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ABSTRACT: Exact analytic solutions for the electromagnetic field due to a thin, time varying uniform circular loop current are presented.
The solutions are provided in the form of a power series with respect to wavenumber. The coefficients of the series are real functions
of the spatial coordinates and loop radius and involve recursions of complete elliptic integrals or finite sums of elementary functions.
Explicit expressions for the magnetic vector potential and electric and magnetic fields are provided for both cylindrical and spherical
coordinate systems. The expressions are adapted for computing the electric field and axial magnetic field on the interface of two half
spaces generated by a current loop lying on the half-space interface. Expressions for the self and mutual loop impedances are provided for
both the free-space and interface case. Computed examples are given for specific frequency and half-space parameters and are compared
to known solutions based on spherical Hankel functions or direct integration. The solutions are shown to be particularly efficient in the
near field. Their derivation is motivated by recent developments of large sensors used in magnetic resonance sensing of minerals.

1. INTRODUCTION

There exists a very large body of literature relating to circu-
lar loop currents in free space, spanning a wide range of

applications and results. Many studies have investigated loops
as communication antennas for transmission and reception
of propagating waves, providing expressions relating to loop
impedance, radiation and associated fields [1–9]. Other work
describes low frequency solutions for the current, impedance
and fields of a thin loop or torus [10–13], formulation of gen-
eralised loop current distributions [14–16], mutual coupling of
coaxial loops and their integration into coaxial arrays [17–19]
as well as extensions to infinite conducting media [20, 21]. The
collective work provides a rich understanding of loop radiation
characteristics, coupling and field patterns, under a wide range
of frequency, loop size, and method of excitation. Most stud-
ies provide results under certain simplifying assumptions, for
example quasi-static approaches that ignore wave retardation
effects, approximations of otherwise exact integral representa-
tions or idealised physical models involving infinitesimally thin
current loops.
One specific longstanding research area involves the de-

velopment of exact analytic solutions for the electromagnetic
field due to an infinitesimally thin time varying loop current.
Werner [6] provided exact series expressions for fields due to
general loop current distributions based on a series of spherical
Hankel functions, applicable to both near and far-field regions.
Li et al. [7] provided an alternative representation involving
spherical Hankel and Bessel functions, applicable to two dis-
tinct regions with spherical radii r < a and r > a, where r is
the radius of a sphere whose centre coincides with that of the
loop and a is the loop radius. Expressions involving spherical
Hankel functions have also been provided for the related prob-
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lem of mutual coupling between coaxial loops sitting in parallel
planes [17, 19]. These approaches provide significant compu-
tational speed advantages compared to numerical evaluation of
integral representations. However, while these series solutions
generally converge rapidly for positions far from the loop, in the
near-field region the spherical functions are less well matched
to the field distribution and consequently these series converge
more slowly for field positions close to the loop.
Instead of expansion based on spherical waves, other func-

tions may be used. For example, Maxwell provided a simple
closed form expression for the field generated by a static loop
current using complete elliptic integrals [10]. Overfelt [8] de-
scribed a recurrence based on elliptic integrals for the case of a
time varying uniform loop current, that is, where the current is
constant along the loop contour, although the spatial region of
validity was apparently restricted only to spherical radii r > a.
Conway [9] provided a representation for general current distri-
butions employing several nested sums of a recurrence of Leg-
endre functions of the second kind, with validity over all space
but with specific application to the near field. Both these later
authors emphasised the much improved convergence properties
of the respective series for positions close to the loop, compared
to spherical waves.
In this paper, field representation based on a compact series

involving complete elliptic integrals and elementary functions
is developed for the case of uniform loop current and zero net
charge, valid over all space for an infinite medium having sim-
ple dispersion. Explicit solutions are provided for the magnetic
vector potential and electric and magnetic fields. The series
are numerically compared to spherical wave solutions provided
in [6]. Using the elliptic series, rapid convergence properties
close to the loop in the near-field is demonstrated.
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FIGURE 1. (a) Loop geometry and coordinate system, (b) selected toroidal surface cross sections corresponding to values of constant x for the case
a = 1m, as defined in Equation (5).

In addition, an exact series representation is derived for fields
at the interface of two half spaces generated by a thin uniform
loop current sitting on the half space interface. This specific
loop configuration has been the subject of many investigations
due to its importance for geoprospecting or surface wave prop-
agation [22–29], metal detection [30, 31] and non-destructive
analysis of materials [32]. Most approaches assume a uniform
loop current but may either ignore displacement current, require
a simplification of integral expressions or application of numer-
ical methods. Recently however, exact expressions for a thin
uniform loop current on a non-magnetic half space employing
spherical functions have been published [27, 28]. On the other
hand, the exact solution of this configuration presented in this
paper is based on elliptic integrals. This solution is achieved by
firstly considering known integral expressions for the fields in
the interface and then exploiting the fact that the developed se-
ries expression for the infinite medium is a simple power series
in wavenumber. The expressions allow the rapid computation
of the self-impedance of a loop on a half space, as well as the
mutual impedance of closely spaced loops that may form part
of a larger coaxial array. Computational results are compared
to the expressions employing spherical functions [27, 28].
The interest in efficient near-field representation is particu-

larly motivated by the recent development of large magnetic
resonance loop sensor arrays that are used for measurement of
specific “zero-field” mineral resonances that occur in the HF
to VHF range [33], operated both in air and over earth lay-
ers [34]. The sensing zone is generally limited to the extreme
near field, corresponding to approximately one loop diameter
from the loop centre. Coaxial loop arrays up to 5m diame-
ter have been operated at 18.5MHz. This combination of loop
size and frequency corresponds to strong phase shift in the near
field where wave retardation effects are significant and where
a simple quasi-static approach is no longer useful. Series ex-
pressions suited to near field calculation are especially useful
for efficiently computingmutual and self impedances of closely
spaced coaxial loop arrays to predict system radiation resistance
and facilitate loop impedance matching. Computational effi-
ciency is a particular advantage when optimising over a very
large number of array configurations.

