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ABSTRACT: In order to solve the problem that the recognition accuracy of human motion is not high when a single feature is used, a
feature fusion human motion recognition method based on Frequency Modulated Continuous Wave (FMCW) radar is proposed. By
preprocessing the FMCW radar echo data, the range and Doppler parameters of human motions are obtained, and the range-time feature
map and Doppler-time feature map datasets are constructed. In order to fully extract and accurately identify the human motion features,
the two features are fused, and then the two features maps and feature fusion spectrograms are put into the VGG16 network model based
on transfer learning for identification and classification. Experimental results show that this method can effectively solve the problem of
lack of information and recognition rate of single feature motion recognition, and the recognition accuracy is more than 1% higher than
that of the single feature recognition method.

1. INTRODUCTION

One of the most important technologies in the evolution
of human-computer interaction is human motion recogni-

tion [1]. The research of human motion recognition has been
widely used in the fields of public security, intelligent aging,
human-computer interaction, etc. [2–4]. Although the vision-
based posture technology has been developed and matured [5–
8], it has certain limitations in building human motion recog-
nition system which will bring the problems of privacy expo-
sure and being affected by conditions such as light and occlu-
sion [9]. The use of radio frequency sensors such as radar to
extract information related to human posture from the wireless
electromagnetic wave signals reflected from the human body
makes up for the shortcomings of the vision-based human mo-
tion recognition method that is vulnerable to light and object
sight occlusion, and simultaneously gives greater consideration
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to privacy protection, and it has currently gained popularity as
a research area in the realm of human motion recognition [10].
In recent years, scholars have continued to use radar for hu-

man motion recognition, Ref. [11] describes the principles and
methods of Frequency Modulated Continuous Wave (FMCW)
radar target angle, velocity, and range estimation. Ref. [12]
proposes a Bi-LSTM network structure for six human move-
ments, processed FMCW radar data into time series containing
micro-Doppler features and range features, and used two fea-
tures to train the network model for the recognition of Doppler
features and range features. Ref. [13] fuses micro-Doppler fea-
tures and range-time features to propose an end-to-end convo-
lutional neural network with dual-channel inputs and demon-
strated that its recognition capability is higher than that of a
single-input network. Ref. [14] obtains the range, Doppler,
and angle multidimensional parameters of the gesture target
by time-frequency analysis of the FMCW radar information,
and used convolutional neural network and feature tandem fu-
sion method for gesture recognition. Ref. [15] extends the 2-
dimensional data time-range, time-Doppler and range-Doppler
features of a millimetre wave radar by jointly expanding them
into a 3-dimensional data model and then performing the recog-
nition of human motion.
It is evident from the above study that millimetre wave radar-

based human motion recognition has great advantages and has
received widespread attention, and the obtained results are very
significant. Radar picks up non-stationary signals because of
the motion of the target, changes in the environment, and the
dynamic nature of the radar system itself. A non-stationary sig-
nal is a signal whose statistical characteristics change within
a certain time frame. Ref. [16] proposes a novel system for
person identification by ultrasonic acquisition of hand pos-
ture information, which introduces five ways of processing
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non-stationary signals: Short-time Fourier Transform (STFT),
Wavelet Transform (WT), Stokewell Transform (ST), Hilbert-
Huang Transform (HHT) and Constant Q Transform (CQT). In
this paper, the Fourier transform is applied to the non-stationary
signals acquired by the radar to obtain the range and velocity
features of the human body movements, and feature fusion of
these two features. The two-dimensional features and fused pa-
rameter maps are put into the VGG16 network based on the
transfer learning for recognition and classification. Using the
analysis of the measured data, it is demonstrated that the use
of feature fusion can effectively improve the accuracy of hu-
manmotion recognition in FMCW radar, and the generalization
ability of the model is high.

