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ABSTRACT: Streamlining the on-demand design of metamaterials, both forward and inverse, is highly demanded for unearthing complex
light-matter interaction. Deep learning, as a popular data-driven method, has recently found to largely alleviate the time-consuming and
experience-orientated features in widely-used numerical simulations. In this work, we propose a convolution-based deep neural network
to implement the inverse design and spectral prediction of a broadband absorber, and deep neural network (DNN) not only achieves
highly-accurate results based on small data samples, but also converts the one-dimensional (1D) spectral sequence into a 2D picture by
employing the Markov transition field method so as to enhance the variability between spectra. From the perspective of a single spectral
sample, spectral samples carry not enough information for neural network due to the constraints of the number of sampling points; from
the perspective of multiple spectral samples, the gap between different spectral samples is very small, which can hinder the performance
of the reverse design framework. Markov transition field method can enhance the performance of the model from those two aspects. The
experimental results show that the final value of the soft required accuracy of the one-dimensional fully connected neural network model
and the two-dimensional residual neural network model differ by nearly 1%. The final value of the soft accuracy of the one-dimensional
residual neural network model is 97.6%, and the final value of the two-dimensional residual neural network model model is 98.5%. The
model utilises a data enhancement approach to improve model accuracy and also provides a key reference for designing two-dimensional
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layered materials (2DLMs) based metamaterials with on-demand properties before they are put into manufacturing.

1. INTRODUCTION

wo-dimensional layer materials (2DLMs), as well known

to all, have hitherto become one of the most emerging
and popular branches of the material genome. Compared to
three-dimensional (3D) materials, outstanding physical prop-
erties are discovered and exist in 2DLMs [1]. 2DLMs repre-
sent a class of avant-garde nanomaterials, including semi metal-
lic graphene, semiconductor black phosphorus, and insulating
hexagonal boron nitride. Each material exhibits unique elec-
tronic properties, making it highly favored in the scientific com-
munity. In regard to the high-performance separation mem-
branes, 2DLMs with atomic thickness have already played an
important and indispensable role for nanostructures [2]. Mean-
while, lattice matching does not need considering in 2DLMs;
therefore, different 2DLMs could be applied to different combi-
nations in a whole structure [3—5]. The commonly used 2D ma-
terials in the mainstream way are classified as graphene, black
phosphorus (BP), transition metal sulfides, and insulators [6].
As a single atomic layer consists of sp2 hybridized carbon,
graphene with semimetallic property is first studied in detail [ 7—
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9]. So far in the field of photonics, graphene has been known
and employed in a wide range of applications due to its strong
light-matter interaction and special electrical optics and other
properties [10, 11]. Furthermore, it is broadly used in nanopho-
tonic devices, such as modulators [12], plasma-induced trans-
parent devices [13], sensors [14], and photodetectors [15].

To the best of our knowledge, other 2DLMs the same as
graphene could also be exfoliated from their parent materials
by solution processing, which is a low-cost method for large-
scale production [16]. In contrast to graphene, afterward, the
monolayer BP with semiconducting property possesses a direct
band gap and is more suitable for applications in structures with
high on-off ratios [17]. Besides, the monolayer BP could be
applied as photodetectors [18], sensors [19], field-effect tran-
sistors [20], and solar cells [21]. Moreover, BP similar to other
2DLMs could achieve broadband absorption, ultrafast carrier
dynamics, planar properties [22], tunability, and high device
performance from mid-infrared to visible wavelengths [23]. As
depicted above, both graphene and monolayer BP are widely
adopted to design and then fabricate absorbers; however, most
of methods are realized based on extensive simulations and con-
tinuous trial-and-error approaches, leading to the limit of com-
putational performance and the difficulty in solving local opti-
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mal solutions. Torun et al. investigated the nature of inter- and
intra-layer excitons in transition metal sulfide hetero-bilayers
(HBLs) for the benefit of electronic device design and the po-
tential application of these materials in quantum systems [24].
Altintas et al. proposed a broadband hypersurface (MS) po-
larization converter that numerically and experimentally trans-
forms linearly polarized signals into right- or left-handed cir-
cularly polarized signals [25]. Abdulkarim et al. developed a
novel metamaterial absorber with three-band properties in tera-
hertz band for applications such as imaging and biosensing [26].
Numerical investigation of a multiband perfect metamaterial
absorber (MA) based on polarisation-independent cylindrical
waveguide has been carried out by Dincer et al. The proposed
absorber has a very simple configuration and can operate in a
flexible frequency range within the microwave frequency range
by simply resizing the structure [27]. Alkurt et al. proposed an
antenna-based microwave absorber that absorbs incident waves
from different directions, thus providing clearer images during
imaging [28]. Valagiannopoulos investigated the arbitrary cur-
rent distribution on a circular column and how to optimise the
radar scattering cross section [29]. Consequently, the urgent
task is to find a more efficient and accurate method to signifi-
cantly reduce the entire cycle time from structural designs, sim-
ulation, and analysis, to actual fabrications.