It should be noted that this and other analyses restricted to
the assumption of uniform current have practical limitations
with respect to loop modelling. The self-consistent spatial dis-
tribution of current and charge on a loop depends on the ex-
citation method, for example, via an incident plane wave [14]
or a voltage terminal [15, 16] and generally tends to nonuni-
formity when the loop circumference approaches a significant
fraction of a wavelength in the medium. In such cases, a sub-
stantially uniform loop current may be imposed by employing
phase shifters. For example, one strategy involves periodically
loading capacitors along the loop circumference [35]. A sub-
stantially uniform current may be generated using this method,
although a spatially periodic charge distribution is also devel-
oped along the loop which can generate fields and currents in
the medium that cannot be modelled under a simple uniform
current assumption. However, periodic charge distributions
may be unimportant to the overall analysis if their characteristic
dimensions remain sufficiently small compared to the medium
wavelength such that they couple only weakly to radiation or,
in the case of lossy media, localised power dissipation. To this
extent, uniform loop current solutions remain of interest for
analysing larger loops operated at higher frequency, as well as
their coupling to coaxial elements.

2. MAGNETIC VECTOR POTENTIAL AND ELECTRIC
FIELD
Figure 1(a) shows the cylindrical coordinate system, where an
infinitesimally thin loop is immersed in an infinite medium and
carries a current I uniformly distributed in the azimuthal direc-
tion. The loop sits in the plane z = 0with the centre of the loop
coincident with the coordinate system origin. Due to the uni-
form current assumption and circular symmetry the magnetic
vector potential is independent of the azimuthal angle and only
the azimuthal component Aϕ of the potential is non-zero. The
expression for Aϕ at the field point P (ρ, ϕP , z) is given in [6]
as

Aϕ =
µsIa

2π

∫ π

0

e−jksR
′

R′ cosϕ′dϕ′, (1a)

R′ =
√
a2 + ρ2 + z2 − 2aρ cosϕ′,
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k2s = ω2µsϵs − jωµsσs, (1b)

where ks is the angular wavenumber (generally complex), ω
the angular frequency, µs the medium permeability, ϵs the per-
mittivity, and σs the conductivity. The integration variable is
ϕ′ = ϕ − ϕP . The time variation ejωt is suppressed from the
notation throughout.
The integral in (1a) may be split into two separate terms IC

and IS by expanding the exponential factor using Euler’s for-
mula:

Aϕ =
µsIa

2π
(IC − jIS) , (2)

IC =

∫ π

0

cos ksR′

R′ cosϕ′dϕ′, (3)

IS =

∫ π

0

sin ksR′

R′ cosϕ′dϕ′. (4)

IC and IS may be transformed by first making the following
substitutions,

t = cos
ϕ′

2
, cosϕ′ = 2t2 − 1, R2

o = (a+ ρ)
2
+ z2,

x2 =
4aρ

R2
o

, (5)

cos ksR′=

∞∑
n=0

(−)n

(2n)!
(ksRo)

2n
(1− x2t2)n, (6)

sin ksR′

R′ =

∞∑
m=0

(−)m

(2m+1)!
ks (ksRo)

2m(
1−x2t2

)m
, (7)

where the identities in (6) and (7), valid for complex ks, fol-
low from the Taylor expansion of cos ksR′ and sin ksR′ re-
spectively and the use of the parameterisations in (5). The real
dimensionless parameter x spans the range 0 ≤ x ≤ 1. A
constant value of x defines a toroidal surface nested around the
current loop as shown in Figure 1(b); the toroidal surface major
radius ρx and minor radius ax are given by

ρx = aϖ, ax =
2a

x2

√
1− x2, ϖ =

2− x2

x2
.

Values near x = 1 correspond to toroidal surfaces close to the
loop contour while values near x = 0 correspond to surfaces
that extend to regions distant from the loop. Substitution of (6)
and (7) into (3) and (4) respectively yields

IC =
2

Ro

∞∑
n=0

(−)
n

(2n)!
(ksRo)

2n
Tn (x) , (8)

IS =
2

Ro

∞∑
n=0

(−)n

(2n+ 3)!
(ksRo)

2n+3
Un(x), (9)

Tn (x) = νn (x)− εn (x) ,

Un (x) = hn (x)− gn(x), (10)

νn(x) =

∫ 1

0

2t2(1− x2t2)
n

√
1− x2t2

√
1− t2

dt,

εn(x) =

∫ 1

0

(1− x2t2)
n

√
1− x2t2

√
1− t2

dt, (11)

hn (x) = −
∫ 1

0

2t2(1− x2t2)
n+1

√
1− t2

dt,

gn (x) = −
∫ 1

0

(1− x2t2)
n+1

√
1− t2

dt. (12)

where the indexing in (9) has been adjusted to omit them = 0
term in (7), which integrates to zero after substituting into (4).
Noting that

νn =
2

x2
(εn − εn+1) , hn =

2

x2
(gn − gn+1) , x ̸= 0,

and substitution into the respective relations in (10) results in

Tn (x) = ϖεn − 2

x2
εn+1, (13)

Un (x) = ϖgn − 2

x2
gn+1. (14)

Expressions for εn are given in [36] (p199, adapted from
331.00) as follows:

ε0 = K (x) , ε1 = E (x) , (15)

εn =

(
2n− 2

2n− 1

)
κ2εn−1 −

(
2n− 3

2n− 1

)
κ1εn−2,

n > 1, κ1 = 1− x2, κ2 = 2− x2. (16)

where K(x) and E(x) are the complete elliptic integrals of
the first and second kind respectively and where x serves as
the elliptic modulus. Other recursions for Tn may be obtained
through rearrangements of (13) and (16), including:

Tn = − 1

x2

(
2n− 1

2n+ 1

)
{κ2εn − 2κ1εn−1} , (17a)

Tn = +
1

κ2

(
2n− 1

2n+ 1

){
2κ1Tn−1−x2εn

}
, (17b)

Tn = +
1

2

(
2n− 1

2n+ 1

){
κ2Tn−1−x2εn−1

}
, (17c)

Tn = +

(
2n− 1

2n+ 1

)
{Tn−1 + εn − εn−1} . (17d)

For the range 0 < x < 1, εn(x) > 0 for all n and slowly
decreases monotonically with increasing n, while T0(x) > 0
and Tn(x) < 0 for n > 0 and also varies slowly as n increases.
To compute Tn, T0 is first obtained by substituting the value

of ε0 and ε1 defined in (15) into (13):

T0 (x) = ϖK (x)− 2

x2
E(x). (18)
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Then, for n > 0, Tn may be determined using any of (13)
or (17), along with the use of (16) to compute one upgrade of
either εn−1, εn or εn+1, depending on choice of recursion. For
recursions (17b)–(17d), T0 is directly used to seed the start of
the recursion.
In contrast to the required recursion for calculating Tn, Un

may be obtained by direct evaluation of both gn and hn in (12),
yielding the following elementary finite sum:

Un (x) = π(n+ 1)!

n+1∑
k=1

(−)
k+1

(x
2

)2k
cnk,

cnk =
(2k − 1)!