2. THEORETICAL ANALYSIS

2.1. Range and Doppler Feature Extraction
FMCW radar, because of its wide frequency bandwidth to ob-
tain high range resolution, can measure the range informa-
tion and micro-Doppler information of human motions, and its
transmitted wave can be expressed as

xt(t) = cos
(
2πf0t+ π

B

T
t2
)
, 0 ≤ t ≤ Tc (1)

where Tc represents the repetition period of a linear FM signal,
B the frequency bandwidth, and f0 the lowest frequency within
the bandwidth. The incident wave at the receiver is the sum of
the delayed attenuation of the transmitted wave returned by the
P scatterers, which can be expressed as

xr(t) =

P∑
i=1

ai cos
[
2πf0(t− τi) + π

B

T
(t− τi)

2

]
(2)

where i denotes the serial number of the scatterer. Since the ra-
tio of the frequency point fb corresponding to the FMCW radar
target to the delay τi of the return signal at that range is equal to
the ratio of the signal bandwidthB to the duration of Tc, which
is expressed as fb/τi = B/Tc, according to the basic princi-
ple of radar, the delay τi of the return time can be expressed
in terms of the range Ri as τi = 2Ri/c, and thus the range
estimation can be expressed as Ri = cTafb/2B, with a range
resolution of ∆R = c/2B.
The orthogonal mixing of xr(t) and xt(t) is performed, and

the beat signal is obtained by low-pass filtering. The funda-
mental frequency of the mixing signal generated by the i-th
scatterer is fb = τiB/Tc, and RTM can be obtained by using
range-dimension fast Fourier transform (FFT) against the beat
In-phase/Quadrature (I/Q) signal. Figure 1 shows the flowchart
of human motion radar echo processing.

2.2. Construction of RTM and DTM Datasets
Since the chirp signal periods and sampling intervals in the
radar are on the same time axis but in different time scales, a
distinction can be made between the slow time axis and fast
time axis. Each chirp signal period and sampling interval are

FIGURE 1. Flow chart of radar signal processing.

divided into two dimensions: the vertical axis is the slow time
axis, which represents the different Chirp signals, and the hori-
zontal axis is the fast time axis, which represents the sampling
interval of each chirp signal. In actual radar testing work, the
speed of human movement is far less than the radar scanning
frequency. It can be considered that there is no change in range
within a chirp signal period, and the change in range is reflected
in the adjacent chirp signals. Therefore, the fast time contains
the range information of human movement, and the slow time
contains the micro-Doppler information of the human body.

2.2.1. Construction of RTM Datasets

According to the principle of radar ranging, the range informa-
tion of human motion is stored in the pulse sequence, and 128
FFTs can be performed on 128 pulses in fast time dimension.
Meanwhile, in order to prevent spectrum leakage, the Ham-
ming window is added to each column of data, and the result is
taken as the range information of the frame signal. The range
information obtained is integrated into the time domain, and the
range characteristic map of human motions in continuous time,
namely RTM, can be obtained. Figure 2 is the RTM diagram of
6 motions.

2.2.2. Construction of DTM Datasets

Speed information describes the speed of the target in the
process of movement, and the speed of movement is differ-
ent for different motions. After one-dimensional FFT is per-
formed on the original signal, the spectrum of each pulse is
obtained, and then two-dimensional FFT is performed on mul-
tiple pulse echoes. Doppler information is estimated from the
phase changes of the same frequency, and the range-Doppler
spectrum is obtained. Spectrum peak search is performed and
accumulated in the time domain, and the Doppler-time map of
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(a) (b) (c)

(d) (e) (f)

FIGURE 2. Schematic diagram of RTM for different motions, (a) bend, (b) clap, (c) jump, (d) run, (e) squat, (f) walk.

(a) (b) (c)

(d) (e) (f)

FIGURE 3. Schematic diagram of DTM for different motions, (a) bend, (b) clap, (c) jump, (d) run, (e) squat, (f) walk.

humanmotions, namelyDTM, is obtained. Figure 3 is theDTM
diagram of 6 motions.

2.2.3. Static Clutter Filtering

When the radar transmits signals, other objects in the external
environment will also generate radar echoes, which will inter-
fere with the detection of human motion. In the FMCW radar

system, clutter concentrates at zero frequency. Therefore, this
paper adopts Moving Target Indication (MTI) filter clutter sup-
pression processing. MTI filter uses the difference between the
Doppler frequency of clutter and moving targets to make the
frequency response of the filter have a deep stopband at the
integer multiple of DC and PRF (pulse repetition frequency),
while the suppression at other frequency points is weak, so as to
suppress the static target and still object clutter through a deep
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FIGURE 4. Single delay line pair canceller.

(a) (b)

(c) (d)

FIGURE 5. MTI filter input and output comparison result. (a) RTM before MTI filter input, (b) RTM after MTI filter input, (c) DTM before MTI
filter input, (d) DTM after MTI filter input.