As a branch of the machine learning (ML), deep learning
(DL) technique is proposed to enable both rapid design and
accurate optimization based on previous datasets and experi-
ence [30]. Peurifoy et al. adopted fully connected networks in
DL to achieve inverse design and simulated multilayer nanopar-
ticle light scattering [31]. It is demonstrated from experimen-
tal results that only small data samples are required to train
in the network so that high accuracy could be obtained like
traditional simulation methods; besides, the presented method
could be several orders of magnitude faster than traditional
simulation methods. Furthermore, the framework, proposed
by Koziel and Abdullah is based on learning global agent-
assisted optimization of the unit cell, local refinement, and
maximization of the RCS reduction bandwidth driven directly
by electromagnetic (EM) in order to achieve automated and
computationally-efficient design of metasurfaces with broad-
band radar cross-section (RCS) reduction, which could be ap-
plied to design the metasurface with its relative bandwidths
exceeding 100% [32]. Rodriguez et al. employed an inverse
design method in machine learning to create highly optimized
2D plasma metamaterial (PMM) devices [33]. Recently, an
inverse-design-based concept was created to construct ultra-
fast all-optical terahertz (THz) modulators, which inversely de-
signs a THz metasurface supported by electromagnetic induc-
tion transparency (EIT) effects by means of the combination
of the particle swarm optimization algorithm with the finite-
difference time-domain method [34]. Yuan et al. proposed
an improved transfer-function-based artificial neural network
(ANN) model that could directly generate structural parame-
ters that can match the desired electromagnetic response of the
customer [35].

Zhu et al. devised a fast and accurate inverse design method
based on migration learning, which was proposed for the de-
sign of functional hypersurfaces (hypersurfaces) [36]. Tan et

al. explored an innovative approach to develop metamaterials
through reverse design techniques to enable optical logic op-
erations on a chip [37]. Tan et al. proposed an electromag-
netic correspondence method and demonstrated the ability of
the system to solve the equations by decomposing the high-
dimensional equations into two low-dimensional matrices [38].
Lee et al. investigated how to implement a complete inverse
design of a multilayer filter using a particle swarm optimisa-
tion (PSO) algorithm. The results show that the PSO algorithm
can be effectively used for the inverse design of multilayer fil-
ters, providing a fast and accurate optimisation method [39].
Sheverdin et al. explored how neural networks can be used for
the inverse design of photonics, and the proposed method can
be generalised to approximate Maxwell interactions [40]. Liu et
al. summarised the deep learning approach as a subset of ma-
chine learning algorithms that can handle tricky high degree-
of-freedom structure design [41]. However, as far as we know,
the deep neural network models utilized in previous work have
mainly focused on the inverse design of models such as sim-
ple multilayer cumulative models or simple strip patterns with
single-layer structures, without considering complex multilayer
structures with different patterns in different layers. Complex
multilayer structures are more difficult to train because of the
amount of information to be processed in the neural network.