(k + 1)! (k − 1)!(k − 1)! (n− k + 1)!
,

(19)

where use has been made of the identity in [37], Equa-
tion (3.248.3), p324,∫ 1

0

t2k√
1− t2

dt =
π

2

(2k − 1)!!

(2k)!!
.

An alternative expression for Un(x)may be derived by starting
with a different identity to (7):

sin ksR′

R′ =

∞∑
m=0

(−)m

(2m+ 1)!
ks (ksRo)

2m

(
ϖx2

2

)m(
1− cosϕ′

ϖ

)m

. (20)

Comparison of (20) with (4) and (7) allows one to infer that

Un =

(
ϖx2

2

)n+1 ∫ π

0

(
1− cosϕ′

ϖ

)n+1

cosϕ′dϕ′.

Collecting all even powers of cosϕ′ in the integrand and noting
that odd powers integrate to zero, one obtains

Un (x) = π (n+ 1)!
(κ2
2

)n+1
n
2 +1∑
k=1

pnkϖ
1−2k, (21)

pnk =
1

22kk! (k − 1)! (n− 2k + 2)!
,

where use has been made of the following identity in [37],
Equation (2.512.2),∫ π

0

cos2k ϕ′dϕ′ = π
(2k − 1)!!

(2k)!!
.

Equation (21) directly demonstrates that Un(x) ≥ 0 for all n
and x. Expressions for the first few Un are given by

U0 = π

(
x2

8

)
, U1 = π

(
x2

4
− x4

8

)
,

U2 = π

(
3x2

8
− 3x4

8
+

15x6

128

)
.

Finally, combining Equations (2), (8), and (9), the series forAϕ

may be written as

Aϕ (ρ, z) =
µsIa

πRo

∞∑
n=0

(−)
n
(ksRo)

2n

{
Tn (x)

(2n)!

−j (ksRo)
3
Un (x)

(2n+ 3)!

}
, (22)

whereTn(x) is given by (13) or (17), andUn(x) is given by (19)
or (21). The expression for Aϕ in (22) is a power series in the
complex wavenumber ks. The real coefficients Tn and Un de-
pend only on the loop radius and field coordinate (ρ, z). When
ks = 0 (low frequency limit) the only contribution to the sum
in (22) is provided by the n = 0 term so that

Aϕ|ks=0 =
µsIa

πRo
T0 (x) ,

which is the result for Aϕ due to a static current. Under the
assumption of uniform current and zero net loop charge the total
electric field is given by

Eϕ (ρ, z) = −jωAϕ = −µsωIa

πRo

∞∑
n=0

(−)
n
(ksRo)

2n

{
(ksRo)

3
Un (x)

(2n+ 3)!
+ j

Tn (x)

(2n)!

}
. (23)

The mutual impedance between two coaxial loops of radius a
and ρ = b, sitting in parallel planes separated by z is therefore
given by

Zab =
−2πbEϕ

I
=

2µsωab

Ro

∞∑
n=0

(−)
n
(ksRo)

2n

{
(ksRo)

3
Un (x)

(2n+ 3)!
+ j

Tn (x)

(2n)!

}
. (24)

When ks is real, such as for the free-space wavenumber k0,
the expression for Zab has a real part (mutual resistance) con-
tributed entirely by theUn terms, while the imaginary part (mu-
tual reactance) has contributions only from theTn terms. Mixed
contributions occur for complex ks.
It is interesting to consider the case x = 1, which corre-

sponds to b = a, i.e., field points coincident with the loop
itself, where the loop mutual impedance collapses to the self
impedance. The Un coefficients are valid over all space, in-
cluding the loop contour. The Tn have validity for 0 < x ≤ 1
except for T0, which diverges logarithmically at x = 1 since
K(x) → ln(4/

√
1− x2) as x → 1 in the expression for T0

in (18). The divergence of this single term, which only occurs
when considering the loop self reactance, is associated with the
known divergence of the quasi-static impedance due to the as-
sumed idealised infinitesimal loop thickness. A resolution of
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the divergence of T0 may be obtained by assuming a non-zero
but small loop wire radius δ, so that

T0 (1) → Tδ, Tδ ≈ ln
(
8a

δ

)
− 2,

where Tδ yields the known quasistatic reactance of a thin torus
assumed to have a toroidal surface current evenly distributed
around the torus poloidal direction [11, p111]. Besides this
modification, the infinitesimal loop assumption is maintained
for n > 0 terms, where the Tn remain finite at x = 1, since
(x2−1)εn → 0 as x→ 1 for any εn in (16). Consequently (13)
may be safely used to generate the Tn terms starting at T1, using
ε2 = 2ε1/3. Under these assumptions, the loop self impedance
is given as:

Zaa = µsωa

[
jTδ +

∞∑
n=0

(−)
n
(ksa)

2n+2

{ksaSn + jCn}] , (25)

Cn =
22n+1 (2n+ 1)

(n+ 1) (2n+ 1)!! (2n+ 3)!!
, (26)

Sn =
π

(n)! (n+ 2)!(2n+ 3)
, (27)

where Cn and Sn result from considerable simplification for
Tn+1(1) and Un(1) respectively and where the quasistatic term
Tδ is explicitly drawn out of the sum as the substitution for
T0(1). Equation (25) essentially corresponds to a simplified
version of the series involving gamma functions provided in [5],
Equation (14), applied to the particular case of uniform current.
Equation (27) has also been derived in a different manner in [4].