“notch”. In the experiment, a two-pulse canceller is usually
used, also known as a one-time canceller, and its filter struc-
ture is shown in Figure 4 below, where x(t) is the input signal,
y(t) the output signal, h(t) the system shock response, and Tr

the pulse interval frequency. Figure 5 illustrates the compar-
ison of RTM and DTM of human running motion before and
after passing through the MTI filter.

2.3. Feature Map Preprocessing
After obtaining the range-time and Doppler-time graphs of hu-
man movements, the feature spectra of individual movements
are not obvious enough, and the numerical differences are large,
making it difficult for the training of convolutional neural net-
works to converge. Therefore, the feature maps are normalized
and fused.

2.3.1. Normalization

Normalization serves to convert data with different magnitudes
into a uniform range of criteria, speeding up the convergence

of the training network. Firstly, each feature spectrum is dis-
cretized and standardized, and the range-time feature graph is
taken as an example to scale it numerically according to the
formula:

r̄m,n =

rm,n −

[
X∑

x=1

Y∑
y=1

rx,y/ (X · Y )

]
max {R} −min {R}

(3)

where rm,n represents the initial image’s pixel value; r̄m,n rep-
resents the value of image pixel after normalization; X, Y are
the row and column of the image.

2.3.2. Feature Map Fusion

After the normalization of the feature maps, the pixel values
of all feature maps are in the same interval, which reduces the
internal differences of each feature map. Then the image fusion
method based on local energy features and Laplacian pyramid is
used to fuse the features of range-time maps and Doppler-time
maps.
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FIGURE 6. Feature fusion maps for different motions, (a) bend, (b) clap, (c) jump, (d) run, (e) squat, (f) walk.

Local energy features are defined as:

s(a, b) =
∑

x

∑
y
C(a+ x, b+ y)2 (4)

where a and b represent the position coordinates of the image;
x and y represent the window positions; and C(a+x, b+ y) is
the pixel value of the image.
The steps of the local energy feature algorithm are:
(1) Select a threshold e.
(2) Calculate local energy maps for multi-source images.
(3) Calculate match degree

MIJ (a, b)=

(∑
x

∑
y CI (a+ x, b+ y)·CJ (a+ x, b+ y)

)2

SI (a, b) · SJ (a, b)

(4) If the matching degree of the point M < e, select the
graph with high energy of the point and discard the others.
(5) If the matching degree of the point M > e, the energy

size determines how much weight is allocated. The weight of

the small energy isWmin = 0.5∗
(
1− 1−MIJ

1−e

)
, and the weight

of the large energy isWmax = 1−Wmin.
Since the Laplacian pyramid can extract more detailed in-

formation at multiple scales, it can be used to extract details
at multiple scales by combining the energy feature algorithm
with the Laplacian pyramid to achieve better results. The spe-
cific approach is as follows: decompose the input image into
the Laplacian pyramid to obtain two image pyramids. Then
each layer of the two pyramids is fused with the local energy
feature algorithm. Finally, reconstruct the original image from
the pyramids.

This fusion method can bring out the obvious feature pixels
in both images, improve the signal-to-noise ratio of the fused
image. The implementation method is not complicated, and
the fusion speed is fast. Compared with the original image, the
contrast of the fused image will be reduced, but the features are
more obvious, which can better express each motion. Figure 6
shows the feature fusion image of the six motions after process-
ing.

3. TRANSFER LEARNING BASED ON VGG16 MODEL

3.1. VGG16 Model
VGG-Net is a deep convolutional neural network, developed by
the Visual Geometry Group of Oxford University and Google
DeepMind [17]. The VGG16 convolutional neural network
model has 16 weight layers, including 13 convolution layers
and 3 fully connected layers. The 13 convolution layers are
segmented by a maximal pooling layer at layers 2, 4, 7, 10,
and 13, respectively. A three-channel image with a resolution
of 224× 224 is input. After the convolution operation is com-
pleted, the input data batch is normalized, which serves to bring
the value intervals closer to the limit saturation region after a
nonlinear function mapping [18–22]. In the convolution layer,
a 3 × 3 filter is used, with every 2 or 3 filters stacked consec-
utively to form a convolution sequence to mimic the effect of
a larger sensory field, with a sliding step size of 1, and bound-
ary padding is used to keep the data dimensions before and af-
ter invariant. In the pooling layer, a 2 × 2 pooling window is
adopted, and the step size is set to 2, which is used to halve
the size of the convolution feature image while retaining im-
portant feature information, the fully-connected layer is com-
posed of three consecutive fully-connected combinations, with
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FIGURE 7. Structure of VGG16.