In this work, we come up with a deep neural network model
with both forward prediction and inverse design whose origi-
nal dataset is derived from a multilayer graphene-BP structure
with broadband absorption. Based on small data samples, the
proposed DNN model can not only achieve the forward net-
work model in ability of predicting the spectra, but also obtain
the inverse design model with capability of predicting struc-
tural parameters. To obtain the accuracy of the inverse design
network model, we replace traditional numerical methods with
forward model surrogate so that the computational time could
be greatly saved. Due to the negligible difference in the dataset
of 1D absorption spectral sequences, which would affect the
training result of model, finally we employ the Markov trans-
fer field approach to convert 1D sequences into 2D pictures for
achieving the effect of data enhancement. Our work greatly re-
duces the heavy dependency on the quality of training data and
enhances the data sensitivity in spectral sequences.

2. STRUCTURE AND METHODOLOGY

2.1. Structure Composition

The basic unit of the constructed absorber consists of a bilayer
structure with three layers of graphene-BP mixture, which has
a single layer of graphene in the upper layer and a monolayer
of BP in the bottom layer. The overall structure is shown in the
middle large figure in Fig. 1, and the attached drawings on both
sides are the top and bottom views of each layer of the struc-
ture. In this structure, the insulating layer is made of SiOa,
which is applied to separate the monolayer graphene from the
monolayer BP. The purpose of the insulating layer is to block
charge carrier transport between the graphene and monolayer
BP and to keep its high charge carrier mobility. The first layer
of the structure consists of a rectangle with length and width a4
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FIGURE 1. Schematic diagram of the three-layer structure of the graphene-black phosphorus hybrid.

and by, respectively; the second layer consists of two identical
rectangles stacked vertically with length and width a, and bo,
respectively; the third layer is similar to the first layer and is
a rectangle with length and width a3 and bs, respectively. The
unit cycle length of the structure is p; the thickness of the dielec-
tric layer is d;; the thickness of the insulating layer is da; the
spacing of the layers is d3; the Fermi energy levels of the first
layer of graphene and black phosphorus are pi.11 and pi.12. The
Fermi energy levels of the second layer of graphene and black
phosphorus are ti.21, fic22. The Fermi levels of the third layer of
graphene and black phosphorus are fi.31, ftc32. The three-layer
structure formed by the simultaneous combination is encapsu-
lated in aluminum oxide (AlyO3) and deposited on an AlyO3
substrate. The dielectric constants of the SiO5 and Al>O5 used
were 3.9 [42] and 3.2 [43], respectively. Throughout the exper-
iments, the incident light was directed downward perpendicular
to the top direction. Moreover, during the calculation, we ap-
ply the equations of surface conductivity of graphene and black
phosphorus to calculate the corresponding electric field compo-
nents.

The surface conductivity of graphene is expressed through
the Kubo equation as [44]
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where 0,4 1S the in-band carrier electron component of the
surface conductivity, and ;¢ is the inter-band carrier elec-
tron component of the surface conductivity. f4(&, pe, T) is the
Fermi-Dirac distribution. I" denotes the scattering rate and can
be expressed as I' = 1/(27), 7 = 1ps. In the finite element

method (FEM) calculations, when the ambient temperature is
set to 300K, compared to the in-band contribution conductiv-
ity, the surface interband conductivity in the conductivity is too
small to be neglected. Therefore, the graphene conductivity at
this time can be simplified as
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7h? (w — jor) )

0 X Ointra =

The surface conductivity equation for a single-layer BP us-
ing the semi-classical Drude model is given by the following
equation [45]
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Here, 0, and o, denote the surface conductivity in the = and y
directions. D and D, denote the weight of Drude in the = and
y directions, respectively, depending on the effective electron
mass m; in the x or y direction. 7 denotes the relaxation rate
set to 10 meV, which determines the relaxation rate of BP. n
denotes the doping level of electrons and is set to 2x 103 cm 2.
The electron mass in the x or y direction can be calculated by
the following equation:
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where v = 22eVm, A = 2eV, nc = 70.511;0’ vo = —LZ;O,

a=223x10"10m,
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2.2. Dataset Composition transition domain:
We select two kinds of parameters in the structure. One is the Wijlar €21 €4, Wijle1€qi,an€q;
structural parameters ay, b1, as, and bs of the structure, and the Wijlza€qi,z1 €5 Wij|lza€qi,zn €y
other is the Fermi energy levels of the two materials fic11, fhe12, M= . . (11)