3. MAGNETIC FIELD EXPRESSIONS
The magnetic fields may be obtained by evaluatingB = ∇×A
in cylindrical coordinates:

Bρ = − ∂

∂z
Aϕ, (28)

Bz =
1

ρ

∂

∂ρ
(ρAϕ) . (29)

Substituting (22) into (28) and noting that ∂
∂z (R

2
oU0) = 0 gives

the following for Bρ:

Bρ (ρ, z) = −µsIaz

πR3
o

∞∑
n=0

(−)
n
(ksRo)

2n

{
D

(ρ)
n

(2n)!

+j
(ksRo)

5
G

(ρ)
n

(2n+ 5)!

}
, (30)

where D(ρ)
n is given by the following recursion, where in what

followsK(x) andE(x) are simply denoted asK andE respec-
tively:

D
(ρ)
0 =

1

x2

(
2K − Eκ2

κ1

)
, (31)

D(ρ)
n =

(
2n− 1

2n+ 1

){
D

(ρ)
n−1 + ξ(ρ)n − ξ

(ρ)
n−1

−4εn−1} n > 0, (32)

ξ
(ρ)
0 = −

(
4K

x2
+
E

κ1

)
, ξ

(ρ)
1 = K − 4E

x2
, (33)

ξ(ρ)n =

(
2n− 2

2n− 1

){
κ2ξ

(ρ)
n−1 + 4εn−1

}
−
(
2n− 3

2n− 1

)
{
κ1ξ

(ρ)
n−2 + 2κ2εn−2

}
n > 1, (34)

and where G(ρ)
n is given by

G(ρ)
n = (2n+ 4)Un. (35)

The form of D(ρ)
n in (32) is derived from the specific recur-

sion for Tn in (17d); related versions of D(ρ)
n may be devel-

oped based on the other recursions in (17). The practical com-
putation of the D(ρ)

n proceeds in a similar manner to that for
Tn previously described, except that both εn−1 using (16) and
then ξ(ρ)n using (34) are updated to compute the nth recursion.
The derivation of the these and subsequent results in this section
are facilitated by using identities for elliptic integral derivatives
with respect to modulus provided in [36], p282.
Using a similar procedure to the derivation of (30)–(35), sub-

stitution of (22) into (29) yields the following expression for
Bz:

Bz (ρ, z) =
µsIaq

πR3
o

∞∑
n=0

(−)
n
(ksRo)

2n

{
D

(z)
n

(2n)!

−j (ksRo)
3
G

(z)
n

(2n+ 3)!

}
, (36)

where

q = aϖ − ρ, ψ =
a+ ρ

q
, η = ψϖ − 1,

D
(z)
0 = Kη − E

(
η − ψ

κ1

)
, (37)

D(z)
n =

(
2n− 1

2n+ 1

){
D

(z)
n−1 + ξ(z)n − ξ

(z)
n−1

−4ψεn−1} , n > 0 (38)

ξ
(z)
0 =

E

κ1
−K

(
η +

2ψ

x2

)
,

ξ
(z)
1 = E (1 + ψ − 2η)−K, (39)

ξ(z)n =

(
2n− 2

2n− 1

){
κ2ξ

(z)
n−1 + 2x2ηεn−1

}
−
(
2n− 3

2n− 1

)
{
κ1ξ

(z)
n−2 + 2x2 (η − ψ) εn−2

}
n > 1, (40)
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and

G(z)
n = 2π (n+ 1)!

(κ2
2

)n n
2 +1∑
k=1

pnkϖ
1−2k

{
2k +

ρ

q
(n+ 2)

}
, (41)

where the specific form of G(z)
n in (41) is derived from (21);

equivalent elementary sums for G(z)
n may also be derived

from (19).
The expressions (30) and (36) forBρ andBz are valid for all

space except for x = 0 (loop axis) and x = 1 (loop contour).
For the case of ρ = x = 0, Bρ = 0 while Bz on the loop axis
can be evaluated by noting the following limits:

lim
x→0

(
ξ(z)n − ξ

(z)
n−1

)
= 0, lim

x→0
εn−1 =

π

2
, n > 0

lim
x→0

(
qx2
)
= 2a, lim

x→0

(
qD(z)

n

)
=

2πa

2n+ 1

(
1

4
− n2

)
,

and the additional known limit [36], p11

lim
x→0

(
K − E

x2

)
=
π

4
.

Applying these limits to (37)–(41) and substituting resulting
terms into (36) gives

Bz (0, z) = Bzo

∞∑
n=0

(−)
n
(ksRo)

2n

{
(1− 2n)

(2n)!

−j (ksRo)
3
(2n+ 2)

(2n+ 3)!

}
, (42)

Bzo =
µsIa

2

2R3
o

.

When ks = 0, Bz(0, z) reduces to Bzo which is the known re-
lation for the on-axis field due to a static current. Equation (42)
is also identified as the series equivalent to Bz(0, z) derived
from the spherical Hankel expansion adapted from [6], Equa-
tion (57):

Bz (0, z) = Bzo {(cos ksRo + ksRo sin ksRo)

−j (sin ksRo − ksRo cos ksRo)} . (43)

For completeness, direct expressions for the magnetic field
components in spherical coordinates (r, θ, ϕ) are obtained by
evaluating the following expressions:

Br =
1

r sin θ
∂

∂θ
(sin θAϕ) , (44)

Bθ = −1

r

∂

∂r
(rAϕ) . (45)

where R2
o and x2 are expressed in spherical coordinates as fol-

lows:

R2
o = a2 + r2 + 2ar sin θ, x2 =

4ar sin θ
R2

o

.

The resulting series for Br is

Br (r, θ) =
µsIa

πRo

(
cot θ
4r

) ∞∑
n=0

(−)
n
(ksRo)

2n

{
D

(r)
n

(2n)!

−j (ksRo)
3
G

(r)
n

(2n+ 3)!

}
, (46)

where

D
(r)
0 = E

x2

κ1
, (47)

D(r)
n =

(
2n− 1

2n+ 1

){
D

(r)
n−1 + ξ(r)n − ξ

(r)
n−1

−4x2εn−1

}
, n > 0 (48)

ξ
(r)
0 = E

κ2
κ1

− 2K, ξ
(r)
1 = 2E − κ2K, (49)

ξ(r)n =

(
2n− 2

2n− 1

){
κ2ξ

(r)
n−1

}
−
(
2n− 3

2n− 1

){
κ1ξ

(r)
n−2

−2x4εn−2

}
, n > 1 (50)

and where

G(r)
n = 2π (n+ 1)!

