling
point to obtain yEM (PRep). Then, the mean and variance re-
sults can be calculated using formulas (1) and (2) proposed in
Section 2, which are used as the results of EMC uncertainty
analysis.

3.3. Acquisition of EMC Worst-Case Estimation Results
In this part, the model parameters of the RBF neural network
need to be set first. In this paper, Gaussian kernel function
is used as the basis function of the RBF neural network, with
the number of hidden layer nodes h = 10. The parameters to
be learned and optimized in RBF neural networks include the
center ci of the radial basis function, width σi, and the con-
nection weight ωij from the hidden layer to the output layer.
The output layer is responsible for optimizing ωij through a lin-
ear optimization strategy, and usually its learning speed is very
fast, while the hidden layer needs to use nonlinear optimiza-
tion methods to adjust the parameters of the activation func-
tion. The parameter learning methods of RBF neural networks
have different types according to the selection of RBF cen-
ters, mainly including self-organizing selection method, ran-
dom center method, supervised center method, and orthogonal
least squares method [16–18].
Because the representative sampling points PRep ={
PRep
1 , PRep

2 , . . . , PRep
tξ

}
selected by the genetic algorithm
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FIGURE 3. Parallel cable crosstalk prediction example considering geometric randomness.

FIGURE 4. Worstcase estimation results for VdB.

can represent a large number of samples Wi = {W i
ξ1
,W i

ξ2
}

in MCM, tξ deterministic EMC simulations yEM (PRep)
are performed at the representative sampling points to ob-
tain tξ training sets consisting of input-output data pairs
TRBF =

{
PRep, yEM (PRep)

}
, which are used to train the

RBF neural network, and the model it constructs is yRBF (Xi).
Finally, a large number of samples are taken from the two-
dimensional random variable ξ = {ξ1, ξ2}, and the obtained
large number of sampling points Ki = {Ki

ξ1
,Ki

ξ2
} are input

into yRBF (Xi) to obtain the calculation results yRBF (Ki).
The maximum or minimum values that meet the worst-case
conditions are selected from yRBF (Ki), which is the accurate
EMC worst-case estimation result.

4. PARALLEL CABLE CROSSTALK PREDICTION EX-
AMPLE CONSIDERING GEOMETRIC RANDOMNESS
The parallel cable crosstalk prediction example considering ge-
ometric randomness shown in Figure 3 is used in this section to
verify the performance of the improved SROM method based
onRBF neural network in EMCworst-case estimation. This ex-
ample is a standard example from references [19, 20], assuming
that the height of parallel cables is an uncertain input parameter,
and the example is described by the following random variable

model: {
L1(ξ1) = 0.045 + 0.005× ξ1[m]
L2(ξ2) = 0.035 + 0.005× ξ2[m]

(8)

Among them, ξ1 and ξ2 are uniformly distributed random
variables within [−1, 1]. The horizontal distance between two
cables is 0.05m. The frequency range calculated in this exam-
ple is 1MHz to 200MHz, and the output result is in decibels of
the far end crosstalk voltage VdB. The calculation formula for
VdB is as follows.

VdB = 20 log10
|VL|
|V0|

[dBV] (9)

The deterministic simulation solver for modulus conversion
method is implemented in the MATLAB environment in this
example, and the parallel cable crosstalk calculation in mature
literature is replicated to simulate the capacitance coupling ef-
fect and inductance coupling effect between cables, in order to
accurately calculate the remote crosstalk voltage. After com-
parison, the deterministic simulation results are consistent with
the results in references [19, 20], ensuring the reliability and
representativeness of the results.
Figure 4 shows the worst-case estimation results of VdB for

5 nonembedded uncertainty analysis methods: the improved
SROM, MCM, SCM, Kriging method, and traditional SROM.
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The MCM conducts 8000 deterministic EMC simulations, and
the remaining 4 uncertainty analysis methods all conduct 16
deterministic EMC simulations. The calculation result of the
MCM is used as the standard result, and the Feature Selection
Verification (FSV) method is used to evaluate the effectiveness
of the worst-case estimation results of other uncertainty analy-
sis methods. FSV method is a kind of numerical calculation of
the validation rating recommended in IEEE Standard 1597.1,
which can give qualitative and quantitative results with regard
to the agreement between data sets. It can avoid the subjectiv-
ity and non-communicability of human judgment [21, 22]. The
evaluation results are shown in Table 1.

TABLE 1. The effectiveness evaluation results provided by FSV
method.

Uncertainty analysis method FSV values
Improved SROM 9.5040× 10−4

Traditional SROM 0.0447
SCM 8.6811× 10−4

Kriging Method 0.0097

According to the results in Table 1, the traditional SROM
has slightly lower accuracy than the other uncertainty analysis
methods. Because the traditional SROM cannot directly pro-
vide worst-case estimation results, using the “mean ±3 times
standard deviation” form results will introduce significant er-
rors, which is not in line with actual engineering situations.
The improved SROM method solves the problem of low

computational accuracy in traditional SROM methods, greatly
improving its accuracy in EMC worst-case estimation. Mean-
while, as this method does not have the curse of dimensionality,
it can still be used normally when the input random variable di-
mension is high. Compared with SCM, it has stronger applica-
bility and a much faster convergence speed than the MCM and
a much higher accuracy in calculating nonlinearity problems
than the Kriging method. In summary, the improved SROM
method based on RBF neural network model can have 3 ad-
vantages: fast calculation speed, high calculation accuracy, and
strong applicability.

5. DISCUSSION ON FUTURE RESEARCH WORK
Due to the limitations of the solver, currently only two-
dimensional input problems can be solved, so only a simple
case can be used to verify the feasibility of the proposed
algorithm. When the solver can achieve higher dimensional
calculations, complex crosstalk cases that are more realistic
will be studied, such as crosstalk calculations in the case of
transmission lines being shielded and optical fibers crosstalk.
This can expand the applicability of the proposed algorithm,
which will become the focus of future work. Because this
algorithm is a nonembedded uncertainty analysis method,
only a stable solver is needed. Uncertainty analysis can be
completed by changing input and output, and it is expected to
achieve good results.

6. CONCLUSION
An improved SROM based on RBF neural network model is
proposed in this paper to solve the problem of its inability to
directly provide accurate worst-case estimation results during
uncertainty analysis, thereby improving the applicability of the
SROM in practical engineering applications. Firstly, by im-
proving the fitness function of genetic algorithms in traditional
SROM for central clustering operations, representative sam-
pling point coordinates with closer weights are selected asmuch
as possible, and they can represent a large number of exhaus-
tive sampling point samples in the MCM sampling space to
the greatest extent possible. Secondly, a training set is con-
structed based on the EMC simulation results at representative
sampling points, and an RBF neural network model is trained.
Then, exhaustive sampling point samples are input to select the
maximum or minimum values that meet the worst-case condi-
tions, as the worst-case estimation result for improved SROM.
Finally, in the parallel cable crosstalk prediction example, the
worst-case estimation result of MCM is used as standard data,
and the effectiveness of the results is quantitatively evaluated
using FSV method, verifying that the proposed improvement
strategy can achieve EMC worst-case estimation. In summary,
compared with other nonembedded uncertainty analysis meth-
ods, the improved SROMmethod based onRBF neural network
model has 3 unique advantages: fast calculation speed, high
calculation accuracy, and strong applicability. This method is
highly competitive in practical engineering applications of elec-
tromagnetic protection optimization design.
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