[he21s Me22, Mhes1, and piezo. These 10 parameters are collec-
tively referred to as the structural parameters. The structure pa-
rameters are set randomly, and the corresponding spectra of the
structure are obtained by employing the FEM method to pro-
duce the data set. The spectra are located in the 5 ~ 40 um
wavelength band with 351 sampling points. Eventually, the
training set contains 50120 samples, and the test set contains
1000 samples. The test set and training set data are indepen-
dent without duplicate data. The one-dimensional spectral se-
quence is then transformed into a two-dimensional image by
Markov transition field method, and the image is normalized
by the mean and variance of the image.

In the forward prediction, we consider to use 10 structural
parameters as input and the spectrum corresponding to each pa-
rameter as its label.

In the inverse design, we take the absorption spectra as input
and the structural parameters of each spectrum as its label.

2.3. One-dimensional Sequence to Two-Dimensional Picture
Conversion Method

There are two conventional methods to solve the problem of
too small training data set. One is to use the data augmenta-
tion method, and the other is to use transfer learning. How-
ever, the performance of transfer learning cannot be guaran-
teed. Sometimes, the performance even becomes worse than
that without transfer learning. In other word, transfer learning
is like a ‘black box’ without revealing its internal mechanism,
which heavily relies on the brute-force attack of features and
lacks reasonable explanation, so we choose the data augmenta-
tion method to optimize the network. By data augmentation, we
mean changing the input data without changing the output label
values. We apply the Markov translation field (MTF) method to
transform a one-dimensional sequence into a two-dimensional
picture [46]. In this process, we do not change the output la-
bels, but transform the input data. The connection between the
values before and after the sample is strengthened by MTF, be-
cause MTF is a method for converting temporal data into spatial
data.

First, given a one-dimensional sequence X =
{z1, z2, ..., ®,}, it is divided into () quantile bins ac-
cording to its defined domain range, and each element z;
(¢ € [1,n]) in the sequence is assigned a unique quantile
bin ¢; (j € [1,Q]) corresponding to it. Second, a Markov
transfer matrix W of order @ x @ is constructed. Elements
w;,; in matrix W are given by the frequency of a point in the
quantile box ¢; followed by a point in the quantile box g;
and normalized to w; ;. It represents the transfer probability
from state ¢ to state j. However, the Markov transfer matrix
W is insensitive to the original sequence distribution, which
can lead to excessive information loss in the data during the
transition. Therefore, it is necessary to define the Markov

Wijlen €qi,21€0; Wijlzn €qi,an€q;

where M;; denotes the probability of transfer from the quan-
tile box ¢; of x; to the quantile box ¢; of x5, i.e., the matrix W
containing the transfer probabilities on the magnitude axis is
expanded into the MTF matrix by considering each sequential
point position. For example, M; jj|;—;j=, denotes the trans-
fer probability for a time interval of k£ points, and then M;; of
the main diagonal denotes the self-transfer probability of each
quantile box.

2.4. Deep Neural Network Models

Small data sets are prone to problems such as outliers that are
difficult to avoid and models that are difficult to optimize. For
this data set, the first four structural labels have a large num-
ber of values over 100, while the last six Fermi energy level
labels are values not exceeding 1. Therefore, the first four val-
ues become large outliers. So, we add the normalization pro-
cess in the model, which is helpful to improve the stability of
the model and obtain a more reasonable model. Second, sim-
ple small models should be used for training small data sets.
Selecting a small and simple model can limit some complex
assumptions, reduce the search space of the model, make the
model more stable and easier to optimize.