(κ2
2

)n+1
n
2 +1∑
k=1

pnkϖ
1−2k {4k} . (51)

Similarly, the series for Bθ is

Bθ (r, θ) = − µsIa

πrRo

∞∑
n=0

(−)
n
(ksRo)

2n

{
D

(θ)
n

(2n)!

−j (ksRo)
3
G

(θ)
n

(2n+ 3)!

}
, (52)

where

ϑ = 4− x2 − 4a2

R2
o

,

D
(θ)
0 =

1

2x2

{
K
(
ϑ− x2

)
− E

(
κ2ϑ− 2x2

2κ1

)}
, (53)

D(θ)
n =

(
2n− 1

2n+ 1

){
D

(θ)
n−1 + ξ(θ)n − ξ

(θ)
n−1

−ϑεn−1} , n > 0 (54)

ξ
(θ)
0 = K

(
1

2
− ϑ

x2

)
− E

(
ϑ− 2

4κ1

)
,
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ξ
(θ)
1 = K

(
ϑ− 2

4

)
+ E

(
3

2
− ϑ

x2

)
, (55)

ξ(θ)n =

(
2n− 2

2n− 1

){
κ2ξ

(θ)
n−1 + (ϑ− x2)εn−1

}
−
(
2n− 3

2n− 1

)
{
κ1ξ

(θ)
n−2 +

(
κ2ϑ

2
− x2

)
εn−2

}
n > 1, (56)

and where

G(θ)
n = π (n+ 1)!

(κ2
2

)n n
2 +1∑
k=1

pnkϖ
1−2k

{(
ϑ− x2

) (n
2
+ 1
)
− k (ϑ− 2)

}
. (57)

4. APPLICATION TO LOOPS LYING ON A HALF-
SPACE
The total electric field ET generated by a uniform loop current
above the surface of a semi-infinite half space is given by the
following Sommerfeld-type integrals [32]:

ET (ρ, z) = −jµ0ωIa

2
(P +Q) , (58)

P =

∫ ∞

0

e−uo|z−h|

uo
kρJ1 (kρa) J1 (kρρ) dkρ, (59)

Q =

∫ ∞

0

R
e−uo(z+h)

uo
kρJ1 (kρa) J1 (kρρ) dkρ, (60)

R =
u0 − u1
u0 + u1

, u0 =
√
k2ρ − k20, u1 =

√
k2ρ − k21,

where the half space surface is located at z = 0; h is the height
of the loop above the surface; k0 and k1 are the wavenumbers
above and below the surface, respectively; and kρ is the radial
wavenumber component. J1 is the Bessel function of the first
kind with unity order. R is the plane wave reflection coeffi-
cient limited to the case where the half space is non-magnetic,
i.e., permeability equal to the free space permeability µ0. ET

is confined to the azimuthal direction and is independent of ϕ.
The integral P accounts for the electric field normally gener-
ated by the loop current in an infinite medium in the absence
of the half space, while the integralQ represents the secondary
field due to reflection of waves off the surface. The exponential
terms in P andQ tend to unity as the planes of the loop and the
field point approach the surface.
The reflection coefficient may also be written as:

R =
(u0 − u1)

2

k21 − k20
=

2(u
2
0 − u0u1)

γ2
− 1, (61)

γ2 = k21 − k20.

Substitution of the form ofR in (61) into (60) with h = 0 leads
to the following limit for the electric field ET0 on the surface:

ET0 (ρ) = lim
z→0

ET = −jµ0ωIa

γ2

∫ ∞

0

(uo − u1)

kρJ1 (kρa) J1 (kρρ) dkρ. (62)

The objective is to find a series expansion for (62). To proceed,
we consider the following differential operator L and the inte-
gral P (with h = 0) cast as functions of a general wavenumber
variable ks:

L = ks

(
1 + z

∂

∂z

)
, (63)

P (ks) =

∫ ∞

0

e−usz

us
kρJ1 (kρa) J1 (kρρ) dkρ,

us =
√
k2ρ − k2s .

Noting that

∂P (ks)

∂z
= −

∫ ∞

0

e−uszkρJ1 (kρa) J1 (kρρ) dkρ,

application of the operator L to P (ks) gives

L [P (ks)] =

∫ ∞

0

kse
−usz

(
1

us
− z

)
kρJ1 (kρa) J1 (kρρ) dkρ. (64)

Assuming the form of the dispersion relation in (1b), then based
on physical grounds P (ks) and its spatial derivatives are ana-
lytic functions of ks and therefore L[P (ks)] may be integrated
with respect to ks between two complex values ks = k0 and
ks = k1 along any path:

F (ρ, z) =

∫ k1

k0

L [P (ks)] dks =

∫ k1

k0

∫ ∞

0

kse
−usz

(
1

us
− z

)
kρJ1 (kρa) J1 (kρρ) dkρdks

Changing the order of integration gives

F (ρ, z) =

∫ ∞

0

(∫ k1

k0

kse
−usz

(
1

us
− z

)
dks

)

kρJ1 (kρa) J1 (kρρ) dkρ. (65)

The bracketed integral may be evaluated by noting that

∂

∂ks

(
use

−usz
)
= −kse−usz

(
1

us
− z

)
so that

F (ρ, z) =

∫ ∞

0

(
u0e

−u0z − u1e
−u1z

)
kρJ1 (kρa) J1 (kρρ) dkρ. (66)

The limit z → 0 F (ρ, z) gives

F (ρ, 0) =

∫ ∞

0

(u0 − u1) kρJ1 (kρa) J1 (kρρ) dkρ, (67)
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which is immediately identified as the limiting integral in (62),
so that

ET0 (ρ) = −jµ0ωIa

γ2
F (ρ, 0) . (68)

The next step is to note that P is proportional to the power se-
ries (23) established for Eϕ in an infinite medium, now explic-
itly separated into factors involving wavenumber and coordi-
nates:

P (ks)=− 2

jµ0ωIa
Eϕ=

∞∑
n=0

{
k2n+3
s Vn+jk

2n
s Wn

}
,(69)

Vn =
2(−)

n
R2n+2

o Un

jπ (2n+ 3)!
, Wn =

2(−)
n
R2n−1

o Tn
jπ (2n)!