FIGURE 8. Schematic diagram of transfer learning process.

the number of channels of 4096, 4096, and 1000, respectively;
and lastly, a 1,000-label Softmax classifier is used to classify
the output. The network model of VGG16 is shown in Figure 7.

3.2. Transfer Learning

Transfer Learning [23] refers to improving the generalization
of models by transferring models or knowledge trained in one
domain to another domain or problem. Compared with the
original model, its advantages are more obvious. The network
structure using transfer learning is based on the original trained
model, by fine-tuning the existing deep network to adapt to a
specific task, to achieve the transfer of the model or parame-
ters, and the process of transfer learning is shown in Figure 8.
Denote the VGG16 network model after transfer learning as
VGG16∗.
After transfer learning the network structure, the initial per-

formance of the model is higher, the rate of model enhance-
ment faster, and the convergence effect , more obvious. Firstly,
the VGG16 network model is pre-trained using the ImageNet
dataset, and the trained network model is saved. On this basis,

the method of transfer learning is introduced to transfer the pa-
rameters of the pre-trained network, and the weight ratio of the
trained network model is used to replace the original network
weight random initialization operation. The last 3 layers of the
model are replaced by a flatten layer and a new fully connected
layer. The function of the flatten layer is to flatten the output of
the convolution layer into a one-dimensional vector and change
the output value of the fully connected layer to 6, so as to realize
the recognition of human motions.

3.3. Hyper-Parameterisation

During deep learning training, the choice of hyper parameters
affects the accuracy of the network after training. In this paper,
when using the VGG16 model for training, the other initial pa-
rameter weights are adopted from the weight values trained on
the ImageNet dataset. A training batch size of 32 and a max-
imum number of iterations (Epochs) of 100 are selected, and
the network model parameters are optimized using a variant
of stochastic gradient descent (SGD), the RMSprop optimizer,
with the learning rate set to 2e-5.
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FIGURE 9. RTM accuracy change curve. FIGURE 10. DTM accuracy change curve.

4. COMPARATIVE EXPERIMENTALS AND ANALYSIS

4.1. Data Collection
TI’s IWR1642 development board and DCA1000 data acqui-
sition card are used as the radar hardware platform to cap-
ture human motions. The IWR1642 device operates in the 77–
81GHz band and is an integrated single-chip FMCW radar sen-
sor. The device has the advantages of low power consump-
tion, high integration, and a maximum operating bandwidth
of 4GHz. DCA1000 data acquisition card can achieve real-
time capture of radar data and real-time transmission of radar
data through Ethernet transmission. During the experiment,
the IWR1642 and DCA1000 were fixed on a tripod about 1m
from the ground, with no other moving targets interfering ex-
cept for the experimental subject and no static objects placed in
the straight-line range between the radar and the experimenter.
The human target was 2.5m away from the radar, and the pa-
rameters of the radar were set as shown in Table 1.

TABLE 1. Radar parameter settings.

Parameter Numerical value
Bandwidths (GHz) 4
FM slope (MHz/µs) 64
Sampling points 256
Number of chirps 128

Frame rate 50
Sampling Rate (ksps) 5120

Eight subjects and six types ofmovements were tested: bend-
ing, clapping, jumping, running, squatting, and walking. The
acquisition time for each motion was 2 s and repeated 50 times.
The total amount of data collected was 2400, and the obtained
RTM, DTM, and fusion feature maps were divided into training
set, validation set, and test set in the ratio of 6 : 2 : 2.