2.4.1. Proxy Model

The solution space in inverse design is non-convex, which will
consume much time. Therefore, we use a proxy net to obtain the
predicted spectra instead of applying the FEM method, which
can greatly save time and cost. The overall model framework
and proxy network are reflected in Fig. 2. If the real spectra are
directly compared with the predicted spectra of the structural
parameters obtained by the proxy net, the accuracy of the proxy
net has an upper limit, so the accuracy obtained by the compar-
ison will be biased. Therefore, to reduce the bias brought by
the proxy net, we also input the real parameters into the proxy
net, so that we can obtain the spectra of the predicted parame-
ters and the spectra of the real parameters at the same time, and
then compare these two spectra to obtain the accuracy of the
inverse model.

2.4.2. Forward Model

In the forward and inverse deep neural network models, the
learning rate, optimizer, and loss function are the same. First,
adaptive learning rates are applied in both models, and the
learning rate decay function is a cosine annealing schedule ta-
ble. The learning rate decreases slowly with training, then ac-
celerates, and finally reduces to zero. Second, the optimizer
of the model is a stochastic gradient descent (SGD) optimizer,
which does not need to calculate the gradient of all samples,
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FIGURE 2. The overall model framework contains the agent model. Where dark blue is the predicted structural parameters and light blue is real
structural parameters. The horizontal coordinate in the absorption spectrum plot is the wavelength and the vertical coordinate is the absorbance.
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FIGURE 3. Forward deep neural network model. The blue squares represent the structural parameters with 600 neurons per fully connected layer,
and each fully connected layer is followed by a BN layer and the Relu activation function.

and it is fast, simple, and efficient to implement. Third, the
loss function in the deep neural network model uses the mean
squared error loss function (MSE). The function image curve
of MSE is smooth, continuous, and derivable everywhere on
the curve, which is convenient for using the gradient descent
method.

In terms of the specific network model, the forward model
differs from the inverse model. The forward model is based
on an eight-layer fully connected network with 600 neurons
in each layer, and each fully connected layer is followed by a
Batch Normalization (BN) layer and a Relu activation function,
as seen in Fig. 3. The BN layer can enable the inputs of each
layer of the deep neural network in the model to be forced to a
standard normal distribution with mean zero and variance one,
so that the inputs can remain homogeneously distributed, which
will greatly accelerate the training speed. Because the parame-
ters need to be updated after each layer of deep neural network,
the distribution of the input data of the previous layer of deep
neural network is changed. When the number of layers of the

deep neural network increases, the deviation of the distribution
of the input data will gradually accumulate; the model training
will become more and more complicated; and the model con-
vergence will become slower and slower. Firstly, the BN layer
can control the gradient explosion and prevent the gradient from
disappearing. With BN layer, the output of the network will not
be too large, so a large gradient can be obtained, which avoids
a gradient disappearance and then speeds up the convergence
of the learning rate. Compared with other activation functions,
like a sigmoid function, the simple computation of Relu acti-
vation function can greatly reduce the computational effort and
improve the computational efficiency. Secondly, the Relu acti-
vation function will make part of the output become zero, which
could enhance the sparsity of the network, reduce the interac-
tion between parameters, and hence help to alleviate the over-
fitting phenomenon.