.

The operator L and subsequent integration can then be trivially
applied to (69) term by term, so that

F (ρ, z) =

∞∑
n=0

{(
k2n+5
1 − k2n+5

0

2n+ 5

)(
Vn + z

∂Vn
∂z

)

+j

(
k2n+2
1 −k2n+2

0

2n+ 2

)(
Wn+z

∂Wn

∂z

)}
. (70)

Substituting (70) into (68) and noting that the derivatives of Vn
andWn are finite, the electric field in the limit z → 0 is given
by

ET0 (ρ) = −2µ0ωIa

πRoγ2

∞∑
n=0

(−)
n
R2n

o

{
R3

o

(
k2n+5
1 − k2n+5

0

)
(2n+ 3)! (2n+ 5)

Un + j

(
k2n+2
1 − k2n+2

0

)
(2n)! (2n+ 2)

Tn

}
, (71)

where, in the interface, Ro = ρ+ a.
An alternative expression for ET0(ρ) may be obtained by

considering the Sommerfeld representation for the radial mag-
netic field in infinite non-magnetic media that follows from ap-
plying (28) to (59):

Bρ0 =
µ0Ia

2

∫ ∞

0

e−uozkρJ1 (kρa) J1 (kρρ) dkρ,

Bρ1 =
µ0Ia

2

∫ ∞

0

e−u1zkρJ1 (kρa) J1 (kρρ) dkρ,

whereBρ0 andBρ1 are the radial fields (for z > 0) at the same
field point for respective media having wavenumbers k0 and
k1. Then

∂

∂z
(Bρ1 −Bρ0) =

µ0Ia

2

∫ ∞

0

(
uoe

−uoz − u1e
−u1z

)
kρJ1 (kρa) J1 (kρρ) dkρ. (72)

Comparison of (72) with (66) leads to

ET0 (ρ) = −2
jω

γ2
lim
z→0

∂

∂z
(Bρ1 −Bρ0) . (73)

The limit in (73) may be trivially evaluated directly from (30)
so that

ET0 (ρ) = −2µ0ωIa

πRoγ2

∞∑
n=0

(−)
n
R2n

o

{
R3

o

(
k2n+5
1 − k2n+5

o

)
(2n+ 5)!

G(ρ)
n + j

(
k2n+2
1 − k2n+2

o

)
(2n+ 2)!

D
(ρ)
n+1

}
, (74)

where D(ρ)
n+1 and G(ρ)

n may be computed using (32) and (35)
respectively.
By consideration of (24) and using the form of ET0 in (71),

it follows that the mutual impedance Zab0 between two coaxial
loops on the surface with radii a and b, i.e., Ro = a+ b, is

Zab0 =
4µ0ωab

Roγ2

∞∑
n=0

(−)
n
R2n

o

{
R3

o

(
k2n+5
1 − k2n+5

0

)
(2n+ 3)! (2n+ 5)

Un

+j

(
k2n+2
1 − k2n+2

0

)
(2n)! (2n+ 2)

Tn

}
. (75)

The self-impedance Zaa0 of a loop on the interface follows
from a similar procedure used to derive (25) and is given by

Zaa0 = µ0ωa

[
jTδ +

2

γ2

∞∑
n=0

(−)
n
a2n+2

{
a(k2n+5

1 − k2n+5
0 )

2n+ 5
Sn + j

(k2n+4
1 − k2n+4

0 )

2n+ 4
Cn

}]
(76)

whereCn and Sn may be computed using (26) and (27) respec-
tively.
The axial magnetic field on the interface, BT0z , may be ob-

tained by tracing a similar procedure for deriving the electric
field given in (71). The Sommerfeld representation of the to-
tal axial field above the interface, stemming from application
of (29) to (58), is given by

BT =
µ0Ia

2

∫ ∞

0

(
e−uo|(z−h)|

uo
+R

e−uo(z+h)

uo

)
k2ρJ1 (kρa) J0 (kρρ) dkρ, (77)

so that

BT0z (ρ) =
2µ0Iaq

πγ2R3
o

∞∑
n=0

(−)
n
R2n

o

{
(k2n+2

1 − k2n+2
0 )

(2n)!(2n+ 2)
D(z)

n

−j R
3
o (k

2n+5
1 − k2n+5

0 )

(2n+ 3)!(2n+ 5)
G(z)

n

}
, (78)

whereD(z)
n andG(z)

n are defined in (38) and (41), respectively.
The axial field at the centre of the loop is obtained by using the
same simplification of D(z)

n and G(z)
n used in (42) for ρ = 0,

now with Ro = a, leading to

BT0z (0) =
µ0I

aγ2

∞∑
n=0

(−)
n
a2n

{
(1− 2n)(k2n+2

1 − k2n+2
0 )

(2n)!(2n+ 2)
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(a) (b)

FIGURE 2. Contour plots of −Im(Eϕ) for a loop with a = 1m and I = 1A in the extreme near-field zone using Equations (17d) and (23). (a)
30MHz and (b) 300MHz. Shaded zones indicate loss of accuracy for computations using spherical solutions.

−j
a3 (2n+ 2)

(
k2n+5
1 − k2n+5

0

)
(2n+ 3)!(2n+ 5)

}
. (79)

Equation (79) is identified as the equivalent power series for the
closed form ofBT0z(0) given in [27], Equation (51), simplified
for the case of ρ = 0,

BT0z (0) = −jµ0I

γ2

{
k31h

(2)
2 (k1a)− k30h

(2)
2 (k0a)

}
,

where h(2)2 (·) is the second order spherical Hankel function of
the second kind.
For the case of the radial field in the interface, it appears that

the method used above cannot be readily adapted to provide a
solution. However, the radial field in the interface is provided
in [27] as a recursion involving Bessel function products.