4.2. Evaluation Indicators and Performance Analysis
The designed model is evaluated using the confusion matrix
and classification algorithm evaluation metrics, which include
the following:
(1) Accuracy: The number of correctly categorized samples

as a proportion of the total number of samples, defined as:

acc =
Ptrue

Pn
(5)

(2) Precision: The proportion of samples predicted to be in
the positive category that are actually positive, expressed as:

precision =
TP

TP + FP
(6)

(3) Recall: The proportion of samples that are actually in the
positive category and predicted to be positive, expressed as:

recall =
TP

TP + FN
(7)

where Ptrue is the number of all correctly classified samples,
Pn the total number of samples, TP the number of positive
classes predicted to be positive, FP the number of negative
classes predicted to be positive, and FN the number of posi-
tive classes predicted to be negative.
The two feature maps that were extracted Range-Time Map

(RTM) and Doppler-Time Map (DTM) were then added to the
network for training and verification, respectively, in order to
confirm the authenticity and accuracy of the extracted data.
Figures 9 and 10 show the accuracy variation curves of RTM
and DTM, respectively, and Figures 11 and 12 show the confu-
sion matrices of RTM and DTM, respectively. Tables 2 and 3
show the evaluation metrics for RTM and DTM, respectively.
By analyzing the confusion matrix and evaluation index in-

formation of the above two single feature maps, it is evident
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FIGURE 11. RTM confusion matrix. FIGURE 12. DTM confusion matrix.

FIGURE 13. Accuracy curve of fusion feature map. FIGURE 14. Change curve of loss value in fusion feature map.

TABLE 2. Evaluation indicators of RTM.

Motion category Precision Recall
bend 0.963 0.963
clap 0.886 0.975
jump 0.988 0.988
run 0.929 0.975
squat 0.972 0.875
walk 0.974 0.925

TABLE 3. Evaluation indicators of DTM.

Motion category Precision Recall
bend 0.974 0.95
clap 0.988 0.988
jump 0.952 1
run 0.988 0.988
squat 0.975 0.963
walk 0.987 0.975

that in the range-time confusion matrix, the recognition accu-
racy of squatting and walking movements are both low. Squat-
ting is easy to be misjudged as clapping, and walking is easy to
be misjudged as running. In the Doppler-time confusion ma-
trix, the recognition accuracy of squatting and bending move-
ments is also low, and there are also misjudgments. Overall, it
seems that the Doppler-temporal features have a higher correct
recognition rate for each motion than the range-time features,
so it is necessary to feature-fuse the two feature maps to show
more feature information to improve the overall recognition ac-
curacy. To attain increased recognition precision, the RTM and
DTM were normalized, and feature fusion was performed, af-

ter which they were put into the VGG16* network for train-
ing. Figure 13, Figure 14, and Figure 15 show the accuracy
change curve, loss value change curve, and confusion matrix
after multi-feature fusion, respectively. Table 4 and Table 5 are
the evaluation index of the fusion feature map and the accuracy
comparison results of the three feature maps.
As illustrated in Figure 13 and Figure 14, the accuracy of

the training set of the fused feature map reaches almost 100%,
and the accuracy of the validation set reaches 98%. The model
basically converges when the training is carried out up to 40
rounds; the loss value of the training and validation decreases
to the final convergence; there is no overfitting phenomenon;
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TABLE 4. Evaluation metrics for fusion feature maps.

Motion category Precision Recall
bend 0.988 0.988
clap 0.988 1
jump 1 1
run 0.964 1
squat 0.987 0.975
walk 1 0.963

FIGURE 15. Fusion feature map confusion matrix.

and the recognition accuracy reaches a high level. Compared
with the single-feature map, the accuracy is improved, and the
misjudgment rate is significantly reduced. As indicated by Ta-
ble 4, the recognition accuracy of bending, clapping, jumping,
and running is higher than the average recognition accuracy. By
comparing Table 2, Table 3, and Table 4, it is evident that squat-
ting is easily misjudged as bending and clapping, and walking
is easily misjudged as running. Except for walking, the recog-
nition accuracy of all other human motions is improved after
fusion of the features, which indicates that feature fusion not
only obtains the key feature points of the range-time feature and
Doppler-time feature separately, but also promotes the recog-
nition ability of both features. After feature fusion, the overall
recognition rate increases, which can prove that the fusion of
range-time features and Doppler-time features can make up for
the shortcomings of single-feature recognition. Additionally,
it demonstrates how multi-feature fusion can effectively recog-
nize human motion and fully depict the whole information of
human motion. From the accuracy comparison in Table 5, it
can be seen that the recognition accuracy of RTM is the lowest;
the recognition accuracy after fusing RTM and DTM features is
obviously improved; and the recognition effect of fused feature
maps is better than that of single feature maps.

4.3. Effect of Image Normalization on Training Results

In order to compare the effect of normalization on the model
training performance, both the datasets without image normal-
ization and the datasets after normalization are put into the

TABLE 5. Comparison of the accuracy of the three feature maps.