The forward model needs to discriminate its similarity with
the real spectrum after training, so three kinds of similarity dis-
criminating parameters are added, including cosine similarity,
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Pearson correlation coefficient, and Kendall correlation coeffi-
cient. First, cosine similarity, also known as cosine similarity,
is adopted to measure the similarity between two vectors. It is
measured by calculating the cosine of the angle between the two
vectors. In the specific model, we make vectors of each sam-
pled point with respect to the origin so that the sampled point
vector in the predicted spectrum is compared with the sampled
point vector in the original target spectrum. If the cosine value
between them is larger, close to 1, the smaller the angle be-
tween the vectors is, close to 0, indicating that the two vectors
are more similar; conversely, if the cosine value between them
is smaller, close to 0, the larger the angle between the vectors
is, close to 90°, indicating that the two vectors are less similar.
Second, the Pearson correlation coefficient is also known as
the Pearson product moment correlation coefficient [47]. The
Pearson correlation coefficient is a linear correlation coefficient
used to measure the correlation between variables X and Y.
Its value is between —1 and 1, and the larger the value is, the
stronger the correlation is between the two variables. When the
value of Pearson’s correlation coefficient is less than 0, that is,
in the range of —1 to 0, the two variables are negatively cor-
related, that is, when the value of X is larger, the value of Y
is smaller; when the value of Pearson’s correlation coefficient
is greater than 0 and less than 0.3, the two variables are not
negatively correlated, but very weakly correlated, and the two
variables are basically uncorrelated or uncorrelated. When the
value of Pearson’s correlation coefficient is greater than 0.3 and
less than 0.5, the two variables are slightly correlated. When
the value of Pearson’s correlation coefficient is greater than 0.5
and less than 0.8, the two variables are moderately correlated,
where the interval greater than 0.6 can also be called strong
correlation. When the value of Pearson’s correlation coeffi-
cient is greater than 0.8 and less than 1, the two variables are
very strongly correlated. The specific Pearson correlation co-
efficient calculation formula is shown below

> (@i — &) (4 — )
r= =1 (12)

\/ 2 - o] | - 0]

where r denotes the Pearson correlation coefficient; n denotes
the variable X and variable Y containing n elements; 7 is the
mean of variable X; and ¢ is the mean of variable Y.

Third, the Kendall correlation coefficient is similar to the
Pearson correlation coefficient and belongs to one of the three
major statistical correlation coefficients [48]. The Kendall cor-
relation coefficient, also known as the Kendall rank correla-
tion coefficient, is a statistic used to measure the correlation of
two random variables and takes values between —1 and 1. The
Kendall correlation coefficient is discriminated in the same way
as the Pearson correlation coefficient. There are two formulas
for calculating the Kendall correlation coefficient. One is 7,
and the other is 7. The exact form is shown below

&
i
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where n denotes the number of samples, so there are 1/2%n(n—
1) combinations; ¢ denotes the number of combinations of el-
ements in two variables X and Y that have consistency (two
elements as a pair); d denotes the number of combinations of
elements in two variables X and Y that have inconsistency, i.e.,
divergent elements; ¢, and ¢, denote the number of tied ranks
in variable X and the number of tied ranks in variable Y.

2.4.3. Inverse Model

The depth of the network is crucial to the training of the model.
Theoretically, when the depth of the model is increased, better
training results can be obtained. However, in the actual training
process, as the depth of the model increases, the training results
become worse instead; the accuracy decreases; and the model
appears to degrade the problem in terms of network structure.
In the extreme case, when we superimpose a new layer on the
shallow deep neural network, the new layer does not learn new
knowledge, but just makes a constant mapping with the shal-
low layer; the training result of deep neural network should
be at least consistent with the shallow model; no degradation
should appear; and the degradation phenomenon is not related
to overfitting. Ultimately, it is the method of training that is
problematic, and the model is not easily optimized. Therefore,
we used a residual structure in the inverse design [49]. The
residual learning framework was proposed by He et al. to solve
the model degradation problem. Let the input be x, and its cor-
responding underlying mapping is noted as H(x). The next
suitable mapping for another stacked nonlinear layer is also the
residual F'(x), which has the value of H(z) — =. Thus, the
original underlying mapping H (x) becomes F'(x) + z. Even
if the residual is zero, the output of the stacked layer is at least
the original input, which is equivalent to the network doing a
constant mapping.

The inverse model specifically uses a resnet18 network. The
specific network architecture of the inverse design model is il-
lustrated in Fig. 4, and the number of building blocks and stack-
ing blocks is seen in Table 1. From Fig. 5 and Table 1, it is clear

TABLE 1. Resnet18 network architecture.