5. RESULTS FOR FREE SPACE
As described in [9], the use of spherical Hankel functions to
compute the free-space solution for Im(Aϕ), i.e., the imaginary
part of (1a), presents no particular difficulty in either the near
or far field zones. The spherical solutions for Im(Aϕ) and asso-
ciated derived quantities such as Re(Eϕ) converge over a very
wide range of parameters. On the other hand, difficulties may
arise in the use of spherical Hankel functions for computing
Re(Aϕ) and associated parameters such as Im(Eϕ), Re(Bρ)
and Re(Bz) in the near field. This section compares the per-
formance of the proposed series in the near field with known
solutions based on spherical Hankel functions. All special func-
tions and numerical integrations used in the following sections
are computed in double precision using standard Matlab rou-
tines [38].
Figure 2(a) shows contours of constant Im(Eϕ) computed

on a 101 × 101 spatial grid for a free-space region in the ρ-z
plane, using the imaginary part of the series (23) involving el-
liptic integrals. The loop parameters are a = 1m, I = 1A and
a frequency of 30MHz. Figure 2(a) spans regions having both
r < a and r > a. Im(Eϕ) was computed to satisfy at least one
of the following targeted tolerances; (i) a relative tolerance of

10−7, or (ii) an absolute tolerance of 10−10 V/m. Agreement
with the calculation via direct numerical integration of Equa-
tion (1a), performed using Matlab “integral” function [39] with
the same tolerances, was obtained for all computed points over
the entire zone in Figure 2(a).
A computation of Im(Eϕ) over the zone in Figure 2(a) was

also performed using spherical Hankel functions ([6], Equa-
tion (61)), with the same targeted tolerances. The spherical
series agrees with both the elliptic series and the direct inte-
gration, except in the shaded grey region in Figure 2(a) near
the loop where the spherical solution exceeds a relative error
of 10−5. Failure to achieve the desired tolerance in the shaded
zone is due to machine overflow associated with computation
of high order spherical terms. The onset of this overflow is
abrupt; virtually the entire shaded zone corresponds to the fail-
ure to achieve any meaningful accuracy. For this particular
case, the boundary of the shaded zone is found to very closely
correspond to the toroidal surface defined by x2 = 0.965, in-
dicated by the dotted contour plotted at the edge of the shaded
zone. Figure 2(b) shows the same spatial zone and loop pa-
rameters as Figure 2(a), except with a frequency of 300MHz.
The spherical solutions similarly fail near the loop contour, but
inside a smaller toroidal surface defined by x2 = 0.978.
Figure 3 shows a similar analysis to that in Figure 2, except

that the calculation is performed over a larger region in the ρ-z
plane. In this case the elliptic series agrees with direct inte-
gration, except for the grey shaded areas most distant from the
loop where the series solution exceeds an error of 10−5, de-
spite a targeted relative tolerance of 10−7. In this case the loss
of precision is gradual rather than abrupt and is associated with
the computation of an increasing number of terms in the ellip-
tic series. When the product k0Ro is large the magnitude of
initial terms in the alternating series increase to a maximum,
before dropping as the factorial denominators act to reduce the
magnitude of the later terms. For such cases the loss of ac-
curacy of the accumulated sum is due to the limited numeri-
cal precision of the larger terms in the sum, rather than a basic
convergence problem of the series. This is similar to the be-
haviour for the nested Legendre series described in [9]. For
the calculations and tolerances used here, the onset of reduced
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(a) (b)

FIGURE 3. Contour plot of −Im(Eϕ) for a loop with a = 1m and I = 1A using Equations (17d) and (23) over extended spatial zones. (a) 30MHz
and (b) 300MHz. Shaded zones indicate loss of accuracy for computations using the proposed series solutions.

(a) (b)

FIGURE 4. Contour plot of −Re(Eϕ) for a loop with a = 1m and I = 1A in the same extreme near-field zone of Figure 2, using Equations (21)
and (23). (a) 30MHz and (b) 300MHz.

accuracy occurs for regions greater than approximately several
wavelengths from the loop.
All electric and magnetic field expressions in this paper for a

given field point can be completed with one single computation
of K(x) and E(x), followed by application of the associated
recursions and finite sums. The computation of each recursion
or sum can be achieved without recourse to direct evaluation
of factorials or high order power terms, by updating successive
factorials or powers based on previous values as the series pro-
gresses. Using this basic numerical approach, the computations
using the elliptic series over the spatial zone and parameters in
Figure 2 are faster than direct integration by over a factor of
100.
In addition, for spatial regions in Figure 2 where computation

of the elliptic and spherical series both achieve the targeted tol-
erances, the elliptic series is found to be faster than the spherical
series by approximately a factor of 20. Similarly, for the com-
mon zones of acceptable tolerance Figure 3, the elliptic series is
faster by approximately a factor of 5–10. The relative speed of
the computations performed using the two series can depend on
details of the coding, but the difference observed between ellip-
tic and spherical series appears to be related to the requirement
for new half-integer Hankel function calls for each ascending

term in the spherical series. This could possibly be avoided by
casting the spherical series as a stable recursion.
It is also worth noting that computation of the real part of

Eϕ in the extreme near field, using the finite sum (21) and se-
ries (23), is faster than the spherical Hankel computation. Fig-
ure 4 shows the computation of Re(Eϕ) using the finite sum,
to a relative tolerance of 10−7, over the same spatial zone and
parameters as for Figure 2. Agreement between the finite sum,
direct integration and spherical series to the same tolerance is
obtained across the entire zone and parameter ranges, however,
the finite sum is approximately 20 times faster than the spheri-
cal series and much faster than direct integration.
The computation of Bρ and Bz exhibits similar behaviour

as observed for Eϕ, where the elliptic series and finite sums
provide efficient computation in the near field but gradual de-
cline in performance in the far field. Figures 5(a) and (b) show
the computation of Re(Bρ) and Re(Bz) using the elliptic recur-
sions (30) and (36) respectively, for the same spatial zone and
parameters as for Figure 2(b). Agreement with direct integra-
tion to relative tolerance of 10−7 is obtained for the entire zone
in Figure 5, where the direct integrals used for the comparison
are generated through application of derivatives (28) and (29)
to (1a).
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(a) (b)

FIGURE 5. Contour plot of real part of magnetic fields for a loop with a = 1m, I = 1A and frequency 300MHz in the same extreme near-field
zone of Figure 2(b). (a) Re(Bρ) using Equation (30). (b) Re(Bz) using Equation (36).