Accuracy
RTM 0.95
DTM 0.977

Fused feature maps 0.988

TABLE 6. Comparison table of normalization on training results.

Accuracy
Number of rounds in

which the model converges
Unnormalized 0.979 50
Normalized 0.988 40

VGG16 pre-training model for training, and Table 6 displays
the training outcomes.
It is evident from the table that following the normalization

of the image, the recognition accuracy is higher, and the model
converges faster, indicating that image normalization has a pos-
itive contribution to accelerating the convergence process of the
neural network, making the training more stable and improving
the recognition accuracy.

4.4. Comparative Evaluation of Recognition Accuracy with Var-
ious RTM and DTM Weight Ratios
The feature fusion method used in this paper is an image fusion
method based on local energy features and Laplace pyramid,
which calculates the weights based on local energy features and
matching degree, and does not fix the weight ratios of RTM
and DTM. In order to explore the effect of different weight ra-
tios on the accuracy of human motion recognition, RTM and
DTM are fused with different weight ratios, and the fused fea-
ture map is put into the VGG16 pre-training model for training.
Table 7 shows the comparison results of recognition accuracy
when RTM and DTM have different weight ratios.

TABLE 7. Comparison of model accuracy with different weight ratios.

Weight ratio Accuracy
RTM : DTM = 0.7 : 0.3 0.981
RTM : DTM = 0.5 : 0.5 0.983
RTM : DTM = 0.3 : 0.7 0.985

Assigning weights based on local energy 0.988

From the table, it can be seen that the feature fusion method
used in this paper, which calculates the weights based on the lo-
cal energy features and matching degree, has a higher recogni-
tion accuracy than the feature fusionmethodwith a fixedweight
proportion, and at the same time, as the weight proportion of
the DTM increases, the recognition accuracy increases, which
indicates that the DTM has a higher confidence level than the
RTM, and in combination with the results in Table 5, it can be
shown that the DTM is more than RTM, can be utilized with
higher value, and can bring better recognition effect.
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4.5. Performance Analysis of VGG16 Pre-Trained Model
against Other Models
For the purpose to illustrate how various convolutional neural
network architectures affect the precision of motion recogni-
tion in this paper, at the same time, the traditional convolutional
neural network models represented by VGG19, ResNet50, In-
ception V3, and Xception were constructed to train the fusion
feature map, while each model had the same experimental pa-
rameters. The accuracy obtained from the VGG16 pre-trained
model is compared with the other models, and Table 8 shows
the comparison results of the recognition accuracy of various
models.

TABLE 8. Comparison results of the accuracy of the models.

Model Accuracy
VGG16 0.988
VGG19 0.981
ResNet50 0.985

Inception V3 0.927
Xception 0.971

The table shows that following pre-training by transfer learn-
ing, all convolutional neural networkmodels are capable of suc-
cessfully recognizing the extracted motion characteristics, and
the recognition accuracy reaches more than 90%, among which
the best recognition effect is the VGG16 model, with a recog-
nition accuracy of 98.8%, which suggests that compared with
the other four models, the VGG16 model is a better model for
achieving the recognition of human motions.
Utilizing the full range and speed features of humanmotions,

the feature fusion map used in this paper achieves 98.8% recog-
nition accuracy, 1%–3% higher than the single feature map.
This fully realizes the mining of the feature information of hu-
man motions and allows for the recognition and classification
of human motions.

5. CONCLUSION
In this paper, a humanmotion recognition method based on fea-
ture fusion and transfer learning is proposed. Firstly, an FMCW
radar is used to collect the human motion datasets, and the data
are processed and analyzed to calculate the range parameters
and Doppler parameters of the human body relative to the radar;
then, the range and Doppler parameters are accumulated in the
time axis to obtain the human motion RTM and DTM datasets,
and in order to adequately extract and identify the multiple hu-
man motion features, the two kinds of feature spectrograms are
normalized and then fused for feature fusion; finally, the two
feature spectrograms and fused feature maps are put into the
VGG16 network model based on transfer learning for recogni-
tion and classification. The experimental results show that the
recognition accuracy of the proposed method is higher than that
of a single feature map, which proves the effectiveness of the
method. However, the experimental scene in this paper is set
in an ideal environment without interference from other moving
targets, and the recognition and detection of human movements
in complex environments should be considered in subsequent
research and practical applications.
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