Layer name  OQutput size 18-layer

input_stem 112 x 112 7 X 7, 64, stride 2
3 X 3 max pool, stride 2
3x3 64
Stage 1 56 x 56 X )
3x3 64
3x3 128
Stage 2 28 x 28 x x 2
3x3 128
3x3 256
Stage 3 14 x 14 X x 2
3x3 256
3x3 512
Stage 4 77 x x 2
3x3 512
1x1 Average pool, 10-d fc
FLOPs 1.8 x 10°
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FIGURE 4. Diagram of the resnet18 network architecture model. Where the blue squares represent the structure parameters.
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FIGURE 5. Training loss as well as testing loss of the forward model.

that the network structure contains mainly an input_stem and 4
building stages. Input_stem contains a convolutional layer with
a convolutional kernel of 7 * 7, channel 64, and step 2. Each
of the 4 building stages contains 2 residual blocks, and only the
first convolutional step in the first residual block is 2, using the
following sampling. In this way, it gets smaller and smaller in
size and larger in number of channels through 4 building stages.

3. RESULTS AND DISCUSSION

3.1. Forward Model Training Results

Before training the inverse model one has to train the forward
model so that the trained forward model can act as a proxy
model. We set 150 epochs for the forward model. We also
set the batch size to 256, use the learning rate decay method of
the cosine annealing schedule, and set the initial learning rate to
0.1. As can be seen in Fig. 5, for the training loss, the training
loss of the forward model is reduced to 0.005 at 32 epochs and
at 102 epochs. Although the minimum value of the training loss
is 0.0044 at 102 epoch, there are still fluctuations in the training
loss at this time. After 109 epochs, the training loss of the for-
ward model is stable at 0.0044. The initial value of the test loss
is significantly smaller than the training loss, 0.0092, and the
test loss can be reduced to 0.005 at epoch 17. For the evaluation
of the forward model, we used three correlation coefficients

containing cosine similarity, Pearson’s correlation coefficient,
and Kendall’s correlation coefficient, and their corresponding
measurements are concluded in Table 2. We could clearly see
that the values of the three correlation coefficients are in the in-
terval of extremely strong correlation, which indicates that our
spectra obtained by the forward model are extremely well cor-
related with the real spectra, and the forward model is valid.

3.2. Comparison of Inverse Design Results

In the inverse model, we convert the one-dimensional training
data into a two-dimensional image by the MTF method, and
the spectrum before conversion is plotted in Figs. 6(a) and (b)
against the two-dimensional image after conversion. The spec-
trum before conversion corresponds to a one-dimensional se-
quence. The converted two-dimensional image is a symmetric
graph about the main diagonal, meaning that any difference in
the lower-left region is mirrored in the upper-right region, effec-
tively amplifying the differences between spectral data points
and is beneficial to the training of the inverse model. We have
small connections between sample points during spectral sam-
pling, but at the same time the MTF method is a time-series
image coding method that strengthens the connections between
sample sampling points when being used.

The decay curve of the resnetl8 network model trained on
2D images is shown in Fig. 6(c). The initial learning rate of the
inverse model at this point is 0.1. After using the cosine anneal-
ing method, the learning rate decays slowly until 10 epochs,
decays rapidly between 10 epochs and 130 epochs, and de-
cays nearly linearly after 130 epochs, until it decays to 0 af-
ter 150 epochs, and the training of the inverse model is com-
pleted. We set up two control experiments for the 2D-resnet18
inverse model, including 1D-MLP, 1D-resnet18 model. The 1D
fully connected network model has 8 layers; each layer contains
800 neurons; and the activation function uses the Irelu activa-
tion function. The remaining parameters of the 1D-MLP and
1D-resnetl8 models are the same as those of the 2D-resnet18
model. The training losses as well as the test losses for the
three inverse models are shown in Figs. 7(a) and (b). Among
the three inverse models, although the 2D-resnet18 model has
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the largest initial training loss and testing loss, its training loss
as well as testing loss decreases at a fast rate. The training loss
is smaller than that of the ID-MLP model and the 1D-resnet18
model after 9 epochs. After 150 epochs, the training loss and
test loss of the 2D-resnet18 model are the smallest among the
three models, 0.0006 and 0.0004, respectively, so the training
results of the 2D-resnet18 model are significantly better than
the other two models.