(a) (b)

FIGURE 6. Mutual impedance for loops on a half space calculated using Equation (71). (a) Mutual impedance between two loops with a = 1m and
b = 2m versus frequency. (b) Mutual impedance between two loops at frequency 150MHz, with a = 1m and varying b. Half space parameters are
ϵ1 = 5ϵo and σ1 = 0.002 Sm−1.

6. RESULTS FOR LOOPS ON A HALF SPACE
The mutual coupling of loops lying on an earth half space is of
interest in designing compact coaxial arrays for efficiently ex-
citing zero field magnetic resonances to characterise localised
mineralised zones. In hard rock mining, magnetic resonance
measurement applications are generally characterised by por-
phyry granite host rock, involving the use of moderate sized
arrays up to several metre radius and operation frequencies of
tens of megahertz. Figure 6(a) shows the mutual impedance
Zab0 between two loops lying on a half space as a function of
frequency, with a = 1m and b = 2m, computed to a relative
tolerance of 10−5 using the power series in Equation (71). The
half space is characterised by ϵ1 = 5ϵo and σ1 = 0.002Sm−1,
consistent with indicative values for dielectric constant and loss
tangents reported for relatively dry granite [40] at VHF band.
The results agree with an alternative expression based on spher-
ical Hankel functions provided in [28], Equation (16).
Figure 6(b) shows Zab0 computed using (71), for a fixed fre-

quency of 150MHz, where a = 1m and b is varied from zero
to 2m. Generally, a pattern of complementary performance is
observed for the power series and Hankel series, similar to the
free space case described in the previous section. The Hankel

and power series agrees for all cases to within a targeted rel-
ative tolerance of 10−5, except in the small grey shaded zone
very close to the loop where the Hankel series exhibits rapid
onset of overflow. On the other hand, for the parameters used
in Figure 6(b), the power series gradually looses accuracy for
b > 2m. The power series provides efficient computations for
positions closer to the loop while the Hankel series has rapidly
improving efficiency in the intermediate and far field.
Figures 7(a) and (b) respectively show the real and imaginary

parts of the quantity Zaa0 − jµ0ωaTδ (solid lines), for a loop
with a = 1m, sitting on a half space having the same parame-
ters as in Figure 6. This quantity is the total loop self-impedance
given by (76), less the quasistatic (non-radiative) thin wire ap-
proximation for the otherwise divergent component of the loop
reactance due to the idealised infinitesimal loop wire radius. In
a practical measurement of the self-impedance of a thin loop
on a half space, the quasistatic term can be easily accounted for
through calculation or measurement at low frequency.
Also plotted in Figure 7 (dashed lines) are the real and imag-

inary parts of Zaa − jµ0ωaTδ , the self-impedance of the same
loop isolated in free space as given by (25), less the thin wire
reactance approximation. The difference between the respec-
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(a) (b)

FIGURE 7. Self-impedance Zaa0 of a loop with a = 1m on a half space (solid line) and self-impedance Zaa in free space (dashed line) as a function
of frequency. (a) Self resistance and (b) self reactance, less the quasistatic component. Half space parameters are ϵ1 = 5ϵo and σ1 = 0.002 Sm−1.

tive curves in Figure 7 is Zaa0 − Zaa, which represents the ef-
fects imparted only by the presence of the half space interface.
This impedance difference is given by −jωµoπa

2Q, where Q
is the integral (60) with ρ = a, h = 0 and z → 0. As a
check of accuracy of the series, the differences in respective
curves in Figure 7 were compared with the numerical integra-
tion of (60), with z = 10−8m to allow numerical convergence.
Agreement with the numerical integration, targeted to a relative
tolerance of 10−5, was obtained for all values of Zaa0−Zaa in
Figures 7(a) and (b).
Figure 8 shows the real and imaginary parts of the axial mag-

netic field BT0z(ρ) at the interface, generated by a loop with
a = 1m and I = 1A, calculated using the power series (78)
with the same parameters as in Figure 6(b). The result agrees
with numerical integration of (77) to within a targeted rela-
tive tolerance of 10−5. The numerical integration was per-
formed using Matlab Gauss-Konrod quadrature with h = 0
and z = 10−8m. The field was also calculated using a se-
ries based on spherical Hankel functions in [27], Equation (51).
Agreement with the power series was obtained, except for the
radial region indicated by grey shading in Figure 8, where the

FIGURE 8. Axial field BT0z on a half space interface generated by
of a loop with a = 1m, I = 1A and frequency 150MHz sitting on
the half space. Real part (dashed line), imaginary part (dotted line)
and magnitude (solid line). Half space parameters are ϵ1 = 5ϵo and
σ1 = 0.002 Sm−1.

calculation using spherical functions exceeds the targeted tol-
erance, mainly due to overflow, in similar fashion to that ob-
served for free space field calculations. Likewise, for the pa-
rameters adopted in Figure 8 the power series accuracy grad-
ually declines at radii beyond 2m. For the range in Figure 8
where both the power series and spherical Hankel series agree,
the power series appears to have a speed advantage, exceed-
ing approximately one order of magnitude for the radial range
0.45–1.8m for the specific parameters adopted in Figure 8. It
should be noted however that such a comparison depends on
coding details and the potential use of accelerating methods for
either series.

7. CONCLUSION
Exact expressions for the electric and magnetic field generated
by a thin, time varying uniform loop current in free space have
been derived. The expressions take the form of a power series
in wavenumber with coefficients involving elliptic integrals or
finite sums. The series have been numerically compared to
equivalent integral expressions and alternative series based on
spherical Hankel functions. The comparison demonstrates the
efficient field computation for spatial zones both within the
loop radius and generally extending several free-space wave-
lengths from the loop contour. The expressions have been
adapted to provide expressions for the electric and axial mag-
netic field at a half space interface, which have been verified for
specific half-space parameters against integral expressions and
spherical Hankel series. The derived series also allow for rel-
atively simple expressions for the mutual impedance between
coaxial loops lying on a half space and the radiative component
of the self impedance of a single loop on a half space.
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