We input the real structural parameters into the trained three
models to obtain the three predicted structural parameters.
These three predicted parameters are then input to the trained
forward model together with the real structural parameters, and
the corresponding spectra are obtained for comparison. The ac-

curacy of the model is calculated. The accuracy of the model
is calculated from the hard accuracy of the real spectra and the
spectra of the predicted structural parameters obtained by the
forward model, and the soft accuracy of the spectra of the real
structural parameters and the predicted structural parameters
obtained by the forward model.

n
(pi — 0;)°
=1

hard accuracy =1 — +———r——
n

(15)

[V

0
1

N

K2
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true spectra and the spectral curves obtained from the true parameters via the forward model when a1 = 142nm, by = 182nm, a3 = 221 nm,
bz = 156 nm, pic12 = 0.5V, pea2 = 0.8€V, piez2 = 0.7¢eV, pci1 = 0.6 eV, pe21 = 0.6 eV, ez = 0.3 €V, (a) absorbance curve and (b) reflectance
curve. a1 = 131nm, b; = 174nm, ag = 221 nm, bz = 156 nm, pic12 = 0.5¢€V, pieaz = 0.8€V, pesz = 0.7eV, pc21 = 0.2¢eV, pez1 = 0.3 ¢V, and
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parameters, o; the real spectra obtained by the FEM method

2 2
= (pi — ") analysis for the real structural parameters, and o; the spectra
soft accuracy =1 — (16) obtained by the forward model for the real structural parame-
/ 2": o2 ters.
=" Comparing the hard accuracy of the three models in Fig. 8(a),
the 1D-MLP model and 2D-resnet18 model have similar final
where n denotes the sampling points of the spectra, p; the spec- values of hard accuracy, which is approximately 89.3%; the

tra obtained by the forward model for the predicted structural
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1D-resnet18 model has a worse result, 88.7%. However, as
seen in Fig. 8(b), the final values of the hard accuracy of the
1D-MLP model and the 2D-resnet18 model are similar, but the
final values of the soft accuracy of the two differ greatly by
nearly 1%, with the final value of the soft accuracy of the 1D-
MLP model being 97.6% and the final value of the 2D-resnet18
model being 98.5%. This is mainly because the forward model
that we made is bottle-necked, and its accuracy has a thresh-
old value, i.e., when the error between the predicted structural
parameters and the real structural parameters is less than a cer-
tain value. No matter how small its error is, the accuracy of the
model will not grow and maintain around a fixed value. There-
fore, among the two accuracies, we should use soft accuracy
as the main performance discriminant parameter. In order to
observe more obviously the changes in the spectral curves in
each, we draw the specific spectral curve pairs in the test set as
shown in Figs. 9(a)—(b). Figs. 9(c)—(g) reflect the spectral ther-
mograms for various cases obtained by controlling the other pa-
rameters constant and continuously varying j.11. We can see
that the spectral difference between the real structural parame-
ters and those predicted by the inverse model obtained by the
forward model is small and almost zero. This also reflects the
accuracy of our inverse model prediction from the other side.

4. CONCLUSION

In this work, we have developed an inverse deep neural net-
work model framework for agent networks applied to small data
sets. We use small models to ensure the accuracy of the network
and also use the agent network to reduce the use of finite ele-
ment analysis methods when evaluating the model, which can
greatly reduce the computational time and save computational
cost. Second, we incorporate the idea and method of converting
1D data to 2D data in the training process and compare it with
the 1D MLP model and the 1D resnetl8 model in this paper.
Our proposed model is significantly better than the former two
and can achieve smaller loss and higher accuracy. This method
is useful for training other 3D complex structure models.
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